直流牵引回流系统分析及轨电位相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直流牵引供电系统在地铁、轻轨和工矿企业具有广泛应用,我国目前正处于城市轨道交通的高峰发展时期,直流牵引系统的安全可靠运行是对城市轨道交通的基本要求。对于直流牵引回流系统的参数分析、轨电位限制方法、杂散电流腐蚀控制及其相关问题的研究具有十分重要的意义。
     直流牵引回流系统由钢轨及附属结构构成,在运行中存在轨电位异常、杂散电流泄漏、绝缘节起弧烧蚀、参数难以测试等问题。回流系统上流过的直流牵引电流由于机车加减速频繁,大小变化剧烈,并且由于再生制动和机车运动,电流方向也会改变,回流电流是暂态时变变量,其低频分量含量较大,而回流钢轨是大截面、形状极不规则、由铁磁材料组成的导体,集肤效应和饱和特性对其暂态电阻和内电感具有显著的影响,与道床和隧道结构钢筋网络间的互感也会影响回流系统参数,本文利用等效圆柱体法推导了回流系统暂态参数计算方法并和有限元分析结果进行了对比。测试和计算数据说明,在直流牵引轨电位和杂散电流分析中应考虑回流系统的暂态时变过程,不宜直接采用固定电流和直流电阻性参数进行计算分析。
     基于暂态过程的回流系统模型是一偏微分方程组,论文构造了模型的交错修正差分迭代格式,计算了迭代格式的稳定性条件,结合实际线路进行了数值计算仿真,计算结果表明暂态模型比稳态模型更符合实际情况,为回流系统的设计和杂散电流评估提供了参考和依据。利用相对灵敏度分析讨论了回流系统各个参数对轨电位和杂散电流的影响,根据实际条件提出了通过增大轨地电容限制异常轨电位的方法,仿真结果表明该方法是一个可行的轨电位限制措施。
     论文对现有回流系统参数测试方法进行了分析,根据回流系统暂态模型的变换形式,结合小波分析的特点,将时域偏微分算子投影到小波空间,根据其离散表示形式利用最小二乘参数估计算法进行辨识,基于小波-最小二乘方法的回流系统参数在线辨识算法系数矩阵条件数较低,并且在计算过程中,不需要轨道电流和边界条件,提高了测试方法的可操作性,计算结果表明该算法可以快速、准确的对回流系统参数进行在线测试。
     回流系统的暂态过程导致轨电位升高,多机车同时启动时易引起轨电位限制装置动作,增大了杂散电流的泄漏和腐蚀,论文提出通过调整机车停站时间,降低总牵引电流,减小多机车启动重合度的优化模型,根据模型结构构造了模型的小生境优化孤立点粒子群算法,针对实际线路仿真数据进行了优化计算,结果表明优化后可以大幅减小最大总牵引电流值,降低对回流系统的冲击,进而抑制轨电位的异常升高。
DC traction supply system is widely used in metro, light rail and industry and mining enterprises. In our country, urban rail transit is at a peak of development stage and a safe and reliable operation of DC traction system is the basic need of urban rail transit. It is very important to study the analysis of parameters, the restrict of rail potential, the control of stray current corrosion and related questions.
     Because of the frequently acceleration or deceleration of the train, the DC traction current flows in reflux system may dramaticly changed. Besides, the current direction may also shift for regenerative braking and the running of train. The reflux current have a high low-frequency content, however, the reflux rail is consisted of conductor which is made up of ferromagnetic material with large section and very irregular shape, skin effect and saturation characteristic play significant efficient on the transient resistance and inner inductance of rail. The mutual inductance between ballast and tunnel structure reinforced grid may also influence the parameters of reflux system. According to the equivalent cylinder method, this thesis deduced the compute method of transient parameters in reflux system and made a contract with the analyzed result of finite element .The measured and calculated data show that the transient shift of electrical parameters in reflux system should be taken into consideration in analysis of DC-traction rail potential and stray current, besides, it’s unfavorable to directly use DC resistance parameters to calculate and analyze.
     The reflux system model based on transient parameters is a set of partial differential equation. This thesis proposed a crisscross modified iterative format for the model and computed the stability condition of the iterative format. Combined with the actual line condition, the thesis also did numerical simulation. We can see from the computed result that the transient parameter model is more according with the actual situation than the existed model, which supplies reference and basis for the design of reflux system and assessment of stray current. According to the solving process of the model, the thesis used sensitivity analysis to discuss the influence of various parameters of reflux system to stray current and potential, thus, according to the actual conditions, the thesis proposed a method that increase capacitance of rail to limit abnormal rail potential, and the simulation results show that this method is a feasible rail potential restrictions.
     This thesis studied the measure method of reflux system, according to the shift form of transient parameter model in reflux system, it proposed an on-line parameter test method based on wavelet-least square theory and operated time partial differential to wavelet space and then we can get its discrete form. Using the once complete algorithm of least squares parameters estimate, we can do the identification. It’s no need to know the rail current and boundary conditions, therefore, the operation performance of the test method is improved.
     The transient parameters of reflux rail cause the rail potential rise. If many trains start at the same time, it may cause the operation of rail potential restricting equipment and then the corrosion of stray current may dramaticly increased. This thesis studied the influence of multi-train starting on rail potential and proposed an optimized model with less start coincidence of trains by adjusting the stop time of trains and reducing total traction current. According to the actual line, the paper used particle swarm algorithm to do optimization calculation.
引文
[1]综合运输编辑部.世界主要城市地铁运营里程排行[J].综合运输,2009(7): 92-93.
    [2]周晓军.城市地下铁道与轻轨交通[M].成都:西南交通大学出版社, 2008.
    [3]刘利芝.城市轨道交通概论[M].北京:中国劳动社会保障出版社,2009.
    [4]施仲衡.奥运地铁启示及奥运后地铁发展[J].都市快轨交通,2008(12):1-2.
    [5]杨敏.地铁时代,呼啸而来[J].决策,2009(8):12-14.
    [6]林华.中国地铁投资再度“发烧”[J].观察与思考,2009(14):34-37.
    [7]苗因山.轨电位限制装置拒动导致框架保护故障[J].都市快轨交通,2008(6):92-94.
    [8] Szeliga, Michael. Stray current corrosion: the past, present and future of rail transit system [M]. Nace International, Houston. TX,1994(7).
    [9]田胜利.轨道交通直流框架保护与钢轨电位限制装置关系分析[J].现代城市轨道交通, 2004(3): 28-30.
    [10]张栋梁.城市轨道交通杂散电流监测系统研究[D].徐州:中国矿业大学,2005.
    [11]陈洁.轨道交通杂散电流分布规律的研究[D].徐州:中国矿业大学,2008.
    [12]刘爱芳.地铁中金属管道杂散电流腐蚀的防护[J].铁道勘察,2004(3):49-50.
    [13]张英梅.煤矿井下杂散电流分布规律的研究[J].煤炭学报,2005(1):129-132.
    [14] M.Niasati, A.Gholami. Overview of stray current control in DC railway systems [C]. IET International Conference on Railway Engineering 2008 (ICRE 2008): 237–242
    [15]李鲲鹏.城市轨道交通供电系统的设计方法[J].都市快轨交通, 2008(10):70-73.
    [16] GB/T 10411-2005城市轨道交通直流牵引供电系统[S].北京:中国标准出版社,2005.
    [17]郑瞳炽,张明锐.城市轨道交通牵引供电系统[M].北京:中国铁道出版杜,2000.
    [18]于松伟,杨兴山等.城市轨道交通供电系统设计原理与应用[M].成都:西南交通大学出版社, 2008.
    [19]刘炜.城市轨道交通供电系统仿真[D].成都:西南交通大学,2006.
    [20]王念同,魏雪亮.城市轨道交通24脉波牵引整流变电站网侧谐波电流的分析[J].变压器,2003,40(1):1-7.
    [21] Lei Wang, Gang Zhang,et., A Novel Traction Supply System for Urban Rail Transportation with Bidirectional Power Flow and Based on PWM Rectifier[C]. International Conference on Energy and Environment Technology, 2009.40-43
    [22]王磊,刘志刚,张钢,沈茂盛.基于PWM整流器的城轨牵引供电系统研究[J].电力电子技术, 2009(7):75-77.
    [23]陈鹏,李晓帆.一种带辅助电路的12脉波整流电路[J].中国电机工程学报,2006,26(23):163-166.
    [24]何宗华等.城市轻轨交通工程设计指南[M].北京:中国建筑工业出版社,1993.
    [25]李群湛,贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2007
    [26]李群湛编.城市轨道交通供电[M].成都:西南交通大学出版社,2005.
    [27]张庆贺等.地铁与轻轨[M].北京:人民交通出版社,2001.
    [28]朱颖.客运专线无砟轨道铁路工程测量技术[M].北京:中国铁道出版社, 2008.
    [29]秋玉蓉,田胜利.地铁1500V开关柜框架泄漏保护探讨[J].电力系统自动化, 2001(14):64-66.
    [30] Dev Paul. DC Traction Power System Grounding [J]. IEEE Trans on Industry Applications, 2002(3): 818-824.
    [31]吴世传.台北捷运系统台北车站与高铁及台铁共构处之杂散电流特性研究[D].台湾中原大学,2002
    [32] J.G. Yu. The Effects of Earthing Strategies on Rail Potential and Stray Currents in D.C. Transit Railways[C].Int. Conf. on Developments in Mass Transit Systems, 1998:303-309.
    [33]胡继胜,苗彦英.轻轨车交流传动系统技术方案及主要参数的选择[J].大连铁道学院学报,2003(1):17-21.
    [34] Pires C L,Nabeta S I,Cardoso J R.ICCG method applied to solve DC traction load flow including earthing models [J]. Electric Power Applications,2007,(2):193-198.
    [35]万庆祝,吴命利,陈建业等.基于牵引计算的牵引变电所馈线电流仿真计算[J].电工技术学报,2007(6):112-117.
    [36]李威.地铁杂散电流监测及防护技术[M].徐州:中国矿业大学出版社,2004.
    [37]黄德胜.关于地铁接地问题探讨[J].地铁与轻轨,1998(2): 31-44.
    [38] CJJ95-2003城镇燃气埋地钢质管道腐蚀控制技术规程[S].北京:中国计划出版社, 2003.
    [39] IEC 62128-2:2003 Railway applications- Fixed installations- Stray Current protection of DC traction supply system[S]. Traction Systems, IEC Std, 2008.
    [40] EN50122-2:2008 Railway Applications-Fixed Installations. Part 2: Protective Provisions Against the Effects of Stray-Currents Caused by D.C[S].
    [41]王靖满.直流牵引供电系统的安全与保护[J].电气化铁道.2005(4):4-6.
    [42]周皇佑.台北捷运北投机厂边界转换轨电蚀分析[D].台湾中原大学,2002
    [43]李威.赵煜地铁列车通过绝缘结消弧方法的研究[J] .中国矿业大学学报,2004(1):86-89.
    [44] CJJ49-92地铁杂散电流腐蚀防护技术规程[S].北京:中国计划出版社,1993
    [45]黄德胜.再谈地铁接地问题[J].都市快轨交通,2006(3):43-45.
    [46] W.V.贝克曼著,胡士信等译.阴极保护手册[M].北京:化学工业出版社,2005.
    [47] Longhua MU. A Novel On-line Monitoring Device of Stray Current in DC Rail TransitSystems[C]. IEEE/PES International Conference on Power System Technology, 2007(10): 61-64.
    [48]张孝雨,王崇林等.地铁杂散电流排流网韵筋截面计算[J].城市轨道交通研究, 2005(2):43-49.
    [49]深圳地铁1号线一期工程牵引电流计算书[R].中铁电气化勘测设计研究院,2003.
    [50] GB 2585-2007铁路用热轧钢轨[S].北京:中国标准出版社,2007.
    [51] HILL.R.J.BRILLANTE,S. Electrical material data for railway track transmission line parameter studies[J]. IEE Proc.B. 1999(1): 60-68.
    [52]崔运海.直流牵引馈线微机保护装置的研制[D].华北电力大学,2005.
    [53]曾晶晶.轨道电参数的稳态计算[J].中国电力,2001(6):41-43.
    [54]曾晓英.无限长均匀载流圆柱形导线内部自感系数计算[J].重庆交通学院学报, 2002(2):128-129.
    [55]晁立冬.工程电磁场基础[M].西北工业大学出版社,2001.
    [56] Yaw-Juen Wang. Modelling of Frequency-Dependent Impedance of the Third Rail Used in Traction Power Systems [J]. IEEE Transaction on Power Delivery, 2000(2): 750-755.
    [57] YAW-JUEN WANG Analysis of the Skin Effect for Calculating Frequency-Dependent Impedance of the TRTS Power Rail Proc. Natl. Sci. Counc. Vol. 23, No. 3, 1999: 419-428
    [58] Vu Phan Tu; Tlusty. J.The calculated methods of a frequency-dependent series impedance matrix of overhead transmission lines with a lossy ground for transient analysis problem[C]. 2003 Large Engineering Systems Conference, 2003:159-163.
    [59] Y. J. Wang. A precise method for the impedance calculation of a power rail taking into account the skin effect and complex geometry[J].European Transactions on Electrical Power Vol.10 Issue 1, 2007:19-27.
    [60] Chun Zhao, Jiangjun Ruan. Calculation of Parameters in Transformer Winding Based on the Model of Multi-Conductor Transmission Line [J]. Electrical Machines and Systems, 2008: 463-467.
    [61]陈重.电磁场理论基础[M].北京:北京理工大学出版社,2003.
    [62]吴命利,范瑜.圆导线内阻抗的数值计算[J].电工技术学报,2004(3):52-58.
    [63]何桦.基于小波变换的地铁直流侧远方短路电流分析[D].河海大学,2002.
    [64]诸葛向彬.高频载流圆柱形导体的电阻计算[J].杭州大学学报,1995(S1):79-81.
    [65]俞宏生.工程电磁场分析与计算[M].北京:人民交通出版社,1997.
    [66]杨奇林.数学物理方程和特殊函数[M].北京:清华大学出版社,2004.
    [67]何仰赞.电力系统分析[M].武汉:华中科技大学出版社,2002.
    [68]孔玮.城市轨道交通直流牵引系统故障分析及若干问题的研究[D].华北电力大学, 2004.
    [69]李良威.城市轨道交通直流侧短路故障研究[D].西南交通大学,2005.
    [70]卢涛.无碴轨道线路钢轨阻抗参数计算方法[D].西南交通大学,2003.
    [71]田宝华.无碴轨道无绝缘轨道电路传输性能研究[J].铁路建筑技术,2005(4):69-72.
    [72] Triantafyllidis, D. G., G. K. Papagiannis, and D. P. Labridis. Calculation of overhead transmission line impedances: a finite element approach.IEEE Transactions on Power Delivery, 14(1), 1999: 287-293.
    [73] R.J.HiII, S.Brillante and P.J.Leonard. Electromagnetic field modelling for transmission line distributed parameters of railway track.IEE Proc., Electr. Power Appl. Vol.146, Issue 1, 1999:53–59
    [74]姚沅海.钢筋绝缘无碴轨道电气参数试验研究[J].铁道通信信号,2008(1):20-22.
    [75]龚廷志.直流牵引供电系统短路电流暂态仿真[J].电气自动化,2009:54-59
    [76]中铁电气化局集团有限公司译.电气化铁道接触网[M].北京:中国电力出版社,2003.
    [77]刘又齐.捷运系统轨道杂散电流与最大牵引功率降低之研究[D].台湾成功大学,2005.
    [78] Jiann-Fuh Chen, Ray-Lee Lin, and Yow-Chyi Liu. Optimization of an MRT Train Schedule Reducing Maximum Traction Power by Using Genetic Algorithms [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2005(3): 1366-1372.
    [79]魏国光.柏林地铁迷流防护记述[J].地下工程与隧道,1997(4):42-44.
    [80] R.柯朗,D.希尔伯特.数学物理方法[M].北京:科学出版社,1977.
    [81]孙滔,刘宗行.传输线方程解析解求解方法的探讨[J].华北电力大学学报,2005(12): 25-28.
    [82]余德浩,汤华中.微分方程数值解法[M].北京:科学出版社,2003.
    [83]马逸尘,梅立泉,王阿霞.偏微分方程现代数值解法[M].北京:科学出版社,2006.
    [84]国振喜.工程微分方程解法与实例[M].北京:机械工业出版社,2004.
    [85] Yee H-C. A class of high resolution explicit and implicit shock-capturing methods [J]. NASA TM-101088, 1989.
    [86] Antonio Orlandi, Clayton R. Paul. FDTD analysis of lossy multiconductor transmission lines terminated in arbitrary loads. IEEE Trans [J]. On Electromagnetic Compatibility, 1996 (3):388-398.
    [87] J. A. Roden, C. R. Paul, W. T. Smith, S. D. Gedney. Finite difference time domain analysis of lossy transmission lines [J]. IEEE Trans. On Electromagn Compat, 1996 (1): 15-24.
    [88]陈晓明.时域有限差分法分析数字信号传输线的耦合[J].固体电子学研究与进展, 1997,17(3):227-229.
    [89]齐磊,卢铁兵,崔翔.基于时域有限差分法的非均匀多导体传输线瞬态分析[J].中国电机工程学报,2003,23(7):102-106.
    [90]雷晓燕.有限元法[M].北京:中国铁道出版社,2000.
    [91]李亚智,赵美英,万小朋.有限元法基础与程序设计[M].北京:科学出版社,2004.
    [92]向新民.谱方法的数值分析[M].北京:科学出版社,2000.
    [93]曹力.几个非线性偏微分方程的数值方法[D].山东大学,2006.
    [94]潘志,贺祖琪.数学手册[M].徐州:中国矿业大学出版社,1995.
    [95]汤炜,闫玉波等.一种新时域交替隐式差分算法在散射问题中的应用[J].物理学报,2004(12):4173-4180
    [96]刘盾.实用数学物理方程[M].重庆:重庆大学出版社,1998.
    [97]瓦拉赫J,辛格尔K著,汪蕙,李普成等译.电路分析和设计的计算机方法[M].北京:科学出版社,1992.
    [98] Griffiths K. Stray Current Control an Application of Ohm's Law [J].EMC in Railways, 2006:83-94.
    [99]李威.地铁轨地过渡电阻及走行轨阻抗在线测量[J].中国矿业大学学报,2001(7): 416-420.
    [100] Li wei, Wang YuQiao, Wang aibing. Prediction for Rail to Ground Transition Resistance and Rail Portrait Resistance in Metro by Using BP Mode [J]. The Seventh International Conference on Electronic Measurement and Instruments,2005(9):269-272.
    [101]《地铁杂散电流腐蚀防护技术规程》修订组会议纪要[R].北京地铁公司设计研究所,2010,2
    [102]李士勇.模糊控制,神经网络和智能控制[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [103]张佳波.基于多信息参数估计的随机梯度自校正控制方法[D].江南大学,2008
    [104]刘宏才.系统辨识与参数估计[M].北京:冶金工业出版社,1999.
    [105]王琳,马平.系统辨识方法综述[J].电力情报, 2001(4):63-66.
    [106]高桂革,顾幸生.基于Haar小波微分运算矩阵的分布参数系统辨识[J].清华大学学报(自然科学版),2008(48):1821-1823.
    [107]窦磊,王执铨,王钦友.基于微分算子小波变换的分布参数系统辨识[J].南京理工大学学报, 2007,31(4): 449-452.
    [108]樊启斌.小波分析[M].武汉:武汉大学出版社,2008
    [109] T-P.Le, P.Argoul. Continuous Wavelet Transform for Model Identification Using Free Decay Response [J].Journal of Sound and Vibration, 2004(277):73-100.
    [110] Hasiewicz Z, Pawlak M, Sliwinski P. Nonparametric identification of nonlinearities in block-oriented systems by orthogonal wavelets with compact support[J].IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application,2005, 52(2): 427-442.
    [111] Furuya T., Tayaoka A., Soeda M.Identification of time continuous systems by waveletconnection coefficients [J]. Proceedings of IEEE TENCON 2004:534-537.
    [112] Jaideva C. Goswami, Andrew K. Chan著许天周,黄春光译.小波分析理论、算法及其应用[M].北京:国防工业出版社,2007.
    [113]李弼程.小波分析及其应用[M].北京:电子工业出版社,2003.
    [114] Grossman A., Morlet.J. Decomposition of Handy Function into Square Integrable Wavelets of Constant Shape [J].SIAM, 1984 (4):736-783.
    [115] S.G.Mallat. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989 (7):674-693.
    [116] I.Daubechies. Orthonarmal Bases of Compactly Supported Wavelets [J].Communication in Pure and Applied Mathematics,1988(41): 909-996.
    [117] I.Daubecies. Ten Lecture on Wavelet, Society for Industrial and Applied Mathematics Philadelphia [M]. Pennsylvania , 1992.
    [118] Beylkin. On the representation of operators in bases of compactly supported wavelets [J]. SIAM Journal on Numerical Analysis, 1992, 29 (6): 1716-1740.
    [119]窦艳妮.基于小波的偏微分方程数值解[D].陕西师范大学, 2005.
    [120]成礼智,王红霞,罗永编著.小波的理论与应用[M].北京:科学出版社,2004.
    [121]Gregory Beylkin, James M.Keiser. On the Adaptive Numerical Solution of Nonliner Partial Differential Equations in Wavelet Bases [J].Journal of Computational Physics,1997(132): 233-259.
    [122]窦磊.分布参数系统若干近似计算方法应用研究[D].南京理工大学, 2006.
    [123]吴勃英,邓中兴.热传导方程的小波解法[J].应用数学学报,2001,24(1):10-16.
    [124]陈华富.一般约束极大极小问题的梯度投影算法[J].电子科技大学学报,2000 (6):662-663.
    [125]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    [126]李兴斯.非线性极大极小问题的一个有效解法[J].科学通报,1991(19):1448-1450
    [127]杨庆之.解极大极小问题的嫡函数法[J] .南开大学学报,2001 (3):7-15.
    [128]Xia Youshen, Wang Jun. A general projection neural network for solving monotone variational inequalities and related optimization problems [J].IEEE Transactions on Neural Networks,2004,15(2):318-328.
    [129]Yee Leung, Chen KaiZhou, Gao Xingbao. A high performance feedback neural networks for solving convex nonlinear programming problems [J]. IEEE Transactions on Neural Networks,2003,14(6):1469-1477.
    [130]Keynedy J,Eberhart R C. Particle Swarm Optimization [C] .IEEE International Conferenceon Neural Nerworks,1995:1942-1948.
    [131]Keynedy J, Eberhart R C. A new optimizer using particle swarm theory[C].6th International Symposium on Micromachine and Human Science,1995:39-43.
    [132]Kennedy J, William M.S. Matching Algorithms to Problems: An experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. www.aic.nrl.navy.mil/~spears/papers/wcci98.ps.gz.
    [133]张建科,李立峰,周畅.一类非线性极小极大问题的改进粒子群算法[J].计算机应用,2008(5):1194-1199.
    [134]张建科,刘三阳,张晓清.改进的粒子群算法[J].计算机工程与设计,2007, 28(17): 4215-4219.
    [135]向长城,黄席樾,杨祖元,杨欣.小生境粒子群优化算法[J].计算机工程与应用, 2007(15):41-43.
    [136]Kennedy J.Stereotyping: improving particle swarm performance with cluster analysis[C].Proceedings of the IEEE International Conference on Evolutionary Computation, IEEE Neural Networks Council, 2000, 2: 303-308.
    [137] Shi Y,Eberhart R. A modified particle swarm optimizer[C],IEEE Int.Conf.on Evolutionary Computation,1998:69-73.
    [138]Shi Y, Eberhart RC. Empirical study of particle swarm optimization[C], proceeding of the Congress on Evolutionary Computation,1999:1945-1950.
    [139]李方方,赵英凯.基于小生境粒子群的多峰函数全局优化算法的研究[J].机械与电子, 2007(1):58-60.
    [140]高芳.智能粒子群优化算法研究[D].哈尔滨工业大学,2009.
    [141] HILL.R.J, BROWN.J.C. Correspondence-Calculation of remote short circuit fault currents for DC railways [J]. IEE Proc.B,.1993(6), 417-420.
    [142] R.J.Hill, S.Brillante, P.J.Leonard. Modelling rail track electrical behaviour using two- dimensional finite elements [J].IEEE Transactions on Power Delivery, 1996 (4): 101-103.
    [143] BROWN.J.C, ALLAN.J and MELLITT.B. Calculation of remote short circuit fault currents for DC railways [J]. IEE Proc.B,1999(4): 289-294.
    [144]卫志农.基于小波变换的地铁远方短路电流分析[J].电力系统及其自动化学报, 2003(6):6-9.
    [145] C.I.Mocanu. The equivalent schemes of cylindrical conductors at transient skin effect [J].IEEE Transactions on Power Apparatus and Systems,1972(2): 844-852.
    [146] E.J Tuohy, T.ri. Lee, H.P. Fullerton. Transient resistance of conductors [J]. IEEE Transactions on Power Apparatus and Systems, 1968 (2): 455-462.
    [147]刘燕,王京梅等.地铁杂散电流分布的数学模型[J].工程数学学报,2009(4):571-576.
    [148] Ardizzon L, Pinato P, Zaninelli D. Electric traction and electrolytic corrosion: a software tool for stray currents calculation[C].Transmission and Distribution Conference and Exposition, 2003 IEEE PES:2003(2):550-555.
    [149] J.G.Yu, A.M.M.Khan, K.Loring. Computer simulation of transit power systems[C]. International Conference on Simulation,1998:93–98.
    [150]孙滔,刘宗行.传输线方程解析解求解方法探讨[J].华北电力大学学报,2005(12): 25-28.
    [151] Clayton R.P. Analysis of Multiconductor Transmission Lines [M].NewYork:Wiley-Inter science 2007.
    [152]郑生富.有损均匀传输线的时域有限差分法研究[D].重庆大学,2007.
    [153]张云华,陈杭生.传输线矩阵方法研究的及应用进展[J].电子学报,1995,23(6): 95-101.
    [154]李凤霞.有耗传输线的TLM模型法[J].电气电子教学学报,2002(2):40-42.
    [155] F.Lau. Waveform relaxation analysis of lossy coupled transmission line sets in cascade [J]. IEE Proc-Circuits Devices Syst, 1995.142(6): 373-378.
    [156]赵进全,马西奎,邱关源.精细积分法在电报方程求解中的应用[J].计算力学学报, 1998,15(3):343-346.
    [157] Lax P.D., Wendroff B. Systems of conservation laws [M]. New York: Springer,1960.
    [158]龙毅,徐军,薛良金.区域分解法结合FFT分析TEM传输线[J].电子科技大学学报,2000, 29(5):504-507.
    [159] Tingdong Zhou, Steven L. Dvorak, John L. Prince. Lossy Transmission Line Simulation Based on Closed-Form Triangle Impulse Responses [J].IEEE Transactions on computer-aided design of integrated circuits and systems, 2003,22(6): 748-755.
    [160]毛军发,李征帆.传输线时域响应分析中的改进NILT方法[J].电子学报,1995,23(3): 55-57.
    [161]袁修贵,黄诚.二阶导数的小波多分辨表示与有限差分表示比较[J].数学理论与应用, 2004(3):65-69.
    [162] S.Grivet-Talocia. Adaptive transient solution of nonuniform multiconductor transmission lines using wavelets [J]. IEEE Trans. On Antennas and Propagation, 2000,48(10):1563-1573.
    [163] C.-H.Lee, H-M.Wang. Effects of grounding schemes on rail potential and stray currents in Taipei rail transit systems [J].Electric Power Applications. Vol.148, no.2, 2001:148-154.
    [164] K.D.Pham,R.S.Thomas, W.E.Stinger. Analysis of Stray Current, Track-to-Earth Potentials & Substation Negative Grounding in DC Traction Electrification System[C]. IEEE/ASME JointRail Conference, 2001:141-160.
    [165]牟龙华.排流网情况下地铁迷流分布规律的研究[J].铁道学报,2007(3):47-51.
    [166] MT S?ylemez, S A??kba?, A Kaypmaz.Comparison of stray currents and rail voltage profiles between 750VDC and 1500VDC power supply systems using simulation, IEE Int. Conf. on Railway Engineering, 2005: B5-2 .
    [167]B.K.Ku,T.Hsu. Computation and Validation of Rail-To-Earth Potential for Diode Grounded DC Traction System at Taipei Rapid Transit System[C].ASME/IEEE Joint Rail Conference, 2004:41-46.
    [168] Shi-Lin Chen,Shih-Che Hsu,Chin-Tien Tseng,etc..Analysis of Rail Potential and Stray Current for Taipei Metro [J]. IEEE Transactions on Vehicular Technology, 2006(1): 67-75.
    [169]何江海.钢轨电位及负回流异常引起故障分析及对策[J].电气化铁道,2004 (3):31-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700