相邻两面受火的方钢管混凝土柱温度场与耐火极限研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土柱具有承载力高、抗震性能好、施工方便、经济效果好等优点,在多、高层建筑中得到广泛的应用。因钢管外露,钢管混凝土柱的抗火性能是决定其结构能否在火灾情况下安全工作的重要因素之一。现行关于建筑结构(包括钢管混凝土结构)抗火设计的相关规范或规程均基于柱构件四面均匀受火的边界条件,但实际结构中,由于框架柱相邻墙体具有不同程度的隔火效应,可能出现单面受火、相邻两面受火、相对两面受火、三面受火等多种非均匀受火形式。非对称的温度分布使截面材料发生非对称劣化,构件截面材料的强度中心发生偏移,从而形成附加偏心距;此外,非对称的温度分布产生非对称的膨胀变形,使柱子产生向受火面挠曲的附加变形。建筑结构中的角柱易遭受相邻两面受火作用,由于受火边界的特殊性,将形成双向附加偏心距及附加变形,其受力机理与四面受火以及其他非均匀受火情况有较大差异,有必要对其抗火性能进行深入研究。本文以相邻两面受火的方钢管混凝土柱为研究对象,分析了其温度场、耐火极限、变形等高温性能,并提出方钢管混凝土柱在相邻两面受火条件下耐火极限的简化计算公式。主要内容如下:
     (1)相邻两面受火的方钢管混凝土柱温度场分析
     基于ABAQUS建立了方钢管混凝土柱受火时的高温瞬态温度场有限元分析模型,并与已有试验结果对比以验证模型的正确性;研究方钢管混凝土柱相邻两面受火截面温度场的典型特征,并与相同条件下四面受火的方钢管混凝土柱截面温度进行对比分析;研究升温时间、含钢率、截面边长以及保护层厚度对相邻两面受火方钢管混凝土柱截面温度分布的影响规律,并确定主要影响因素。
     (2)相邻两面受火的方钢管混凝土柱的高温力学性能分析
     在温度场分析的基础上,建立了可用于分析相邻两面受火的方钢管混凝土柱抗火性能的有限元分析模型,研究其高温下的受力机理,得到了相邻两面受火方钢管混凝土柱的受火时间-轴向变形关系曲线、受火时间-侧向变形关系曲线及耐火极限,并与已有试验结果对比以验证分析模型的正确性。
     (3)相邻两面受火的方钢管混凝土柱抗火性能的参数分析
     进行了相邻两面受火的方钢管混凝土柱抗火性能的参数分析,研究了荷载比、截面边长、长细比、荷载偏心率、钢材强度、混凝土抗压强度、含钢率和保护层厚度等参数对耐火极限的影响规律;提出了方钢管混凝土柱在相邻两面受火条件下耐火极限的简化计算公式;对比了不同受火条件下(包括四面受火、三面受火、相邻两面受火、相对两面受火及单面受火)构件耐火极限的变化规律。
Concrete filled steel tubular (CFST) columns have advantages of high load carrying capability, good anti-seismic capability, convenient in construction and cost economy. As the steel tube is exposed to fire directly, the fire resistance of CFST columns is a principal factor to determining the safety of the building in fire. Current criterions and specifications about fire safety design of buildings (including the CFST structure) are all centered on columns in uniform fire, while in actual structures the frame columns may be exposed to fire with single surface, two adjacent surfaces, two opposite surfaces or three surfaces because of the existing walls. Asymmetry thermal field results in asymmetry material degradation, which would lead to the additional eccentricity. Meanwhile, asymmetry thermal field results in asymmetry dilatational strain, which induces columns’additional deformation towards the surface exposed to fire. Corner columns of buildings are generally in two-adjacent-surface fire, which would yield biaxial additional eccentricity and biaxial additional deformation. Stress mechanism of columns in two-adjacent-surface fire is different from columns under other fire loading conditions then there’s significant need to investigate fire performance of these columns. Thermal field, deformation, fire resistance of concrete-filled square hollow section (SHS) columns were analysed and a simple equation was developed for predicting the fire resistance. Three main parts of this paper are as following:
     (1) Thermal field analysis of concrete-filled SHS columns under two-adjacent-surface fire loading.
     A transient heat transfer FEM model was developed using ABAQUS to analyze the thermal field of concrete-filled SHS columns under fire, whose results were validated by the experimental results. The difference of thermal field of columns in two-adjacent-surface fire and four-surface fire was investigated. Parametric study was conducted to analyze their effect on the thermal field of concrete-filled SHS columns in two-adjacent-surface fire, including exposure time, the dimension of cross-section, steel ratio and the thickness of fire proof.
     (2) Mechanical performance analysis of concrete-filled SHS columns under two- adjacent -surface fire loading.
     Based on analysis of thermal field, the FEM model for calculating fire resistance of concrete-filled SHS columns in two-adjacent-surface fire was developed. The axial deformation versus time curves, the mid-height deflection versus time curves and fire resistance can be attained and validated by the experimental results. Finally, the stress mechanism of columns in two-adjacent-surface fire was studied.
     (3) Parametric studies on the fire resistance of concrete-filled SHS columns under two- adjacent -surface fire loading.
     Parametric studies was performed to explore their influence on the fire resistance of concrete-filled SHS columns under two-adjacent-surface fire, including load level, dimension of cross-section, slenderness ratio, load eccentricity, strength of steel and concrete, steel ratio and the thickness of fire proof. Then a simple equation was developed for predicting the fire resistance of concrete-filled SHS columns in two-adjacent-surface fire. The influence of fire boundary (four-surface, three-surface, two-opposite-surface, two-adjacent-surface or single-surface fire loading) on fire resistance was discussed.
引文
[1]钟善桐.钢管混凝土结构(第3版)[M].北京:清华大学出版社,2003.
    [2]韩林海.钢管混凝土结构——理论与实践(第二版)[M].北京:科学出版社,2007.
    [3]王玉银.圆钢管高强混凝土轴压短柱基本性能研究[D].哈尔滨:哈尔滨工业大学土木工程学院. 2003.
    [4] Klingsch W. New Developments in Fire Resistance of Hollow Section Structures[C]. Symposium on Hollow Structural Sections in Building Construction, ASCE, Chicago Illinois, 1985: 1~34.
    [5] Hass R. on Realistic Testing of the Fire Protection Technology of Steel and Cement Supports[J]. Translations of BHPR/NL/T/1444, 1991: 171.
    [6] Okada T, Yamaguchi T, Sakumoto Y, et al. Loaded Heat Tests of Full-Scale Columns of Concrete-Filled Tubular Steel Structure Using Fire-Resistance Steel for Buildings[C]//Proc. of 4th International Conference on Steel-Concrete Composite Structures of ASCCS, Fukuoka, Japan, 1991, 9: 101~106.
    [7] Inha T. A Simple Method for the Structural Fire Design of Composite Structures[C]//Proc. of an Engineering Foundation Conference on Steel-Concrete Composite Structures, New York, the Structure Division of the ASCE, 1992: 210~223.
    [8] Lie T T. Fire and Buildings[M]. Applied Science Publishes LTD. 1972.
    [9] Lie T T, Chabot M. A Method to Predict the Fire Resistance of Circular Concrete Filled Hollow Steel Columns[J]. Journal of Fire Engineering, 1990, 2(4): 111~126.
    [10] Lie T T, Irwin R J. Evaluation of Fire Resistance of Reinforced Concrete Columns with Rectangular Cross-Section[R]. NRC-CNRC Internal Report, 1990, No.601.
    [11] Lie T T, Chabot M. Experimental Studies on the Fire Resistance of Hollow Steel Columns Filled with Plain Concrete[R]. NRC-CNRC Internal Report, 1992, No.611.
    [12] Lie T T, Irwin R J. Method to Calculate the Fire Resistance of Reinforced Concrete Columns with Rectangular Cross Section[J]. ACI Structural Journal. 1993, 90(1): 52~60.
    [13] Lie T T, Denham E M A. Factors Affecting the Fire Resistance of Circular Hollow Steel Columns Filled with Bar-Reinforced Concrete[R]. NRC-CNRC Internal Report, 1993, No.651.
    [14] Lie T T, Chabot M. Evaluation of Fire Resistance of Compression Members Using Mathematical Models[J]. Fire Safety Journal, 1993(20): 135~149.
    [15] Lie T T, Stringer D C. Calculation of the Fire Resistance of Steel Hollow Structural Section Columns Filled with Plain Concrete[J]. Canadian Journal of civil Engineering. 1994, 21: 382~385.
    [16] Lie T T. Fire Resistance of Circular Steel Columns Filled with Bar-Reinforced Concrete[J]. Journal of Structural Engineering, 1994, 120: 1489~1509.
    [17] Lie T T, Irwin R J. Fire Resistance of Rectangular Steel Columns Filled with Bar-Reinforced Concrete[J]. Journal of Structural Engineering, 1995, 121(5): 797~805.
    [18] Kodur V K R, Lie T T. Fire Resistance of Steel Columns Filled with Fiber-Reinforced Concrete[J]. Journal of structural engineering, 1996, 122(7): 776~782.
    [19] Lie T T, Kodur V K R. Fire Resistance of Steel Columns Filled with Bar-Reinforced Concrete[J]. Journal of Structural Engineering, 1996, 122(1): 30~36.
    [20] Lie, M. Chabot. Fire Resistance of Hollow Steel Columns Filled with Carbonate Aggregate Concrete: test results[R]. NRC-CVRC Internal Report, 1998, No.573.
    [21] Lie, Cargon S E. Fire Resistance of Hollow Steel Columns Filled with Silicate Aggregate Concrete: Test Results[R]. NRC-CVRC Internal Report, 1998, No.573.
    [22] Kodur V K R, MacKinnon D H. Design of Concrete Filled Hollow Section Columns for Fire Endurance[J]. Engineering Journal, AISC. 2000, 37(1): 13~24.
    [23] Kim D K, Chot S M, Chung K S. Structural Characteristics of Cft Columns Subject to Fire Loading And Axial Force[C]//Proceedings of the 6th ASCCS Conference, Los Angeles, USA, 2000: 271~278.
    [24] Wang Y C, Davies J M. An Experimental Study of the Fire Performance of Non-Sway Loaded Concrete-Filled Steel Tubular Column Assemblies with Extended End Plate Connections[J]. Journal of Constructional Steel Research. 2003, 59(7): 819~838.
    [25] Varma A H, Srisa-Ard J, Hong S. Analytical Investigations of the Fire Behavior of Concrete Filled Steel Tube (CFT) Columns//Proceedings of the 2004 Structures Congress-Building on the Past: Securing the Future. 2004: 1171~1181.
    [26] Hong S, Varma A H. Behavior of CFT Beam-Columns under Elevated Temperatures from Fire Loading[C]. Annual Stability Conference, Structural Stability Research Council. 2004: 557~580.
    [27] Tan K H, Tang C Y. Interaction Model for Unprotected Concrete Filled Steel Columns under Standard Fire Conditions[J]. Journal of Structural Engineering, 2004, 130(9): 1405~1413.
    [28] Ding J, Wang Y C. Realistic Modelling of Thermal And Structural Behaviour of Unprotected Concrete Filled Tubular Columns in Fire[J]. Journal of Constructional Steel Research. 2008, 64: 1086~1102.
    [29] Hong S, Varma A H. Analytical Modeling of the Standard Fire Behavior of Loaded Cft Columns[J]. Journal of Constructional Steel Research. 2009, 65: 54~69.
    [30] Espinos A, Romero M L, Hospitaler A.Advanced Model for Predicting the Fire Response of Concrete Filled Tubular Columns[J]. Journal of Constructional Steel Research, 2010, 66: 1030~1046.
    [31] Espinos A, Gardner L, Romero M L, et al. Fire Behaviour of Concrete Flled Elliptical Steel Columns[J].Journal of Constructional Steel Research, 2011, 49: 239~255.
    [32]钟善桐.钢管混凝土耐火性能研究的几个问题和方法[J].哈尔滨建筑大学学报,1997,30(5):53~57.
    [33]贺军利,钟善桐.钢管混凝土柱耐火全工程分析.哈尔滨建筑大学学报,1997,30(5):71~76.
    [34]钟善桐.钢管混凝土的防火.建筑结构,1999,(7):55~61.
    [35] Han L H. Fire Performance of Concrete-Filled Steel Tubular Beam-Columns[J]. Journal of Constructional Steel Research. 2001, 57(6): 695~709.
    [36]杨华,韩林海.圆钢管混凝土柱全过程火灾作用后剩余承载力实用计算方法.工程建设与设计,2005,(2):26~29.
    [37]韩林海,徐蕾.方钢管混凝土柱耐火极限的理论研究.消防科学与技术,2000,(4):7~9.
    [38]杨有福,韩林海.矩形钢管混凝土柱的耐火性能和抗火设计方法.建筑结构学报,2004,25(1):25~35.
    [39] Lu H, Zhao X L, Han L H. Fire Behavior of High Strength Self-Consolidating Concrete Filled Steel Tubular Stub Columns[J]. Journal of constructional Steel Research, 2009, 65: 1995~2010.
    [40] Lu H, Han L H, Zhao X L. Fire Performance of Self-Consolidating Concrete Filled Double Skin Steel Tubular Conlumns:Experiments[J]. Journal of constructional Steel Research. 2010, 45: 106~115.
    [41] Zha X X, Zhong S T. Behaviour of Concrete Filled Steel Tubular Columns under Fire[J]. Journal of Harbin Institute of Technology, 2002, 9(3): 292~296.
    [42]李易,查晓雄,王靖涛.端部约束对钢管混凝土柱抗火性能的影响[J].哈尔滨工业大学学报(增刊),2005,37:438~441.
    [43]徐超,张耀春.四面受火方形薄壁钢管混凝土轴心受压短柱抗火性能分析[J].哈尔滨工业大学学报(增刊),2005,37:417~420.
    [44]王卫华,陶忠.火灾下圆钢管混凝土柱的有限元计算[J].工业建筑,2009,39(4):28~32.
    [45] Ikeda K, Matsui K, Saito H. Fire Safety Engineering of Concrete Filled Steel Tubular Column without Fire Protection[J]. Yokohama, Japan, SEWC 2002: 1~8.
    [46]吴国忠,齐晗兵,张文福,鲁刚.方形截面钢管混凝土非均匀受火温度场的数值模拟[J].大庆石油学院学报,2003,27(4):87~89,124.
    [47]杨华.三面火灾作用下方钢管混凝土柱抗火性能与设计[D].哈尔滨:哈尔滨工业大学土木工程学院. 2006.
    [48]杨华,张素梅,王玉银.三面火灾作用下方钢管混凝土柱温度场研究[J].哈尔滨工业大学学报,2007,39(2):216~219.
    [49]杨华,吕学涛,张素梅.单面受火的矩形钢管混凝土柱截面温度场分析[J].天津大学学报,2010,43(5):392~399.
    [50]杨华,吕学涛,刘发起.相对两面火灾作用下方钢管混凝土柱温度场研究[J].哈尔滨工业大学学报,2010,42(增刊1):189~193.
    [51] Yang H, Han L H, Wang, Y C. Effects of Heating and Loading Histories on Post-?re Cooling Behaviour of Concrete-?lled Steel Tubular Columns. Journal of Constructional Steel Research, 2008, 64: 556–570.
    [52] Lv X T, Yang, H, Zhang S M. Model Temperature distribution of concrete-filled steel tubes with rectangular sections under one-side fire[C]. Improvement of Structural Safety for Building Structures, 2008: 263~270.
    [53]顾锋.单面火灾作用下方钢管混凝土柱耐火性能与设计[D].哈尔滨:哈尔滨工业大学土木工程学院. 2009.
    [54]顾锋,杨华,吕学涛.单面火灾作用下方钢管混凝土柱抗火性能与防火保护[J].哈尔滨工业大学学报,2009,41(增刊2):210~214.
    [55]杨华,顾峰,吕学涛,张素梅.单面火灾作用下方钢管混凝土柱抗火性能与设计[C].第五届全国钢结构防火及防腐技术研讨会暨第三届全国结构抗火学术交流会,2009:320~326.
    [56]吕学涛.非均匀受火的方钢管混凝土柱抗火性能与设计[D].哈尔滨:哈尔滨工业大学土木工程学院. 2010.
    [57] Lv X T, Yang H, Zhang S M. Effect of Contact Thermal Resistance on Temperature Distributions of Concrete-Filled Steel Tubes in Fire[J]. Journal of Harbin Institute of Technology (New Series), 2010, 18(1): 99~106.
    [58]刘发起.三面受火的矩形钢管混凝土柱抗火性能研究[D].哈尔滨:哈尔滨工业大学土木工程学院. 2010.
    [59]刘发起,杨华.不同加载方式下钢管混凝土耐火性能的有限元分析.哈尔滨工业大学学报,2009,42(增刊1):201~204.
    [60]陶忠,韩林海.方形截面钢管混凝土双向压弯构件承载力理论分析和简化计算[J].钢结构,2000,47:42~46.
    [61]田华,张素梅,郭兰慧.方形、矩形钢管高强混凝土双向压弯构件承载力的研究[J].哈尔滨工业大学学报(增刊),2003,35:35~39.
    [62]张素梅,刘界鹏,王玉银,郭兰慧.双向压弯方钢管高强混凝土构件滞回性能试验与分析[J].建筑结构学报,2005,26(3):9~18.
    [63]姜绍飞,牛德生,于清海.高温后矩形钢管混凝土双向压弯构件力学性能试验研究[J].建筑结构学报,2008,29(5):13~19.
    [64] Eurocode 4. Design of Composite Steel And Concrete Structures-Part1-2:General Rules-Structural Fire Design[S]. EN1994-1-2:2005, European committee for standardization, Brussels, 2005.
    [65]李国强,韩林海,楼国彪,蒋首超.钢结构及钢-混凝土组合结构抗火设计[J].北京:中国建筑工业出版社,2006.
    [66]孙金香,高伟(译).建筑物综合防火设计[M].天津:天津科技翻译出版公司,1992.
    [67]徐超.方形设肋薄壁钢管混凝土柱抗震和抗火性能研究[D].哈尔滨:哈尔滨工业大学土木工程学院. 2007.
    [68]钟善桐.钢管混凝土耐火性能研究的几个问题和方法[J].哈尔滨建筑大学学报. 1997,30(4):53~57.
    [69]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社. 2003.
    [70]胡海涛,董毓利.高温时高强混凝土瞬态热应变的试验研究[J].北京:建筑结构学报. 2002,23(4): 34~35.
    [71]尧国皇.钢管混凝土构件在复杂受力状态下的工作机理研究[D].福州:福州大学土木工程学院. 2006.
    [72] Roeder C W, Cameron B, Brown C B. Composite Action in Concrete Filled Tubes. Journal of Structural Engineering[J], 1999, 125(5): 477~484.
    [73] Morishita Y, Tomii M, Yoshimura K. Experimental Studies on Bond Strength in Concrete Filled Square and Octagonal Steel Tubular Columns Subjected to Axial Loads[J]. Transactions of Japan Concrete Institute, 1979b: 359~336.
    [74] Morishita Y, Tomii M. Experimental Studies on Bond Strength Between Square Steel Tube And Encased Concrete Core Under Cyclic Shearing Force and Constant Axial Force[J]. Transactions of Japan Concrete Institute, 1982, (4): 363~370.
    [75]郭兰慧.矩形钢管混凝土构件力学性能的理论分析与试验研究[D].哈尔滨:哈尔滨工业大学土木工程学院. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700