纤维增强聚合物混凝土及其界面与阻尼机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精密和超精密机械加工技术的发展和进步对机械加工设备加工精度的要求越来越高,机械基础件的材料对机械设备的性能特别是加工精度影响很大,研究开发新型的机械基础件材料是提高机械加工设备综合性能的有效手段之一。聚合物混凝土(Polymer Concrete,简称PC)具有良好的阻尼减振性能,用于制作机械基础件可以有效地提高机械加工设备的加工精度,受到了广泛关注。
     本文首次将玻璃纤维和碳纤维应用到聚合物混凝土中,开发出可用作机械基础件材料的玻璃纤维增强聚合物混凝土(Glass Fiber Reinforced Polymer Concrete,简称GFRPC)和碳纤维增强聚合物混凝土(Carbon Fiber Reinforced PolymerConcrete,简称CFRPC),统称为纤维增强聚合物混凝土(Fiber Reinforced PolymerConcrete,简称FRPC)。
     本文对纤维增强聚合物混凝土的组分特性、制作工艺、界面作用机理、阻尼减振机理和力学性能等方面的作用机理进行了系统研究,提出了适用于纤维增强聚合物混凝土的制作工艺;研究了纤维增强聚合物混凝土各相成分之间的界面作用机理,建立了界面结合的化学模型和物理模型;分析了纤维增强聚合物混凝土的阻尼减振机理,提出了其阻尼损耗因子和阻尼比的计算模型;研究了纤维增强聚合物混凝土中各相组分的用量和工艺等因素对其力学性能的影响,为优化纤维增强聚合物混凝土的配比、提高复合材料的性能提供了依据。
     原材料是决定纤维增强聚合物混凝土性能的重要因素,本文系统研究了纤维增强聚合物混凝土各原材料组分的物理和化学特性,选定环氧树脂作为粘结剂并确定了所需的固化剂、稀释剂、增韧剂等处理剂,详述了环氧树脂在固化剂作用下的固化机理,介绍了纤维增强聚合物混凝土中所需骨料和增强纤维的性能要求和特性。
     在理论分析的基础上,试验研究了纤维增强聚合物混凝土的制作工艺,制定了适合本文所选原材料的生产制作工艺流程。详细介绍了增强纤维的表面处理、纤维增强聚合物混凝土的成型工艺、半成品的养护工艺、脱模剂的选择、纤维增强聚合物混凝土机械基础件的设计原则以及产品的后续加工工艺等,建立了纤维增强聚合物混凝土从原材料预处理、复合材料的制备到产品结构设计和生产全过程的工艺流程体系。
     分析了纤维增强聚合物混凝土的界面作用机理,建立了增强纤维与环氧树脂基体之间的化学键连接模型,以及花岗岩骨料颗粒与环氧树脂基体之间界面的物理作用模型。增强纤维表面处理后会在表面生成一些活性基团,这些基团可以与环氧树脂基体中的环氧基等活性基团发生化学反应,生成键能较大的化学键,使环氧树脂基体与增强纤维结合为一个整体。花岗岩骨料与环氧树脂基体之间的作用力有液体对固体的表面浸润作用以及固化后的环氧树脂基体与花岗岩骨料之间的机械锁结作用,两相之间通过物质的界面能、分子间相互吸附作用的范德华力和机械作用力实现界面结合。
     研究了纤维增强复合材料的阻尼减振机理,分析了纤维增强聚合物混凝土阻尼性能的主要来源和影响因素,提出了纤维增强聚合物混凝土的阻尼损耗因子和阻尼比计算模型。纤维增强聚合物阻尼的主要来源是复合材料的基体,包括环氧树脂基体、花岗岩骨料颗粒和增强纤维本身的阻尼,其它因素引起的阻尼(界面阻尼、热弹性阻尼、粘塑性阻尼和材料破坏引起的阻尼等)对复合材料的阻尼性能也有一定影响。设计了两组正交试验研究纤维增强聚合物混凝土的各种组分的用量和配比以及不同的纤维种类对其阻尼性能的影响,得出了不同因素对复合材料阻尼性能的影响规律。
     通过正交试验研究了原料配比等因素对纤维增强聚合物混凝土力学性能的影响(以抗压强度为衡量指标),得到了各因素对复合材料力学性能的影响规律,可以作为优化纤维增强聚合物混凝土原料配比的依据。正交试验研究了玻璃纤维增强聚合物混凝土和碳纤维增强聚合物混凝土的力学性能差异,以及增强纤维的长度和用量对复合材料力学性能的影响。由于碳纤维的力学性能优于玻璃纤维,在聚合物混凝土基体中可以承受更大的应力作用,对聚合物混凝土的增强效果优于玻璃纤维。对纤维增强聚合物混凝土机械基础件的动态性能进行了计算机仿真,并与灰铸铁基础件进行了比较,结果证明纤维增强聚合物混凝土具有更好的效果,是精密机械加工设备的理想基础件材料。
The development and rapid progress of precision and high-precision machining technology expect machine tools to provide higher machining precision. The structural materials for elementary machine parts have enormous influence on the machine tools' properties, especially machining precision. To explore new types of materials for elementary machine parts is one of the most effective ways to improve the over-all properties of the machine tools. As far as vibration alleviating properties is concerned, Polymer Concrete (abbreviated as PC) is favorable. Machining precision would be improved significantly if elementary machine parts are made of polymer concrete. Therefore, polymer concrete has attracted extensive attention from the researchers in the relevant field.
     In this thesis, glass fiber and carbon fiber are applied in polymer concrete for the first time. Glass fiber reinforced polymer concrete (abbreviated as GFRPC) and carbon fiber reinforced polymer concrete (abbreviated as CFRPC) are developed and applied as elementary machine parts. Polymer concrete reinforced with glass fiber or carbon fiber could also be referred as fiber reinforced polymer concrete (abbreviated as FRPC).
     Systematical studies were carried out for the mechanisms of fiber reinforced polymer concrete, such as components' characteristics, forming processes, interface action mechanism, damping mechanism and mechanical properties, etc, meanwhile, a proper forming and production process for fiber reinforced polymer concrete is proposed. Interface mechanism among the components is analyzed, chemical model and physical model about the interfacial bonding were built based on the analysis. Damping and vibration alleviating properties of fiber reinforced polymer concrete were also analyzed, meanwhile, calculation models about damping loss factor and damping ratio were created. How the factors such as proportion of the components and forming process affect mechanical properties of fiber reinforced polymer concrete is studied, which provides basis for the optimization of the components' proportions and improvement of the composite's properties.
     Raw materials are important factors that determine properties of fiber reinforced polymer concrete. Physical and chemical properties of the raw materials for fiber reinforced polymer concrete were studied in this thesis. Epoxy resin was selected as binder and corresponding stabilizer, flexibilizer and other relevant agents were determined. Solidification mechanisms of epoxy resin under the presence of stabilizers is described in details. Requirements for aggregate frameworks and strengthening fibers as well as the ones used frequently were introduced, also, the proper components were determined.
     On the basis of theoretical analysis, production process of fiber reinforced polymer concrete of fiber reinforced polymer concrete was studied through experiments. The following processes were described in details: surface treatment of strengthening fibers, forming process of fiber reinforced polymer concrete, maintenance of the semi-finished products, choice of the mold releasing agent, designing principles of elementary machine parts made of fiber reinforced polymer concrete, as well as the consequent machining processes of finished products. A technological process system for fiber reinforced polymer concrete is established, which covers the scope from the treatment of raw materials to production of the materials and the designing of product structures.
     The interfacial action mechanism of fiber reinforced polymer concrete was studied. A model about the chemical bonds between strengthening fibers and epoxy resin matrix, as well as another model about the interface physical actions between granite aggregates and epoxy resin matrix were created. Some active radicels formed on the surface of strengthening fibers, which could react with epoxy radicels or any other radicels inside epoxy resin matrix. Chemical bonds could be built after the reactions between strengthening fibers and epoxy resin matrix, which would make them as a whole with the high chemical bond energy. Interface between granite aggregates and epoxy resin matrix is built through the surface soakage between liquids and solids, as well as the mechanical keying actions between granite aggregates and solidified epoxy resin matrix. Interfacial combination between the two phases is realized by interface energy, the Van Der Walls' force among molecules and mechanical interactions.
     The damping and vibration alleviating mechanisms of fiber reinforced composites were studied, also, the main source and influencing factors for the damping properties of fiber reinforced polymer concrete were analyzed. Calculation models for damping loss factor and damping ratio were presented. The main source for the damping properties of fiber reinforced polymer concrete comes from damping of the composite matrix, including epoxy resin matrix, granite aggregates and strengthening fibers. Damping caused by other factors (interface damping, thermo-elasticity damping, viscoelasticity damping and damping caused by the material rupture) also has some influences on damping properties of the composites. Two groups of orthogonal tests were designed to review how the components' proportions fiber type affect the composite's damping properties. Trend curves which show how the different factors affect damping properties of the composite were obtained on the basis of the experimental results.
     How the components' proportions affect mechanical properties (taking compression strength as the judging index) of fiber reinforced polymer concrete was studied through orthogonal tests. Trend curves which show how experimental factors affect mechanical properties of the composite would be obtained on basis of the analysis of experimental results. Then the affection of the factors on the mechanical properties of the composite was obtained based on the curves, which could be applied to determine the components' proportions. The differences between mechanical properties of glass fiber reinforced polymer concrete and carbon fiber reinforced polymer concrete, as well as the effect of fiber length and fiber dosage on mechanical properties of fiber reinforced polymer concrete was studied through another series of orthogonal tests. The strength of carbon fiber is better than that of glass fiber, so that it could bear more stress inside the composite matrix, as a result, the strengthening effect of carbon fiber in polymer concrete matrix is better than that of glass fiber.
引文
[1]David G.Manning,Brian B.Hope.The effect of porosity on the compressive strength and elastic modulus of polymer impregnated concrete[J].Cement and Concrete Research.1971,1(6):631-644.
    [2]D.J.Cook,V.Sirivivatnanon.The influence of premix polymer additives on the deformation behaviour of concrete[J].Cement and Concrete Research.1978,8(3):369-380.
    [3]P.F.Sun,E.G.Naway and J.A.Sauer.Properties of epoxy-cement concrete systems[J].Journal of American Concrete Institute.1975,(11):608-613.
    [4]J.E.Isengerg,J.W.Vanderhoff.A hypothesis for the reinforcement of portland cement by latex[J].Journal of the American Chemistry Society.1973,57(6):242-245.
    [5]H.B.Wanger.Polymer modified hydraulic cement.Industrial and Engineering Chemistry[J].Products Research and Development.1965,4(3):191-196.
    [6]T.Sugama and L.E.KuKacKa.Effect of di-calcium silicate(C_2S) and tri-calcium silicate(C_3S) on the thermal stability of vinyl-type polymer concrete.Cement and Concrete Research[J].1979,9(1):69-76.
    [7]钟世云、袁华.聚合物在混凝土中的应用[M].北京:化学工业出版社.2003.9.
    [8]D.W.Fowler.Polymers in concrete:a vision for the 21st century[J].Cement &Concrete Composites.1999,21(5-6):449-452
    [9]买淑芳.混凝土聚合物复合材料及其应用[M].北京:科学技术文献出版社.1996.12
    [10]刘祥勇、张斌.PMC材料在快速修补中的应用[J].山东建材.2000,(2):15-16.
    [11]K.Aniskevich,J.Hristova,and J.Janson.Sorption characteristics of polymer concrete during long-term exposure to water[J].Mechanics of Composite Materials.2003,39(4):305-314.
    [12]J.M.L.Reisa,A.J.M.Ferreira.The effects of atmospheric exposure on the fracture properties of polymer concrete[J].Building and Environment.2006,41(3):262-267.
    [13]J.M.L.Reis,A.J.M.Ferreira.Effect of marine exposure on fracture properties of epoxy concretes[J].Polymer Testing.2005,24(1):121-125.
    [14]G.B.Kim,K.Pilakoutas,P.Waldron.Thin FRP/GFRC structural elements[J].Cement and Concrete Composites.2008,30(2):122-137.
    [15]Vanberg R P.Glass fiber reinforced polymer concrete cladding panels(GRPC)[C].Polymers in Concrete,Prodeedings of the International Congress on Polymers in Concrete,Darmstadt,West Germany,1984:185-188.
    [16]Ohama Y.Development of concrete polymer materials in Japan[C].Symposium Volume,Second International Congress on Polymers in Concrete,The University of Texas at Austin,1978.
    [17]Jose T.San-Jose,Inigo J.Vegas,Moises Frias.Mechanical expectations of a high performance concrete based on a polymer binder and reinforced with non-metallic rebars[J].Construction and Building Materials.2008,(10):2031-2041.
    [18]Karim Sami Rebeiz.Structural use of polymer composites using unsaturated polyester resins based on recycled poly(ethylene terephthalate)[D].The University of Texas at Austin.1992.8.
    [19]Waters D G.Polymer-modified cementitious mixtttres for repair[J].Concrete Repair Bulletin,1995,8(5):18-21.
    [20]Waters D G.A comparison of latex-modified portland cement mortar[J].American Concrete Institute's Material Journal.1990,87(4):371-377.
    [21]高雪峰、谢天祥.高性能混凝土在道路工程中的应用研究[J].上海公路.2003,(4):18-20.
    [22]马国强.沥青混凝土路面病害的防治[J].创新科技.2004,(5):37-37.
    [23]郭贵平、杨文明.高速公路沥青混凝土路面病害及机械化养护[J].建筑机械.2000,(6):32-35.
    [24]罗立峰.钢纤维增强聚合物混凝土桥面铺装层修筑技术的研究[D].华南理工大学.2002.5.
    [25]钱尚宁、何培勇、罗立峰.钢纤维增强聚合物混凝土在路面铺装中的应用[J].广东公路交通.2003,(增刊):6-9.
    [26]吴少鹏.钢纤维增强聚合物水泥基复合材料及其工程应用[D].武汉工业大学.1999.11.
    [27]潘放、邱志雄、习康.桥面铺装聚合物纤维混凝土抗折试验研究[J].中外公 路.2003,23(3):100-102.
    [28]G.L.Guerrini.Applications of high-performance fiber-reinforced cement-based composites[J].Applied composite materials.2000,(7):195-207.
    [29]P.A.McKeown,G.H.Morgan.Epoxy granite:a structural material for precision machines[J].Precision Engineering.1979,1(4):227-229.
    [30]Sezan Orak.Investigation of vibration damping on polymer concrete with polyester resin[J].Cement and Concrete Research.2000,30(2):171-174.
    [31]吴隆.聚合物混凝土床身的制造与特性分析[J].机械制造.2004,24(473):37-39.
    [32]吴隆,李力,安向东.高速铣床主轴系统和床身特性的分析与研究[J].机床与液压.2004,(7):72-74.
    [33]Yoshihiko Ohama.Recent progress in concrete-polymer composites[J].Advanced Cement Based Materials.1997,5(2):31-40.
    [34]Yoshihiko Ohama.Polymer-based admixtures[J].Cement and Concrete Composites.1998,20(2-3):189-212.
    [35]J.Hulatt,L.Hollaway,A.Thorne.The Use of advanced polymer composites to form an economic structural unit[J].Construction and Building Materials.2003,17(1):55-68.
    [36]田文华.聚合物混凝土的发展及应用[J].江苏建材.2002,(2):31-32.
    [37]Weck M,Hartel R.Design manufacturing and testing of precision machines with steel-fiber polymer concrete[J].Components Precision Engineering.1985,(3):23-26.
    [38]郭俊才主编.水泥及混凝土技术进展[M].北京:中国建材工业出版社.1993.
    [39]高丹盈,刘建秀著.钢纤维混凝土基本理论[M].北京:科学技术文献出版社.1994.
    [40]D.赫尔著,张双寅,郑维平,蔡良武译.复合材料导论[M].北京:中国建筑工业出版社.1989.
    [41]徐平,崔剑.钢纤维聚合物混凝土高阻尼性及其在机床制造业中的应用[J].机床与液压.2004,(4):103-105.
    [42]于英华,刘敬福,李智超.钢纤维含量对树脂混凝土力学性能的影响[J].辽宁工程技术大学学报(自然科学版).2002,21(6):780-782.
    [43]徐平,胡晓军、于英华.钢纤维聚合物混凝土抗压本构关系[J].材料科学与工程学报.2003,21(2):262-265.
    [44]徐平,崔剑.纤维长径比和含量对钢纤维聚合物混凝土抗压强度的影响[J].机械制造.2004,(10):60-61.
    [45]赵国藩著.钢纤维混凝土结构[M].北京:中国建筑工业出版社.2000.5.
    [46]ACI Committee 544.Design considerations for steel fiber reinforced concrete[S].ACI Structural Journal.Sep-Oct,1988.
    [47]周长东,黄承逵.玻璃纤维聚合物加固混凝土柱的抗弯性能研究[J].土木工程学报.2005,38(2):38-45.
    [48]Nathan C.Gould,Thomas G.Harmon.Confined concrete columns subjected to axial load,cyclic shear,and cyclic flexure-part Ⅰ:Analytical Models[J].ACI Structural Journal.2002,99(1):32-41.
    [49]Thomas G.Harmon,Nathan C.Gould,Seetharaman Ramakrishnan,and Edward H.Wang.Confined concrete columns subjected to axial load,cyclic shear,and cyclic flexure-part Ⅱ:Analytical Models[J].ACI Structural Journal.2002,99(1):42-50.
    [50]J.L.Thomason.The influence of fibre length,diameter and concentration on the modulus of glass fibre reinforced polyamide 6,6[J].Composites Part A:Applied Science and Manufacturing.2008,39(11):1732-1738.
    [51]姜肇中.玻璃纤维应用技术[M].北京:中国石化出版社.2004.
    [52]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社.1995.2.
    [53][法]J.B.唐纳特,R.C.班萨尔著,李仍元等译.碳纤维[M].北京:科学出版社.1989.11.
    [54]A.D.Bunsell.Fiber reinforcements for composite materials[M].Composite Materials Series.1988,2:1-703.
    [55]M.A.Aiello,L.Ombres.Cracking analysis of FRP-reinforced concrete flexural members[J].Mechanics of Composite Materials.2000,36(5):389-394.
    [56]Zhishen Wu,Jun Yin.Fracturing behaviors of FRP-strengthened concrete structures[J].Engineering Fracture Mechanics.2003,70(10):1339-1355.
    [57]G.A.Hegemier,H.Murakami.On global shear transfer across a crack or joint plane penetrated by continuous fiber reinforcement with application to reinforced concrete[J].International Journal of Solids and Structures.1990,26 (9-10):1115-1131.
    [58]Wu ZS,Niu HD.Shear transfer along FRP-concrete interface in flexural members.Journal of Materials Concrete Structure Pavements.2000,49(662):231-245.
    [59]王启义,蔡群礼,胡宝珍编.金属切削机床设计[M].沈阳:东北大学出版社.1989.10.
    [60]陈雪瑞.金属切削机床设计[M].太原:山西科学技术出版社.1988.
    [61]F.Koenigsburger,J.Tlusty.Machine tool structure[M].London:Pergamon Press,1970.
    [62]F.Koenigsburger.Design of metal-cutting machine Tools[M].London:Pergramon Press.1964.
    [63]戴曙.金属切削机床设计(修订版)[M].北京:机械工业出版社.1985.
    [64]R.A.Thompson.On the doubly regenerative stability of a grinder:the effect of contact stiffness and wave filtering[J].Journal of engineering for industry.1992,114(1):53-61.
    [65]徐耀信.机床振动学[M].南昌:江西高校出版社.1990.12.
    [66]陈兆年,陈子辰.机床热态特性学基础[M].北京:机械工业出版社.1989.11.
    [67]Jong-Jin Kim,Young Hun Jeong,Dong-Woo Cho.Thermal behavior of a machine tool equipped with linear motors[J].International Journal of Machine Tools and Manufacture.2004,44(7-8):749-758.
    [68]R.Venugoal,M.Barash.Thermal effects on the accuracy of numerically controlled machine tools[C].CIRP Annals,1986.
    [69]G.Spur,E.Hoffmann,Z.Paluncic,K.Benzinger,H.Nymoen.Thermal behavior optimization of machine tools[J].CIRP Annals-Manufacturing Technology.1988,37(1):401-405.
    [70]郭金荣译.采用混凝土床身的高精度三坐标磨床[J].机床.1992,(7):18-19.
    [71]Michael Hsu and David W.Fowler.Creep and fatigue of polymer concrete[J].American Concrete Institute Special Publication.1989,(17):323-341.
    [72]E.G.Kelly,D.J.Spottoswood.Introduction to mineral processing[M].New York:John Wiley and Sons.1982.
    [73]胡果明,张绍勇,周倜.树脂混凝土在机床基础件上的应用[J].机床.1993,(10):8-10.
    [74]DIN 51 290.Prifung von reaktionsharzbeton im mashinenbau[S].Deutsche NORM,Mai.1991.
    [75]朱乐平.混凝土在机床基础件中的应用[J].机械制造.1991.5:5-6.
    [76]王积森.聚合矿物复合材料的开发及其在机械基础件中的应用研究[D].山东工业大学.1999.9.
    [77]孙杰.聚合矿物复合材料在机床夹具制造中的应用[D].山东工业大学.1998.5.
    [78]胡晓军.钢纤维聚合物混凝土做机床基础件的性能研究[D].辽宁工程技术大学.2001.12.
    [79]牛艳奇.钢纤维聚合物混凝土增强机理及其在机床基础件中的应用[D].辽宁工程技术大学.2002.12.
    [80]崔剑.钢纤维聚合物混凝土材料优化及其机床床身的研究[D].辽宁工程技术大学.2003.12.
    [81]周祝林,姚辉,孙佩琼,张小萍.树脂基纤维复合材料界面理论评述[J].玻璃钢.2006,(1):27-31.
    [82]赵玉庭,姚希增.复合材料基体与界面[M].上海:华东化工学院出版社.1991.
    [83]戴德沛.阻尼技术的工程应用[M].北京:清华大学出版社.1991.10.
    [84]邓文英,郭小鹏:金属工艺学(第四版)(上册)[M].北京:高等教育出版社.2000.9,.
    [85]施瑞鹤.铸铁阻尼性能研究[J].铸造.1987,(11):9-13.
    [86]施瑞鹤,林凡,曾念波,秦富生.高阻尼铸铁及阻尼机理[J].上海交通大学学报.1991,25(6):92-98.
    [87]B.McKavanagh,F.D.Stacey.Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies[J].Physics of The Earth and Planetary Interiors.1974,8(3):246-250.
    [88]张少辉,陈花玲:国外纤维增强树脂基复合材料阻尼研究综述[J].航空材料学报.2002,22(1):58-62.
    [89]曾海泉,罗跃刚,杨元凤,鄢利群:高分子阻尼材料及阻尼结构[J].特种橡胶制品.2001,22(5):17-20.
    [90]Denoyer K.K.,Kwak M.K.Dynamic modeling and vibration suppression of a swelling structure utilizing piezoelectric sensors and actuators[J].Journal of Sound and Vibration.1996,189(1,11):13-31.
    [91]B.Imre,S.R(a|¨)bsamen,S.M.Springman.A coefficient of restitution of rock materials[J].Computers & Geosciences.2008,34(4):339-350.
    [92]侯永振.纤维增强复合材料的阻尼研究[J].橡胶资源应用.2007,(6):21-30.
    [93]Zhu Naixiong,Zhao Zhongyi,Chen Changming.The first high precision grinding machine made of polymer concrete in China[C].Polymer Concrete Institute Congress 1990:714-717.
    [94]李剑峰,王积森,陈艳秋.聚合矿物复合材料中的原材料选用与配方[J].山东工业大学学报.1998,28(5):407-412.
    [95]Prof.Dr.H.Schulz.Experience with polymer concrete in machine tool manufacturing[C].the 6th International Congress on Polymer in Concrete.Shanghai,1990.
    [96]夏文干等.胶粘剂和胶结技术[M].北京:国防工业出版社.1980.
    [97]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社.1993.3.
    [98]May A Clayton,Tanaka Yoshio.Epoxy resins chemistry and technology[M].New York:marcel Dekker inc.1973.
    [99]周菊兴,白孝达.不饱和聚酯树脂[M].北京:中国建筑工业出版社.1981.
    [100]陈建龙.人造花岗岩精密外圆磨床床身的研制[D].同济大学.1980.
    [101]Nicklau R.G.Reaktionsharzbeton fur den werkzeugmaschinenbau werkstatt unt betrieb[J].1987,(7):120-126.
    [102]J.L.Massingill Jr.,R.S.Bauer.Epoxy resins[M].Applied Polymer Science:21 st Century.2000:393-424
    [103]王德中主编.环氧树脂生产与应用(第二版)[M].北京:化学工业出版社.2001.6.
    [104]倪礼忠,陈麒.聚合物基复合材料[M].上海:华东理工大学出版社.2007.
    [105]A.Mukherjee,S.J.Arwikar.Performance of externally bonded GFRP sheets on concrete in tropical environments.Part Ⅰ:Structural scale tests[J].Composite Structures.2007,81(1):21-32.
    [106]郑重远,黄乃炯编著.树脂锚杆及锚固剂[M].北京:煤炭工业出版社. 1983.4.
    [107]Walid Baakbaki,Brahim Benmolranc,Omar Chaallal,and Pierre-Claude Aitch.Influence of coarse aggregate on elastic properties of high performance concrete[J].ACI Materials Journal.1991,September-October:499-503.
    [108]Aitcin P.K.Mehta.Effect of coarse-aggregate characteristics on mechanical properties of high-strength concrete[J].ACI Materials Journal.1990,March-April:103-107.
    [109]龚洛书.混凝土实用手册[M].北京:中国建筑工业出版社.1995.
    [110]Ta-Peng Chang and Neng-Koon Su.Estimation of coarse aggregate strength in high-strength concrete[J].ACI Materials Journal.1996,January-February:3-9.
    [111]Vipulanandan,Eliza Paul.Performance of epoxy and polymer polyester concrete[J].ACI Materials Journal.1990,May-June:241-251.
    [112]王积森,李剑锋,孙杰,艾兴.聚合树脂混凝土骨料粒度分布模型[J].机械科学与技术.1999,18(3):463-464.
    [113]Yahia A.Abdel-Jawad,Waddah Salman Abdullah.Design of maximum density aggregate grading[J].Construction and Building Materials.2002,16(8):495-508.
    [114]M.Muthukumar,D.Mohan.Studies on polymer concretes based on optimized aggregate mix proportion[J].European Polymer Journal.2004,40(9):2167-2177.
    [115]熊光晶,姜浩,杨建中等.混杂纤维复合材料及其在混凝土梁柱加固中的应用研究[J].工业建筑.2001,31(9):11-13.
    [116]Grace N F,Sayed G A.Strengthening reinforced concrete beams using fiber reinforced polymer(FRP) laminates[J].ACI Structural Journal,1999,(5):865-874.
    [117]Hollalay L C and Leeming M B.Strengthening of reinforced concrete structures using externally-bonded FRP composites in structural and civil engineering[M].Cambridge:Woodhead Publishing Limited:1999.
    [118]Toutanji H A.Stress-strain characteristics of concrete columns externally-confined with advanced fiber composites Sheets[J].ACI Materials Journal,1999,(3):397-404.
    [119]郭云亮,张涑戎,李立平.偶联剂的种类和特点及应用[J].橡胶工业.2003,50(11):692-696.
    [120]乌云其其格.偶联剂对玻璃纤维增强塑料的界面作用[J].玻璃钢/复合材料.2000,(4):12-15.
    [121]赵若飞,周晓东,戴干策.玻璃纤维增强聚丙烯界面处理研究进展[J].玻璃钢/复合材料.2000,(3):49-53.
    [122]杨俊,蔡力锋,林志勇.增强树脂用玻璃纤维的表面处理方法及其对界面的影响.塑料.2004 Vol.33(7):5-8
    [123]刘力洵,李俊伟,张志谦等.玻璃纤维/聚丙烯复合材料界面研究[J].材料科学与工艺.2000,8(2):105-107.
    [124]P G Pape,E P Plueddemann.Improvements in saline coupling agents for more durable bonding at the polymer reinforcement interface[M].ANTEC.1991:1870-1875.
    [125]A Crespy,J P Franon,S Turenne,et al.Effect of silanes on the glass fiber/polypropylene matrix interface[J].Macromolecular Chemistry,Macromolecular Symp.1987,(9):89-98.
    [126]姜勇,徐声钧,王燕舞.玻璃纤维增强聚丙烯的研制与应用[J].塑料科技.2000,(1):7-9.
    [127]H Salehi-Mobarakeh,J Brisson,A Ait-Kadi.Ionic interphase of glass fiber/polyamide composites[J].Polymer Composites.1998,19(3):264-274.
    [128]薛志云,胡福增,郑安呐等.玻璃纤维表面的乙烯基单体接枝聚合[J].功能高分子学报.1996,9(2):177-182.
    [129]杨卫疆,郑安呐,戴干策.过氧化物偶联剂在玻璃纤维表面上接枝高分子链的研究[J].华东理工大学学报.1996,22(4):429-432.
    [130]王赫,刘亚青,张斌.碳纤维表面处理技术的研究进展[J].合成纤维.2007,(1):29-32,39.
    [131]Febo Severini,Leonardo Formaro,Mario Pegoraro,Luca Posca.Chemical modification of carbon fiber surfaces[J].Carbon.2002,40(5):735-741.
    [132]赵立新,郑立允,魏效玲,王玉林.碳纤维空气氧化处理对聚合物基复合材料影响的机理[J].河北建筑科技学院学报.2002,19(4):51-53.
    [133]王成忠,杨小平,于运花等.XPS,AFM研究沥青基碳纤维电化学表面处理过程的机制[J].复合材料学报.2002,9(5):28-32.
    [134]万怡灶,王玉林,周福刚.碳纤维表面处理对C/PLA复合材料界面粘接强度的影响[J].材料工程.2000,(7):17-20.
    [135]殷永霞,沃西源.碳纤维表面改性研究进展[J].航天返回与遥感.2004,25(1):51-54.
    [136]汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社.1998.
    [137]赵俊伟,诸乃雄.AG床身的结构设计[J].制造技术与机床.1996,(3):27-29.
    [138]黄祖治.表面浸润和浸润相变[M].上海:上海科学技术出版社.1994.
    [139]王善元,张汝光等.纤维增强复合材料[M].上海:中国纺织大学出版社.1998.
    [140]J.Vantomme.A parametric study of material damping in fiber-reinforced plastics[J].Composite.1995,26(2):147-153.
    [141]李秋义,樊红,赵景海.三维乱向分布钢纤维方向效能系数的理论值[J].哈尔滨建筑大学学报.1998,31(1):81-84.
    [142]李志男,李志业.湿喷钢纤维混凝土钢纤维方向效能系数研究[J].河南科学.2002,20(6):660-662.
    [143]E.P.普罗德曼主编,上海化工学院玻璃钢教研室译.聚合物基体复合材料中的界面[M].北京:中国建筑工业出版社.1980.
    [144]Alberto Corigliano,Stefano Mariani.Parameter identification of a time-dependent elastic-damage interface model for the simulation of debonding in composites[J].Composites Science and Technology.2001,61(2):191-203.
    [145]周杏鹏,仇国富,王寿荣,操家顺[M].现代检测技术.北京:高等教育出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700