城市轨道交通列车运行过程优化及牵引供电系统动态仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的快速发展,城市轨道交通作为交通运输行业的一大组成部分,也得到了飞速发展。目前我国多个大中型城市均在进行城市轨道交通项目的建设,未来数年将是城市轨道交通发展的黄金时期。论文在借鉴前人研究成果的基础上,就城市轨道列车运行过程优化和牵引供电计算展开深入研究。列车运行过程优化提供单一列车在线路上运行时的优化操纵策略,并给出列车位置、取流、功率等随时间的变化关系。牵引供电计算模拟多列车在线路上运行时的牵引网网压、整流变电所负荷过程等。列车运行过程优化有助于提高列车控制水平,在保证服务质量的同时降低运行能耗。牵引供电计算是城市轨道交通牵引供电系统设计的重要依据。列车运行过程仿真为牵引供电计算提供基础数据;牵引供电计算的结果可检验行车计划是否合理。列车运行过程模拟与牵引供电计算可模拟城市轨道交通的实际运行过程,在电气化设计阶段,进行这种仿真可根据供电设施的设计情况确定线路通过能力,或根据仿真结果对牵引供电系统进行寻优设计。
     论文的研究内容主要包括以下几个方面:
     1.通过建立定时约束条件下的最小能量控制模型,采用Pontryagain极小值原理推导了城市轨道列车节能操纵策略的组成。提出了一种变长实矩阵编码的多种群遗传算法进行列车节能运行优化:采用多质点的列车牵引仿真器模拟列车运行;对列车运行控制序列采用变长实数矩阵编码;引入基于退火选择的变长算子以增强算法的全局搜索能力;适应值共享保持种群的多样性;多种群并行寻优提高收敛速度,增强寻优过程的稳定性。
     2.针对城市轨道直流牵引供电系统仿真,将交流系统侧等效至整流机组内阻后,采用由接触网、钢轨、杂散电流收集网和大地组成的四层网络模型,将全线直流牵引网模拟成一个完整的动态网络。整流机组采用多段折线的外特性模型,该模型将整流机组正常运行、制动电阻投入、牵引网短路时的外特性统一,通过迭代试算的方法确定其工作区间,可较准确的仿真直流牵引供电系统接触网、钢轨、杂散电流收集网电位,泄漏电流以及变电所负荷曲线等。
     3.城市轨道牵引供电计算一般将交流系统等效至直流侧进行计算或者交直流侧分开迭代,简化了交直流系统的内在联系,在一定程度上影响计算的精度。论文探讨了一种基于整流机组模型的城轨牵引供电系统交直流统一的牵引供电计算方法,并采用改进的牛顿-拉夫逊法和高斯-赛德尔法求解,利用一10节点直流牵引供电系统进行了验证。
     4.列车运行过程存在一定的随机性,牵引供电网络中潮流分布具有随机不确定性。论文提出一种基于蒙特卡洛模拟的城轨牵引供电系统概率潮流计算方法。该方法通过列车运行的时间-位置曲线构建列车位置的概率分布,根据行车组织建立列车发车间隔的概率分布,应用蒙特卡洛仿真,随机抽样确定多列车在线路上的位置和功率分布,通过牵引供电计算,获得城轨牵引供电系统节点电压和功率的概率分布函数。采用该方法可为城轨牵引供电系统的设计和运营提供综合地指导和评价。
     5.在列车运行优化及牵引供电计算研究的基础上,使用统一建模语言(Unified Modeling Language,简称UML),对城轨牵引供电仿真软件UrtSim的设计进行了描述,在Windows操作平台上,以Visual C++.Net2005为开发工具加以实现。该系统已在设计院投入使用,效果良好。
As the component of traffic transportation industry, urban railway is growing quickly with the rapid development of the social economy. At present, a number of large and medium-sized cities in China are carring out urban rail transit construction projects. The golden age of the development of urban rail transit will arrive in the next few years. Based on the previous research achievement, the optimizations of urban rail train control and traction power supply calculation are discussed in this paper. The optimal train control strategy and realtionship among train position, current and power with respecte to running time are attained by train performance simulator. The traction network voltage and traction substation load process can be achieved by traction power supply calculation. Optimization of train runnig can improve the train control level. It can reduce the power consumption but maintaining the severice quality at the same time. Traction power supply calculation is an important basis of the design of power supply system. Train performance simulator provides the basic data of the traction power supply calculation. Meanwhile, the result of traction power supply calculation can used to examine the rationality of train running scheme. With the combine of train performance simulator and traction power supply calculation, the practical urban railway working procedure can be simulated. At the stage of electrification design of urban railway, line carring capacity can be determined according to the design of power supply facility with these simulated methods presented in this paper. The optimization of the design of traction power supply facility can also be achieved.
     The paper's research emphasized on several aspected as follow:
     1. Through constructing the minimum energy consumption model with fixed running time, the urban railway energy saving train control strategies are obtained by Pontryagain minimum principle. An approach for solving train energy saving optimization problem based on variable-length real matrix coded multi-population genetic algorithm is presented. A multi-particle train simulator is adopted to emulating train run. The GA chromosome consists of a variable two dimensional real number representing the train control sequence. A variable operator based on annealing selection is introduced to enhance global search performance. Fitness sharing keeps population's multiplicity. Multi-population parallel search improves convergence rate and evolution stability.
     2. A four layers'net model including overhead contact line, rail, stray current mat and earth is presented for the simulation of urban railway dc traction power supply system. The traction power supply system is considered as an integrated dynamic net. The polygonal external characteristic is applied to rectifier, whose working state is confirmed by iterative method. The accurate voltages of ocs, rail and stray current mat can be calculated as well as loads of rectifiers.
     3. Traditional power flow for dc traction power supply system usually carries out at DC traction side or executes separately at AC/DC sides, which simplifies the internal relationship and the calculation precision is not good enough. Through analyzing the model of parallel-connected 12 pulse uncontrolled rectifier, the unified AC/DC power flow for dc traction power system which based on improved Newton-Raphson method and Gauss-Seidel method is discussed and applied in 10 nodes hybrid traction power supply system for practical verification.
     4. A probability load flow (PLF) method for urban rail traction power supply based on Monte Carlo simulation is presented. The probability distribution of train position is obtained by train running time curve with respect to position. The probability distribution of departing time interval is attained by organization of train operation. With Monte Carlo simulation, the trains'positions which are used to imply power demand are taken as random samples, followed by AC/DC unified power flow calculation to obtain the probability distribution function of nodes'voltage and power. The comprehensive instruction and evaluation for urban rail traction power supply system can be achieved by this method.
     5. Based on the research presented above, the urban rail traction power supply simulation system UrtSim is implemented. The UML is applied as the software modeling and design method. The simulation system is developed with Visual C++.Net 2005. The UrtSim system has been successfully applied in railway design institute.
引文
[1]孟祥定.绿色交通视角下城市轨道交通网络规划决策方法及应用[D].长沙:湖南大学,2007:1-3.
    [2]王虹航.我国城市轨道进入快速发展时期[N].中国建设报.
    [3]Sidelnikov. Computation of optimal controls of a railroad locomotive. In Procceedings of State Railway Research Institute[J], 1965,2:52-58.
    [4]E Erofeyev. Calculation of optimum train control using dynamic programming method. In Proceedings of Moscow Railway Engineering Insititute[J],1967:16-30.
    [5]Milroy I. P. Aspects of Automatic train control[D]. Australia, Loughborough University,1980.
    [6]Golovitcher I. An analytical method for optimum train control computation [J]. Proccedings of State Universities, Electro-mechanics (Izvestiya VUZov Seriya Electromehanika)3,1986:59-66.
    [7]Golovitcher I. M. Energy efficient control of rail vehicles[C]. Systems, Man, and Cybernetics,2001 IEEE International Conference on,2001:658-663.
    [8]B.R.Benjamin, A.M-Long, I.P. Milroy. Control of railway vehicles for energy conservation and improved time keeping[C]. In Proc. IE A Conf.Railway Eng, Perth Western Australia,1987:41-47.
    [9]B.R.Benjamin, I.P.Milroy. Energy-efficient operation of long-haul trains[C].Proceeding of the Fourth International Heavy Haul Railway Conference, Institution of Engineers Australia,1989:369-372.
    [10]Howlett Phil. Optimal strategies for the control of a train. Automatic[J],1996,32(4):519-532.
    [11]Jiaxin Cheng, Howlett Phil. Application of critical velocities to the minimisation of fuel consumption in the control of trains. Automatica[J],1992,28(1):165-169.
    [12]Cheng Jiaxin, Howlett P. A note on the calculation of optimal strategies for the minimization of fuel consumption in the control of trains. Automatic Control, IEEE Transactions on[J],1993, 38(11):1730-1734.
    [13]程家兴.评列车控制问题中优化运行方案(英文).安徽大学学报(自然科学版)[J],1998,22(01):69-75.
    [14]程家兴.长途列车节能操纵的建模.系统仿真学报[J],1999,11(4):286-288.
    [15]陈万里,程家兴.基于模拟退火算法(SAA)求解列车控制问题.安徽大学学报(自然科学版)[J],2000,24(3):46-49.
    [16]程家兴.火车控制问题的最优运行方案的推广.安徽大学学报(自然科学版)[J],1999,23(01):58-62.
    [17]肖建.节省列车牵引能耗的最优操纵策略.大众用电[J],1994,(04):25-29.
    [18]金炜东.满意优化问题与列车操纵优化方法研究[D].成都:西南交通大学,1998.
    [19]章优仕,金炜东.基于遗传算法的单线列车运行调整体系.西南交通大学学报[J],2005,40(02):147-152.
    [20]冯晓云.模糊预测控制及其在列车自动驾驶中的应用研究[D].成都:西南交通大学,2001.
    [21]冯晓云,何鸿云,朱金陵.列车优化操纵原则及其优化操纵策略的数学描述.机车电传动[J],2001,(04).
    [22]崔世文,冯晓云.列车优化操纵与自动驾驶模式的研究与仿真.铁道机车车辆[J],2005,(05).
    [23]Chang C. S., Sim S. S. Optimising train movements through coast control using genetic algorithms. Electric Power Applications, IEE Proceedings-[J],1997,144(1):65-73.
    [24]Chang C. S. Differential Evoluation based tuning of fuzzy automatic train operation for mass rapid transit system. IEE Pro.-Electr.Power Appl[J],1998,143(3).
    [25]Chang C. S., Xu D. Y., Quek H. B. Pareto-optimal set based multiobjective tuning of fuzzy automatic train operation for mass transit system. Electric Power Applications, IEE Proceedings-[J],1999, 146(5):577-583.
    [26]Wong K. K., Ho T. K. Coast control of train movement with genetic algorithm[C]. Evolutionary Computation,2003. CEC'03. The 2003 Congress on,2003:1280-1287.
    [27]Wong K. K., Ho T. K. Coast control for mass rapid transit railways with searching methods. Electric Power Applications, IEE Proceedings-[J],2004,151(3):365-376.
    [28]Wong K. K., Ho T. K. Dwell-time and run-time control for DC mass rapid transit railways. Electric Power Applications, IET[J],2007, 1(6):956-966.
    [29]Wang K. K. Hierarchical Real-time Train Control in DC Metro Systems[D]. The Hong Kong PolyTechnic university,2005.
    [30]石红国.列车运行过程仿真及优化研究[D].成都:西南交通大学,2007.
    [31]石红国,彭其渊,郭寒英.城市轨道交通牵引计算算法.交通运输工程学报[J],2004,4(03):30-33.
    [32]石红国,彭其渊,郭寒英.城市轨道交通牵引计算模型.交通运输工程学报[J],2005,5(04):20-26.
    [33]石红国,彭其渊,郭寒英.MRT列车运行模拟模型的多目标改进遗传算法.西南交通大学学报[J],2006,14(05):658-662.
    [34]路飞.移动闭塞条件下地铁列车的运行优化[D].济南:山东大学,2007.
    [35]路飞,宋沐民,李晓磊等.基于事件的控制技术在地铁列车运行中的应用.中国铁道科学[J],2006,27(04):106-111.
    [36]路飞,宋沐民,李晓磊.基于移动闭塞原理的地铁列车追踪运行控制研究.系统仿真学报[J],2005,17(08):1944-1950.
    [37]刘海东,陈绍宽,褚琴等.具有固定运行时分的列车运行控制系统研究.北方交通大学学报[J],2002,26(5):24-27.
    [38]王峰,刘海东,丁勇等.列车节能运行的算法及实施技术研究.北方交通大学学报[J],2002,26(05):13-18.
    [39]丁勇,何天健,冯汝辉等.城市轨道交通列车运行并行计算与 仿真.系统仿真学报[J],2003,15(09):1234-1237.
    [40]刘海东,毛保华,丁勇等.列车自动驾驶仿真系统算法及其实施研究.系统仿真学报[J],2005,17(03):577-580.
    [41]毛保华,何天健.通用列车运行模拟软件系统研究.铁道学报[J],2000,22(1):1-6.
    [42]H.Ko M. Miyatake. Application of dynamic programming to optimization of running profile of a train. Computers in Railways IX[J], 2004,:885-894.
    [43]Miyatake M., Ko H. Numerical analyses of minimum energy operation of multiple trains under DC power feeding circuit[C]. Power Electronics and Applications,2007 European Conference on, 2007:1-10.
    [44]Miyatake M., Matsuda K. Optimal speed and charge/discharge control of a train with onboard energy storage devices for minimum energy operation[C]. Power Electronics, Electrical Drives, Automation and Motion,2008. SPEEDAM 2008. International Symposium on, 2008:1211-1216.
    [45]Liu Rongfang. Energy-efficient operation of rail vehicles. Transportation Research[J],2003,:917-932.
    [46]朱金陵,李会超,王青元等.列车节能控制的优化分析.中国铁道科学[J],2008,29(02):104-108.
    [47]Khmelnitsky E. On an optimal control problem of train operation. 2000,45(7):1257-1266.
    [48]余进,钱清泉,何正友.两级模糊神经网络在高速列车ATO系统中的应用研究.铁道学报[J],2008,30(05):52-56.
    [49]Kimbark E. W. Direct Current Transmission[M]. New York:Wiley, 1971.
    [50]Tylavsky Daniel J. The Newton Raphson Load Flow Applied to AC/DC Systems with Commutation Impedance. IEEE Transactions on industry applications[J],1983, IA-19(6):940-948.
    [51]Tylavsky D. J. Complete analysis of the operating modes of the resistance-inductance-fed bridge rectifier. IEEE Trans.Ind.Electron[J], 1982, IE-29(4):287-294.
    [52]Yii-Shen Tzeng Nanming Chen. A Detailed R-L Fed Bridge Converter Model for Power Flow Studies in Industrail. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONIC[J],1995, 42(5):531-538.
    [53]Yii Shen Tzeng, Ruay-Nan Wu, Nanming Chen. Electric network solutions of DC transit systems with inverting substations. Vehicular Technology, IEEE Transactions on[J],1998,47(4):1405-1412.
    [54]Tzeng Y. S., Wu R. N., Chen N. Unified AC/DC power flow for system simulation in DC electrified transit railways. Electric Power Applications, IEE Proceedings[J],1995,142(6):345-354.
    [55]Yu J. G., Goodman C. J. Modelling of rail potential rise and leakage current in DC railtransit systems[C]. Stray Current Effects of DC Railways and Tramways, IEE Colloquium on,1990:2.
    [56]Yu J. G. The effects of earthing strategies on rail potential and straycurrents in DC transit railways[C]. Developments in Mass Transit Systems,1998. International Conference on (Conf. Publ. No.453), 1998:303-309.
    [57]Cai Y., Irving M. R., Case S. H. Modelling and numerical solution of multibranched DC rail traction power systems. Electric Power Applications, IEE Proceedings[J],1995,142(5):323-328.
    [58]Cai Y. Iterative techniques for the solution of complex DC-rail-traction systems including regenerative braking. IEE Proc-Gener.Transm.Distrib[J],1995,142(5).
    [59]Di Yu, Lo K. L., Xiao Dong Wang. Analysis of dynamic MRTS traction power supply system based on dependent train movement simulation[C]. Rail Conference,2004. Proceedings of the 2004 ASME/IEEE Joint,2004:153-161.
    [60]Yii-Shen Tzeng, Nanming Chen, Ruay-Nan Wu. Modes of operation in parallel-connected 12-pulse uncontrolled bridge rectifiers without an interphase transformer. Industrial Electronics, IEEE Transactions on[J],1997,44(3):344-355.
    [61]Chen C. S., Chuang H. J., Shiau H. M. Stochastic harmonic analysis of mass rapid transit power systems with uncontrolled rectifiers. Generation, Transmission and Distribution, IEE Proceedings[J],2003,150(2):224-232.
    [62]Chen C. S., Chuang H. J., Chen J. L. Analysis of dynamic load behavior for electrified mass rapid transit systems[C]. Industry Applications Conference,1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE,1999:992-998.
    [63]Adinolfi A., Lamedica R., Modesto C. Experimental assessment of energy saving due to trains regenerative braking in an electrified subway line. Power Delivery, IEEE Transactions on[J],1998, 13(4):1536-1542.
    [64]Pozzobon P. Transient and steady-state short-circuit currents in rectifiers for DC traction supply. Vehicular Technology, IEEE Transactions on[J],1998,47(4):1390-1404.
    [65]Chien-Hsing Lee. Evaluation of the maximum potential rise in Taipei rail transit systems. Power Delivery, IEEE Transactions on[J], 2005,20(2):1379-1384.
    [66]Shi-Lin Chen, Hsu S. C., Chin-Tien Tseng. Analysis of rail potential and stray current for Taipei Metro. Vehicular Technology, IEEE Transactions on[J],2006,55(1):67-75.
    [67]Liu Y. C., Chen J. F. Control scheme for reducing rail potential and stray current in MRT systems. IEE Proc-Electri.Power.Appl[J], 2005,152(3):612-618.
    [68]Cotton I., Charalambous C., Aylott P. Stray current control in DC mass transit systems. Vehicular Technology, IEEE Transactions on[J], 2005,54(2):722-730.
    [69]Pires C. L., Nabeta S. I., Cardoso J. R. ICCG method applied to solve DC traction load flow including earthing models. Electric Power Applications, IET[J],2007,1 (2):193-198.
    [70]王念同,张宏,魏雪亮等.分裂式牵引整流变压器的等效电路和负载损耗分析(上).变压器[J],1999,36(07):15-20.
    [71]王念同,张宏,魏雪亮等.分裂式牵引整流变压器的等效电路和负载损.耗分析(下).变压器[J],1999,36(08):15-19.
    [72]王念同,魏雪亮.轴向双分裂式12脉波牵引整流变压器均衡电流的分析计算(上).变压器[J],2000,37(03):1-6.
    [73]王念同,魏雪亮.24脉波牵引整流变压器的联结组.变压器[J],2002,39(06):9-12.
    [74]王念同,章波.24脉波牵引整流系统的均衡电流分析.变压器[J],2006,43(08):9-16.
    [75]王晓东,张洪斌.城市轨道交通直流牵引供电系统的仿真研究.系统仿真学报[J],2002,14(12):1692-1697.
    [76]史凤丽,于松伟.地铁牵引供电系统数学模型的建立与求解.北京联合大学学报[J],2003,(02).
    [77]于松伟,杨兴山.城市轨道交通供电系统设计原理与应用[M].成都:西南交通大学出版社,2008.
    [78]刘海东,何天健,袁振洲等.城市轨道交通直流牵引供电仿真系统的研究.系统仿真学报[J],2004,16(09):1944-1947.
    [79]刘学军,于松伟,刘学.轨道交通牵引供电仿真模型与算法的研究.计算机仿真[J],2004,21(12):213-218.
    [80]孔玮.城市轨道交通直流牵引系统故障分析及若干问题的研究[D].华北电力大学(北京),2005.
    [81]Kongwei, Qinlijun, Yangqixun. DC side short circuit transient simulation of DC traction power supply system[C]. Power System Technology,2004. PowerCon 2004.2004 International Conference on, 2004:182-186.
    [82]李威.地铁轨地过渡电阻及走行轨阻抗在线测量.中国矿业大学学报(自然科学版)[J],2001,30(04):416-420.
    [83]李威.地铁杂散电流的监测与防治.城市轨道交通研究[J],2003,(04).
    [84]李威,王禹桥,王爱兵.地铁杂散电流监测系统的研制.电气化铁道[J],2004,(05).
    [85]解绍锋.高速铁路交直交机车及地铁机车再生制动工况下牵引供电计算的研究[D].成都:西南交通大学,2006.
    [86]王亚玲,吴命利.直流牵引变电所在供电系统运行仿真中的建模.电气化铁道[J],2005,(04).
    [87]王亚玲,吴命利,胥刃佳.城市轨道交通直流牵引供电系统的运行仿真.电气化铁道[J],2006,(02).
    [88]李鲲鹏,张振生.广州地铁4号线地面制动电阻的设计.机车电传动[J],2005,(05).
    [89]方鸣.城市轨道交通列车电制动地面电阻吸收装置相关参数分析.中国铁道科学[J],2007,28(03):88-92.
    [90]连鹏飞.深圳地铁2号线工程再生制动能量吸收装置设置方案研究.铁道工程学报[J],2007,(06).
    [91]连鹏飞.深圳地铁2号线制动电阻设置浅析.电气化铁道[J],2007,(03).
    [92]Kutsmeda K. J., Fehrle K. G., Trick P. J. Computer modeling, simulation, and validation by field testing of a traction power system for electric trolley buses[C]. Railroad Conference, Proceedings of the 1995 IEEE/ASME Joint,1995:87-91.
    [93]廖荣庭.捷运推进系统精确模型之建立与电力潮流分析[D].台湾:中山大学,2002.
    [94]Elbas. Elbas tools[EB/OL] http://www.elbas.ch
    [95]Harris Ken. Jane's World Railways[M]. UK:Jane's Information Group Limited,2001.
    [96]万庆祝,陈建业,王赞基.电气化铁道系统计算机仿真的研究进展.机车电传动[J],2006,(03).
    [97]杨肇夏,毛保华,何天健.铁路运输模拟系统的现状与发展.北方交通大学学报[J],2002,26(05).
    [98]TB/T 1407-1998.TB/T 1407-1998列车牵引计算规程[S],1999.
    [99]饶忠.列车牵引计算[M].北京:中国铁道出版社,1996.
    [100]刘炜,李群湛.城市轨道交通直流牵引供电系统仿真分析与设计研究报告[R].广州:西南交通大学电气工程学院,2007.
    [101]孙中央.列车牵引计算实用教程[M].北京:中国铁道出版社,2005.
    [102]张光澄.最优控制计算方法[M].成都:成都科技大学出版社, 1991.
    [103]张明达.最优控制工程[M].长沙:中南工业大学出版社,1989.
    [104]凌青,吴刚,阎镜予等.多模态函数优化的拥挤聚类遗传算法.信息与控制[J],2006,(06).
    [105]徐东亮.基于优育子群迁徙策略的多模态遗传算法研究.山东大学学报(工学版)[J],2005,(05).
    [106]李敏强,寇纪淞.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [107]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [108]王小平,曹立明.遗传算法:理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [109]刘炜.地铁牵引仿真计算中的牵引策略研究.机车电传动[J],2006,(01):46-49.
    [110]孙力勇.基于矩阵实数编码遗传算法求解大规模机组组合问题.中国电机工程学报[J],2006,26(2):82-87.
    [111]段晨宁.地铁列车节能技术的应用.铁道通信信号[J],2003,39(08):38-39.
    [112]魏宏伟.城市铁路供电系统仿真软件的开发及其应用[D].成都:西南交通大学,2004.
    [113]何宗华.城市轻轨交通工程设计指南[M].北京:中国建筑工业出版社,1983.
    [114]施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社,1997.
    [115]Goodman C. J., Sin L. K. DC railway power network solutions by diakoptics[C]. Railroad Conference,1994., Proceedings of the 1994 ASME/IEEE Joint (in Conjunction with Area 1994 Annual Technical Conference),1994:103-110.
    [116]Bih-Yuan Ku, Jen-Sen Liu. Solution of DC power flow for nongrounded traction systems using chain-rule reduction of ladder circuit Jacobian matrices[C]. Railroad Conference,2002 ASME/IEEE Joint,2002:123-130.
    [117]CJJ 49-1992.地铁杂散电流腐蚀防护技术规程[S],1993.
    [118]王念同,魏雪亮.轴向双分裂式12脉波牵引整流变压器均衡电流的分析计算(下).变压器[J],2000,37(04):11-16.
    [119]Silva J. A. P. Cardoso. A Fourth Order Differential-Integral Formulation Applied to the Simulation of the Subway Grounding Systems[C]. Electr.Power Compon.Syst,2002:331-343.
    [120]贺威俊,高仕斌.电力牵引供变电技术[M].成都:西南交通大学出版社,1998.
    [121]苏保卫.上海轨道交通3号线供电系统短路试验.城市轨道交通研究[J],2005.
    [122]Tzeng Y. S. Harmonic analysis of parallel-connected 12-pulse uncontrolled rectifier without an interphase transformer. Electric Power Applications, IEE Proceedings-[J],1998,145(3):253-260.
    [123]Chuang H. J. Optimisation of inverter placement for mass rapid transit systems by immune algorithm. Electric Power Applications, IEE Proceedings-[J],2005,152(1):61-71.
    [124]刘炜.城市轨道交通供电系统仿真[D].成都:西南交通大学硕士学位论文,2006
    [125]周剑斌,苏浚,何泳斌.地铁列车运行再生能利用的研究.城市轨道交通研究[J],2004,(04):33-35.
    [126]曾建军,林知明,张建德.地铁制动能量分析及再生技术研究.电气化铁道[J],2006,(06).
    [127]刘培栋,王卫东,容仕宽.再生制动吸收装置在重庆轻轨中的应用.都市快轨交通[J],2006,(03).
    [128]赵荣华,杨中平,郑琼林.城轨列车设置地面制动电阻的仿真研究.城市轨道交通研究[J],2008,(09).
    [129]郭东.考虑再生制动的城市轨道交通牵引供电仿真的研究[D].成都:西南交通大学,2008.
    [130]GB 50157.地铁设计规范[S],2003.
    [131]GB 10411.城市轨道交通直流牵引供电系统[S],2005.
    [132]李群湛.电气化铁道并联综合补偿及其应用[M].北京:中国 铁道出版社,1993.
    [133]陈立周,何晓峰.工程随机变量优化方法设计——原理与应用[M].北京:科学出版社,1997.
    [134]杜比.蒙特卡洛方法在系统工程中的应用[M].西安:西安交通大学出版社,2007.
    [135]丁明,李生虎,黄凯.基于蒙特卡罗模拟的概率潮流计算.电网技术[J],2001,25(11).
    [136]王锡凡,王秀丽.电力系统的随机潮流分析.西安交通大学学报[J],1988(3).
    [137]李建华,韩奕,黄石柱.韶山Ⅰ型电力机车概率谐波电流计算.电力系统自动化[J],2000(14).
    [138]韩奕,李建华,黄石柱.SS4型电力机车的动态模型及随机谐波电流计算[J].电力系统自动化.2001(04).
    [139]黄石柱,李建华,赵娟.基于MATLAB的电力机车数字仿真模型[J].电力系统自动化.2002(04).
    [140]黄石柱,李建华,赵娟等.电气化铁路牵引变电所概率谐波电流的仿真计算.电力系统自动化[J],2002,(05).
    [141]何天健,池云莉,邵乐基等.电气化铁道动力供电系统模拟(英文).交通运输系统工程与信息[J],2005,(03).
    [142]Ho T. K., Wang J., Leung K. K. Probabilistic load flow calculation for ac traction supplies with at feeding[C]. Advances in Power System Control, Operation and Management,2003. ASDCOM 2003. Sixth International Conference on (Conf. Publ. No.497), 2003:530-534.
    [143]Ho T. K., Ho T. K., Chi Y. L. Load flow in electrified railway[C]. Power Electronics, Machines and Drives,2004. (PEMD 2004). Second International Conference on (Conf. Publ. No.498),2004:498-503.
    [144]Ho T. K., Chi Y. L., Wang J. Probabilistic load flow in AC electrified railways.2005,152(4):1003-1013.
    [145]池云莉,何天健,梁嘉杰.电气化铁道系统概率潮流算法研究.电气化铁道[J],2004,(06).
    [146]杨自强,魏公毅.任意分布随机变量抽样的通用算法与程序. 数值计算与计算机应用[J],2006,(03).
    [147]Shalloway Alan, Trott James R.设计模式解析[M].北京:人民邮电出版社,2006.
    [148]Matrtin Roberts C.敏捷软件开发原则、模式与实践[M].北京:清华大学出版社,2003.
    [149]Prosise Jeff. MFC Windows程序设计[M].北京:清华大学出版社,2001.
    [150]侯俊杰.深入浅出MFC[M].武汉:华中科技大学出版社2001.
    [151]BoochG. UML用户指南[M].北京:机械工业出版社,2001.
    [152]冀振燕.UML系统分析设计与应用案例[M].北京:人民邮电出版社,2003.
    [153]王瑞金,段会川.统一建模语言UML及其建模实例.计算机应用研究[J],2002,(8).
    [154]陈亮.UML在电厂管理信息系统建模中的应用研究.电力自动化设备[J],2002,22(7):50-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700