城市轨道交通再生制动能量利用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,城市化进程的加快,我国城市轨道交通发展迅速。城市轨道交通车辆再生制动可节约能源,符合节能减排的要求,但是目前再生制动能量利用率低下,多余的能源被电阻消耗掉,不但不能节能,反而增加了城市轨道交通线路通风散热系统的负担,因此研究城市轨道交通再生制动能量利用技术,提高再生制动能量利用率,符合城市轨道交通发展的方向,对节能减排和可持续发展具有很重要的意义和实用价值。
     本文首先建立城市轨道交通系统再生制动能量分析模型,并以南京地铁1号线车辆数据为依据进行仿真研究,揭示了城市轨道交通车辆再生制动能量特征,即城市轨道交通车辆再生动能量具有幅值高、时间短的特点,功率冲击较大。城市轨道交通再生制动能量分析模型为研究再生制动能量利用技术提供了有力的分析与验证工具。
     再生制动能量处理问题产生的根本原因是城市轨道交通供电系统采用了不可逆的整流电路,因此本文提出一种新型能馈式轨道交通牵引供电变流方案,采用双向阶梯波合成变流器实现城市轨道交通系统的供电与再生制动能量回馈。阶梯波合成变流器具有开关频率低、开关损耗小、电磁兼容性好、输入谐波少、总谐波含量低、滤波器体积小等优点,特别适合城市轨道交通系统的大功率能馈供电。为了实现阶梯波合成变流器的快速调节,本文提出了一种新的顺序采样空间矢量调制(SVM)技术,采用该技术后,阶梯波合成过程中等效采样点从传统的每周期6个提高到每周期24个,提高了调制环节的带宽,减小了调制环节的延时,为提高阶梯波合成变流器的动态性能提供了有利的技术基础;在分析变换器模型的基础上,提出了一种SVM调制延时补偿办法,采用该补偿办法后,降低了dqo坐标系下两相系统的耦合,提高了变换器带宽,为实现dq轴电流解耦控制和有功功率、无功功率的独立控制提供了必要的基础;提出了阶梯波合成变流器的瞬时值闭环控制策略与参数设计方法,为提高和优化阶梯波合成变流器的动态性能提供了必要的依据,为城市轨道交通供电系统直流母线的动态调节提供技术保障。在3kW实验平台上进行了实验,实验结果表明该双向阶梯波合成变流器除了开关频率低、电流波形正弦性好以外,还具有快速的动态调节性能。
     在分析了再生制动能量全功率回馈电网与再生制动能量全储存方式的优缺点基础上,本文提出了一种新型的能馈与储能相结合的再生制动能量吸收方案,利用能馈系统回馈大部分能量,减少储能系统的容量、体积以及成本,利用储能系统为脉冲能量提供一定缓冲,减小再生制动能量对电网的冲击以及能馈系统的设计容量,提高能馈系统的容量利用率。研究了三种容量配置方法,并研究了两种控制器实现方式,以实现两个系统的功率容量配合。通过仿真模型研究了能馈系统与储能系统的能量分配与电网电压特性。
     为了配合提出的能馈牵引供电系统,缓冲脉动功率对电网的冲击,本文最后研究了基于超级电容器的储能系统。提出了一种模块化储能系统功率变换方案,采用该模块化方案一方面可以使储能系统适用于多种供电电压等级的城市轨道交通系统,另外一方面还可降低储能模块的超级电容器串联个数,提高了超级电容器组的可靠性;针对多模块输入串联结构的储能系统,提出一种具有输入均压能力的双向变换器闭环控制策略,保障多模块串联结构在双向变换器场合的应用;储能单元电压均衡措施是保证超级电容器串联应用的高效与可靠的关键技术,本文在分析现有均衡电路的基础上提出了一种新型的电压均衡电路,根据均衡速度的需要,该均衡电路可开环控制也可闭环控制,控制方法都比较简单,不需要对多个电容器单元进行电压检测与决策控制就可以实现电压的自动均压。通过仿真和实验研究验证了提出的超级电容储能系统关键技术的可行性。
With the rapid economical development and China's accelerating urbanization process, urban railway transit system grows flourish. On the urban rail trains, regenerative brake is usually used. It can save energy and meets the trends of energy saving and emission reducing. But now, the regenerating energy is of a low utilization rate, and the extra energy is wasted in heat. The wasted energy can even cause increasing aerator load of the tunnel. So, to improve the utilization rate of the regenerating energy and to save more energy, it’s important and valuable to have a research on regenerating energy feeding to utility and buffering method. And this also goes with the direction of the urban railway transit’s development.
     Firstly, the simulation model of the urban railway transit system for the analysis of regenerating energy is set up, and simulation study was carried out based on the data of the Nanjing Metro Line 1. The characteristic of the regenerating energy of the train set is discovered, which can be represented as high amplitude, shortly lasting time and highly power strike. The simulation model and results are helpful tools to the whole study for analysis and validation.
     Sencondly, as the problem of regenerating energy handling is caused by the unidirectional rectifier of the traction power supply, a new type of regenerating traction power supply with the ability of feeding the regenerating energy back to the utility is carried out, which adopts bidirectional rectifier. A new type bidirectional converter based on staircase-synthesize converter structure, which is also called mulitypulse converter and is characterized with low switching frequency, low switching losses, low EMI, low hamonics and low filter volume, is proposed in the paper. Thus, it’s more suitable for high power conversion of the tranction power supply. To improve the regulation performance, a new sequential SVM technique is also proposed, which make the number of converter’s adjustable switching events improving from 6 to 24 during a fundamental periode. It enlarges the bandwidth and reduces the time delay of the modulation link, and this gives an important foundation to improve the converter’s dynamic regulation performance. With the analysis of the converter’s transfer function model, a time-delay compensation method is brought out, which can reduce the system coupling made by the time delay of SVM link and can help the close loop controller to realize the decoupling current control and independent regulation of active power and reactive power. An instantaneous-value feedback control algorithm of the converter is introduced and the optimization of the controller parameters’selection is also described in detail to improve the dynamic performance, which makes the converter suitable for the urban rail transit with high regulation performance of the DC supply voltage. A 3kW protytype is also built up. The experimental results validate the fesibility of the bidirectional converter and control algorithm and prove that the converter is characterized with not only low switching frequency and sine current waveform but also fast dynamic regulation.
     Thirdly, a new hybrid traction power supply system is proposed based on the analysis of the merits and demerits of both regenerative power supply and storage method to handle the whole regenerating energy, which is composed with a regenerative power converter and an energy storage device. The most energy of the regenerating energy is feed back to the utility and this can reduce the energy storage capacity, device volume and costs. The energy storage device provides a peak power buffer and limits the peak power feeding back to the utility to a lower level to reduce the power shock, and this can also reduce the converter’s capability of the power supply and improve the utilization rate of the converter’s power capability. Three types of capacity configuration are proposed and two types of realization of the control algorithm are also provided in detail. Simulation is carried out based on the urban rail transit model. The regenerative energy’s flow is studied and the DC supply voltage’s deviation is also observed.
     Lastly, to cooperating with the regenerative power supply and reduce the energy’s strike on the utility, a new scheme of energy storage system based on ultracapacitor is proposed. A modular energy storage topology is brought out, which can make the energy storage system adaptive to different supply voltage system and also reduce the number of the ultracapacitor connected in series and then improve the reliability of the energy storage system. The control algorithm of the bidirection DC/DC converter in the energy storage system, with the ability of input voltage balance when the converters are connected with inputs in series, is analyzed in detail. It makes the series-input power conversion topology applicable in the bidirectional power conversion. The voltage equallization is a key technology to improve the ultracapacitor stack’s capacity and reliability. On the analysis of the existing equalization methods, a new type voltage equalization circuit is also proposed, which can be open-loop controlled or close-loop controlled according to needs of equalization speed. The circuit is simple and can realized automatic voltage equalization with no needs of voltage sensing network and voltage comparising circuits. Simulation and experiment studies are carried out to validate the fesibility of the key technology of the energy storage system.
引文
[1]谭复兴,高伟君等.城市轨道交通系统概论.北京:中国水利水电出版社,2007:3-46.
    [2]罗晓,江家骅.城市轨道交通规划环境影响评价.北京:中国环境科学出版社,2008:10-19.
    [3]陆化普.城市轨道交通规划的研究与实践.北京:中国水利水电出版社,2001:10.
    [4]王亦凡.如火如荼的中国城市轨道交通建设.交通建设与管理,2008, 10: 20-24.
    [5]张庆贺,朱合华,庄荣等.地铁与轻轨(第二版).北京:人民交通出版社,2006:9-23.
    [6]何宗华,汪松滋,何其光.城市轨道交通供电系统运行与维护.北京:中国建筑工业出版社,2005:1-8.
    [7] Yasu Oura, Yoshifumi Mochinaga and Hiroki Nagasawa. Railway electric power feeding systems. Japan Railway & Transport Review, 1998, 16:48-58.
    [8]郑瞳炽,张明锐.城市轨道交通牵引供电系统.北京:中国铁道出版社, 2003: 1-18.
    [9]中华人民共和国建设部, CJ/T 1-1999,城市无轨电车和有轨电车供电系统, 1999-06-04.
    [10]国家技术监督局, GB 10411-89,地铁直流牵引供电系统, 1989-11-01.
    [11] M. C. Duffy. Electric railways 1880-1990. Great Britain: The Institution of Engineering and Technology; illustrated edition (February 11, 2003):169-184.
    [12] M. C. Duffy. The mercury-arc rectifier and supply to electric railways. Engineering Science and Education Journal, 1995, 4(4):183-192.
    [13] Bin Wu. High-power converters and AC drivers. Hoboken, New Jersey: John Wiley & Sons Inc., 2006: 37-61.
    [14]王念同,魏雪亮.城市轨道交通24脉波牵引整流变电站网侧谐波电流的分析.变压器,2003, 40(1): 1-6.
    [15]魏雪亮,张宏,史建华.轴向双分裂式12相24脉波移相牵引整流变压器的参数计算.变压器, 1999, 36(5): 1-8.
    [16] Yii-Shen Tzeng, Nanming Chen and Ruay-Nan Wu. Modes of operation in parallel-connected 12-pulse uncontrolled bridge rectifiers without an interphase transformer. IEEE Transactions on Industrial Electronics, vol. 44, no. 3, June 1997:344-355.
    [17] T. Young, Thyristor traction rectifiers engineering and hype. Proceedings of the 1996 ASME/IEEE Joint Railroad Conference, 1996:197-202.
    [18]丁道宏.电力电子技术.北京:航空工业出版社,1999: 63-79.
    [19]张振森.城市轨道交通车辆.北京:中国铁道出版社. 2005:132-163.
    [20]马琪.国产地铁车辆制动系统.都市快轨交通, 2004, 17(增刊):101-110.
    [21]吴峻,李圣怡,潘孟春,陈轶.再生制动的分析与控制.电工技术杂志, 2001,12:21-22.
    [22] W. D. Bearce. The 1500-Volt electrification of the Chicago, Milwaukee & ST. Paul railway. General Electric Review, July, 1915:644-645.
    [23] Arthur J. Manson. Railroad electrification and the electric locomotive. New York: Simmons- Boardman Publishing Company, 1923: 115-128.
    [24]王彦峥,苏鹏程.城市轨道交通再生电能回收技术方案的研究.电气化铁道, 2004, 2: 37-40.
    [25]周剑斌,苏浚,何泳斌.地铁列车运行再生能利用的研究.城市轨道交通研究, 2004, 4: 84-86.
    [26]李珞.重庆单轨交通再生制动能量地面吸收装置的应用.现代城市轨道交通, 2005, 4: 18-21.
    [27] T. Koseki, Y. Okada, Y. Yonehata, S. Sone. Innovative power supply system for regenerative trains, Computers in Railways IX, 2004: 931-939.
    [28] T. Suzuki, Traction substations in an energy-saving regenerative-braking system, Mitsubishi Electrical ADVANCE, pp. 1-4, June 1979.
    [29] T. Suzuki, DC power supply system with inverting substations for traction systems using regenerative brakes, IEE Proc. B, vol. 129, no. 1, pp. 18-26, January 1982.
    [30] Siemens Mobility Division, SITRAS TCI-Thyristor controlled inverter for DC traction power supply. http://id.siemens.com/cms/id/TS/Products/Documents/Sitras TCI.pdf
    [31] Yii-Shen Tzeng, Ruay-Nan Wu, and Nanming Chen. Electric network solutions of DC transit systems with inverting substations. IEEE Trans. on Vehicular Technology, vol. 47, no. 4, Nov. 1998: 1405-1412.
    [32] Y. Yoshiki, T. Jinzenji, T. Kudor, H. Inokuchi, J. Fujiwara, A. Kondo. Static power supply for DC 1500V transit system. International Conference on Main Line Railway Electrification, 1989: 164-168
    [33] W. Spatny, Substations for the power supply to the Sao Paulo metro, Brown Boveri Review, Dec. 1978, pp. 840-847.
    [34] B. Liljeqvist, The use of voltage controlled thyristor converters in power supply for DC traction systems, 1992. Proceedings of the ASME/IEEE Spring Joint Railroad Conference, 1992: 101-106.
    [35] D. E. Steeper, R. P. Stratford. Reactive compensation and harmonic suppression for industrial power systems using thyristor converters. IEEE Trans. on Industry Applications, vol. 12, no. 3. May/June 1976: 232-254.
    [36] Z Chen, E Spooner. A DC to AC converter with thyristor inverter and active compensation. 14thIEEE International Conference on Power Electronics and Variable Speed Drives, 1996. vol 6: 23-25.
    [37] Peter-Jan Randewijk, Johan HR Enslin. Inverting DC traction substation with active power filtering incorporated. IEEE, PESC 1995, vol. 1, 1995: 360–366.
    [38] T Kataoka Y Fuse D Nakajima S Nishikata. A three-phase voltage-type PWM rectifier with the function of an active power filter. 18th IEEE International Conference on Power Electronics and Variable Speed Drives, 2000:386-391.
    [39] Sang-Hoon Song, Su-Jin Jang, Hyo-Jin Bang, Chung-Yuen Won. Regeneration inverter system for DC traction with harmonic reduction capability. IEEE, IECON 2004:1463-1468.
    [40] C.H. Bael, M. S. Han, Y. K. Kim, C. Y. Choi, and S. J. Jang. Simulation study of regenerative inverter for DC traction substation. IEEE, ICEMS 2005, vol 2:1452-1456.
    [41] Pieter Hendrik Henning, Heinrich D. Fuchs, Abraham D. le Roux, and Hendrik du T. Mouton. A 1.5-MW seven-cell series-stacked converter as an active power filter and regeneration converter for a DC traction substation. IEEE Trans. on Power Electronics, vol. 23, no. 5, Sept. 2008: 2230-2236.
    [42] Jun-Gu Kim1, Kee-Hyun Cho, Su-Jin Jang, Jae-Hyung Kim, Chung-Yuen Won. DC traction regenerative inverter system with voltage drop compensator. 3rd European Ele-Drive Transportation Conference EET-2008 - Geneva, March 11-13, 2008: 1-8.
    [43] A.Horn, R.H. Wilkinson, T.H.R. Enslin. Evaluation of converter topologies for improved power quality in DC traction substations. IEEE, ISIE '96, vol 2: 802-807.
    [44] R.H. Wilkinson, A. Horn, J.H.R. Enslin. Control options for a bi-directional multilevel traction chopper. IEEE, PESC '96, vol 2: 1395-1400.
    [45]张承慧,李珂,杜春水,崔纳新.基于幅相控制的变频器能量回馈控制系统.电工技术学报, 2005, 20(2):41-45.
    [46]张承慧,李珂,杜春水.一种能量馈送装置及其在水泥熟料破碎机中的应用.电气传动,2006,36(10):56-59.
    [47]马炜,李杰,陈国呈,屈可庆.基于改进型幅相控制的单位功率因数电梯能量回馈器研究.电工电能新技术,2008,27(1):76-80.
    [48] Kinh Pham, Richard Eacker, Margaret Burnett, Marc Bardsley. A step forward or backward? Sound transit opts for 1500 Vdc traction electrification, 2000 ASME/IEEE Joint Rail Conference, 2000: 67-72.
    [49] H. K. PATEL, G. K. DUBEY. Modified sequence-control technique for improving theperformance of regenerative bridge converters. IEEE Trans. on Industry Applications, 1983, 19(5): 682-689.
    [50] Masamichi Ogasa, Jens Onno Krah & Joachim Holtz. Harmonic compensator for 50-Hz fed AC railway vehicles. PCC - Nagaoka 1997, vol.1: 51-62
    [51]许遐,蔡维,李学信.电铁供电站高次谐波滤波兼无功补偿装置的设计.华北电力技术, 2002, 12: 6-9
    [52] Siamak Farshad, Hao Rongtai. Compensation of railway supply system currents by active filter. Journal of Northern Jiaotong University, 1999, 23(1): 99-104
    [53] A. Steimel. Electric railway traction in Europe-A survey of the state-of-the-art. IEEE Industry Applications Magazine, 1996, 2(6):6-17.
    [54] T. Hashimoto, S. Sone. PWM converter-inverter system for AC supplied train. International Conference on Main Line Railway Electrification, 1989: 93-97.
    [55] F. Flinders, W. Oghanna. Energy efficiency improvements to electric locomotives using pwm rectifier technology. Electric Railways in a United Europe, 27-30 March 1995: 106-110.
    [56] A.D. Mansell, J. Shen. Pulse converters in traction applications. Power Engineering Journal, 1994, 8(4): 183-187.
    [57] T. Konishil, S. Hase, A. Okuil, S. Kinoshita, M. Sonetaka. Development of PWM converter with large capacity for electric railway substation. IEEE, PEDS 2003. 17-20 Nov. 2003, vol. 2: 1264-1267.
    [58] Shin-ichi Hase, Takeshi Konishi, Akinobu Okui, et.al. Control methods and characteristics of power converter with large capacity for electric railway system. PCC-Osaka, 2002:1039-1044.
    [59]刘满足,潘迪夫,王志伟.基于高频PWM整流逆变技术的能量回馈装置研究.电力机车与城轨车辆, 2008, 31(3):7-10.
    [60]尹忠刚,钟彦儒,刘静,孙向东.基于空间电压矢量的变频器能量回馈系统研究.电力电子技术,2007,41(7):6-8.
    [61]沈茂盛,刘志刚,张钢,刁利军.采用三电平电压型PWM整流器的地铁牵引供电系统.电工技术学报, 2007, 22(7):74-77.
    [62]卢西伟,刘志刚,张钢,沈茂盛,刁利军.基于电压型PWM整流器的新型轻轨牵引供电系统.电工技术学报, 2007, 22(8):68-72.
    [63] M. Chymera, A. Renfrew, M. Barnes, Energy storage devices in railway systems, Seminar on Innovation in the Railways: Evolution or Revolution? Austin Court, Birmingham, UK, September 2006.
    [64] L. Romo, D. Turner, L.S.B. Ng. Cutting traction power costs with wayside energy storage systems in rail transit systems. Proceedings of the 2005 ASME/IEEE Joint Rail Conference, 2005:197-192.
    [65] B. Voigt, T. Mierke, U. Lorenz, K. Kramer. 1MWh-battery for the Berlin subway system. Proceedings of the 34th International Power Sources Symposium, 1990:68-71.
    [66] M. Barcaglioni, F. Gaddi, R. Giglioli, R. Salutari, G.A. Saraceno, G. Zini. Battery storage plant to improve energy saving and security of subway electric supply. International Conference on Electric Railways in a United Europe, 1995., 87-91
    [67] M. Ogasa, Y. Taguchi. Power electronics technologies for a lithium ion battery tram. Power Conversion Conference - Nagoya, PCC '07, 2007:1369-1375.
    [68] Randy Stevenson, Zhesheng Li, Carl Klaes, Mahmoud Abdel-haq. Fly-wheel-based regenerative energy management system. US Patent, No. US2004/0026927 A1, Feb. 2004.
    [69] C. Tarrant. Revolutionary flywheel energy storage system for quality power. Power Engineering Journal, 1999, 13(3):159-163.
    [70] E.L. Lustenader, R.H. Guess, E. Richter, F.G. Turnbull. Development of a hybrid flywheel/ battery drive system for electric vehicle applications. IEEE Trans. on Vehicular Technology, 1977, 26(2):135-143.
    [71] O. Briat, J. M. Vinassa, W. Lajnef, S. Azzopardi, E. Woirgard. Principle, design and experimental validation of a flywheel-battery hybrid source for heavy-duty electric vehicles. Electric Power Applications, IET, 2007, 1(5):665-674.
    [72] M.B. Richardson. Flywheel energy storage system for traction applications, International Conference on Power Electronics, Machines and Drives, Jun. 2002, 275- 279
    [73]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究.中国电机工程学报, 2003, 23(3):108-111.
    [74]蒋启龙,连级三.飞轮储能在地铁系统中的应用.变流技术与电力牵引. 2007, 4:13-17.
    [75]韩羽中,李艳,余江,唐跃进,程时杰,潘垣.超导电力磁储能系统研究进展(一)——超导储能装置.电力系统制动化, 2001, 12:63-68.
    [76] Brian K. Johnson, Joseph D. Law, and Gerald P. Saw. Using a superconducting magnetic energy storage coil to improve efficiency of a gas turbine powered high speed rail locomotive. IEEE Trans. on applied superconductivity, Mar. 2001, vol.11, no.1:1900-1903.
    [77] Y. Tsuching, K. Kubo, J. Baba, K. Shutoh, E. Masada. Application study of SMES to power conditioning in high-speed railways. PCC Osaka 2002. vol.3:1150-1154.
    [78] Satoshi Suzuki, Jumpei Baba, Katsuhiko Shutoh, and Eisuke Masada. Effective application of superconducting magnetic energy storage (SMES) to load leveling for high speed transportation system. IEEE Trans. on applied superconductivity, June 2004, vol. 14, no. 2:713-716.
    [79] Toshifumi Ise, Masanori Kita, and Akira Taguchi. A hybrid energy storage with a SMES and secondary battery, IEEE Trans. on Applied superconductivity, June 2005, vol. 15, no. 2:1915-1918.
    [80] Henry Louie, Student Member, IEEE, and Kai Strunz. Superconducting magnetic energy storage (SMES) for energy cache control in modular distributed hydrogen-electric energy systems. IEEE Trans. on Applied superconductivity, June 2007, vol. 17, no. 2:2361-2264.
    [81]余运佳,惠东.小型超导储能产品装置.低温与超导. 1996, 24(4):44-50.
    [82]余运佳,惠东.中大型超导储能装置的研制与应用.中国电力, 1997, 30(3):57-59.
    [83] Luis Zubieta and Richard Bonert. Characterization of double-layer capacitors for power electronics applications. IEEE Trans. on Industry Applications, Jan. /Feb. 2000, vol. 36, no. 1:199-205.
    [84]徐长勤,宋德银,董传海,城市轨道交通再生制动能量储存利用,现代城市轨道交通, 2005, 6: 18-20
    [85]陈朗,超级电容在城市轨道交通系统中的应用,都市快轨交通, 2008, 21(3):76-79
    [86] Michael Steiner, Johannes Scholten. Energy storage on board of DC fed railway vehicles. IEEE, PESC 2004, 2004:666-671.
    [87] J.M. Miller, P.J. McCleer, M. Everett, E.G. Strangas. Ultracapacitor plus battery energy storage system sizing methodology for HEV power split electronic CVT's. IEEE, ISIE 2005. June 20-23, 2005, vol.1, page(s): 317-324.
    [88] Yonghua Cheng, V.M. Joeri, P. Lataire, M. Lieb, E. Verhaeven, R. Knorr. Configuration and verification of the super capacitor based energy storage as peak power unit in hybrid electric vehicles. 2007 European Conference on Power Electronics and Applications, Sept. 2007, Page(s): 1-8.
    [89] A. Rufer, D. Hotellier, P. Barrade. A supercapacitor-based energy storage substation for voltage compensation in weak transportation networks. IEEE Trans. on Power Delivery, April 2004, Volume 19, Issue 2, Page(s):629 - 636.
    [90] S. Hase, T. Konishi, A. Okui, Y. Nakamichi, H. Nara, T. Uemura. Fundamental study on energy storage system for DC electric railway system. PCC Osaka 2002. April 2002, Volume 3, Page(s):1456-1459.
    [91] Yonghua Cheng, V.M. Joeri, P. Lataire. Research and test platform for hybrid electric vehicle with the super capacitor based energy storage. 2007 European Conference on Power Electronics and Applications, Sept. 2007, Page(s):1-10.
    [92] M. Brenna, F. Foiadelli, E. Tironi, D. Zaninelli. Ultracapacitors application for energy saving in subway transportation systems. IEEE, ICCEP '07. May 2007, page(s): 69-73.
    [93] K. Takeshi, H. Shinichi and N. Yoshinobu. Energy storage system for DC electrified railway using EDLC. Quarterly Report of RTRI, 2004, Vol. 45, No. 2 pp.53-58.
    [94]中华人民共和国第十届全国人民代表大会常务委员会第三十次会议,中华人民共和国节约能源法,中华人民共和国主席令第七十七号,颁布日期:2007.10.28.实施日期:2008.04.01.
    [95]“十一五”国家科技支撑计划重点项目“电力电子关键器件及重大装备研制”课题申请指南,中华人民共和国科学技术部,2007.
    [96]张中央.列车牵引计算.北京:中国铁道出版社, 2007:44-59.
    [97]彭其渊,石红国,魏德勇.城市轨道交通列车牵引计算.成都:西南交通大学出版社, 2005:11-24.
    [98]唐明辉,王健全,徐国梁.城市轨道交通列车编组形式与牵引电机的选择.机车电传动,2005, (5): 50-53.
    [99] J. G. Yu, R. W. Sturland & L.R. Denning. A general motor modeling method for transit system simulation studies. Computers in Railways IV, Vol 2 Railway Operations, 1994: 345-352.
    [100] C.J. Goodman, L.K. Siu, and T.K. Ho. A review of simulation models for railway system, International Conference on Developments in Mass Transit System, (1998): 80–85.
    [101]陶生桂,崔俊国.城市轨道交通车辆电力传动系统及其控制的发展.电力机车技术,2001,24(3):6-9.
    [102] T. Sano, S. Koizumi, K. Tokuoka, K. Nagata. VVVF inverter equipment for EMUS. IEE conference publication 312, Institution of Electrical Engineers, 1989: 98-102
    [103] K. Kawahira, T. Kanzaki and Y. Minami. AC motor drive system for electric vehicles. Toshiba review, 1997, No.159: 14-19.
    [104]孙三起,卢西伟.地铁电动车组的VVVF逆变器控制系统.机车电传动,1994,(3):25-28.
    [105]徐惠林.北京复八线地铁车辆电传动系统.机车电传动,2002,(3): 44-47.
    [106]土屋正美,黄宅舒.供北京地铁车辆用电气设备.变流技术与电力牵引, 2000, (4): 31-34.
    [107]陈文光,丁荣军.国产化北京地铁列车牵引电传动系统设计.机车电传动,2006,(4): 31-36.
    [108] D. Horstmann, G. Stanke. Die stromrichternahe Antriebsregelung des Steuerger?tes fürbahnauto-matisierungs systeme SIBAS 32. Elektrische Bahnen, 1992(11):344-350.
    [109]高永军.城市轨道交通车辆矢量控制控制技术.城市轨道交通研究,2005,8(40): 27-30.
    [110]崔俊国,陶生桂.上海地铁2号线车辆交流传动系统仿真分析.机车电传动,2002,(1):29-34.
    [111] T. Ogawa, S. Ishida, T. Kojima, T. Sato, H. Taguchi, S. Ohashi. Speed sensorless vector control for rolling stock. 2005 European Conference on Power Electronics and Applications, 2005: 1-7.
    [112] K. Kondo, K. Yuki. An application of the induction motor speed sensor less control to railway vehicle traction system. IEEE, IAS 2002, (3):2022-2027.
    [113]徐惠林,曾宪钧.北京地铁13号线车辆电传动系统设计.机车电传动,2002,(6):35-38.
    [114]徐惠林.北京地铁5号线车辆电传动系统.机车电传动,2008,(6): 36-39.
    [115]颜钢锋,李锋.弱磁控制在变频矢量控制系统中的应用,工程设计学报, 2005, 12(2): 101- 104.
    [116] R. J. Kerkman, T. M. Rowan, D. Leggate. Indirect field oriented control of an induction motor in the field-weakening region. IEEE Trans. on Industry Applications, 1992, 28(4):850-857.
    [117] Z. Peroutka,K. Zeman. New field weakening strategy for AC machine drives for light traction vehicles. 2007 European Conference on Power Electronics and Applications, 2007, 1-10.
    [118] A. Steimel. Direct self-control and synchronous pulse techniques for high-power traction inverters in comparison. IEEE Trans. on Industrial Electrics, 2004, 51(4): 810-820.
    [119] D. Casadei, G. Serra, A. Stefani, A. Tani and L. Zarri. DTC Drives for wide speed range applications using a robust flux-weakening algorithm. IEEE trans. on industrial electronics, 2007, 54(5): 2451-2461.
    [120]奉泽熙,宁韶安,曹霄.直接转矩控制技术在广州地铁一号线车辆VVVF逆变器国产化中的应用,电力机车与城轨车辆, 2009, 32(1):17-20.
    [121]徐坚翔,余明杨.异步电动机低速及弱磁环节直接转矩控制系统的建模和实现,电力机车技术. 2002, 25(2): 22-25.
    [122]陈伯时主编.电力拖动自动控制系统-运动控制系统(第三版).北京:机械工业出版社, 2006:145-241.
    [123]江彩玉,徐国卿,仝力,方向,王晶晶.城市轨道车辆异步牵引电机额定参数研究.城市轨道交通研究,2001,4(3):49-57.
    [124]肖彦君,吴茂杉.城轨车辆VVVF逆变器与牵引电机的功率选定及其相互匹配.铁道科学技术新进展——铁道科学研究院五十五周年论文集,2005:719-728.
    [125]张和平.南京地铁1号线车辆主传动系统问题分析.现代城市轨道交通,2005,(2):16-19.
    [126]石红国,彭其渊,郭寒英.城市轨道交通牵引计算算法,交通运输工程学报, 2004, 4(3):30-33.
    [127]王亚玲,吴命利.直流牵引变电所在供电系统运行仿真中的建模.电气化铁道, 2005, (4):4-7.
    [128]乌正康,杨其华.地铁牵引供电网短路稳态仿真分析.铁道学报, 1993, 15(1):39-44.
    [129]刘炜,李群湛,李良威.基于多折线外特性模型的直流牵引供电系统稳态短路计算.机车电传动, 2008, (1): 61-64.
    [130]徐舒.南京地铁牵引供电系统负荷建模与仿真及其对电网影响分析. [硕士学位论文],南京:东南大学,2006.
    [131]赵清润,苏鹏程.城轨交通整流机组空载直流输出电压的计算.电气化铁道, 2003, (2): 45-48.
    [132]史凤丽,于松伟.地铁牵引供电系统数学模型的建立与求解.北京联合大学学报, 2003, 17(2):60-62.
    [133]梁广深,邱庆珠.城市轨道交通供电制式分析探讨,城市轨道交通研究, 2004, (6):11-13.
    [134]董文敏,何文继,顾保南.城市轨道交通钢轨电阻测量及电耗研究,城市轨道交通研究, 2002, (2):47-50.
    [135]农兴中.广州地铁3号线最高行车速度的确定.城市轨道交通研究,2003(3): 83-86.
    [136] S. Manias, P.D. Ziogas, G. Olivier. Bilateral DC to AC converter using a high frequency link Electric Power Applications, IEE Proceedings B, vol.134, no.1, 1987:15-24.
    [137] Norrga, S. A soft-switched bi-directional isolated AC/DC converter for AC-fed railway propulsion applications. 2002. IEEE International Conference on Power Electronics, Machines and Drives, 4-7 June 2002: 433-438.
    [138] L. Meysenc, P. Stefanutti, P. Noisette, N. Hugo, A. Akdag. Multlevel AC/DC converter for traction applications. US Patent no. 7,558,087, Jul. 7, 2009.
    [139] M. Carpita, M. Marchesoni, D. Moser. Multilevel converter for traction applications: small-scale prototype tests results. IEEE Trans. on Industrial Electronics. vol.55, no.5, May 2008:2203-2212.
    [140] A. Falk, M. Vitor, G. B. Achmann. Medium frequency energy supply for rail vehicles. US patent no. 7,102,901, Sep.5, 2006.
    [141] M. P. Bahrman. Overview of HVDC transmission. IEEE Power Systems Conference and Exposition, Oct.29-Nov.1, 2006, Atlanta, Georgia, pp. 18-23.
    [142] K. Fujii, K. Kunomura, K. Yoshida, A. Suzuki, S. Konishi, M. Daiguiji, et al. STATCOM applying flat-packaged IGBTs connected in series. IEEE Trans. on Power Electronics, vol. 20, no. 5, Sept. 2005, pp. 1125-1132.
    [143] P. R. Palmer, H. S. Rajamani. Active voltage control of IGBTs for high power applications. IEEE Trans. on Power Electronics, vol.19, no.4, July 2004: 894-901.
    [144] R. Azar, R. Udrea, Wai Tung Ng, F. Dawson, W. Findlay, P. Waind. The current sharing optimization of paralleled IGBTs in a power module tile using a PSpice frequency dependent impedance model. IEEE Trans. on Power Electronics, vol.23, no.1, Jan. 2008: 206-217.
    [145] J. S. Lai, F. Z. Peng. Multilevel converters-A new breed of power converters. IEEE Trans. on Industry Applications, volume 32, issue 3, May-June 1996, pp. 509-517.
    [146] D. Soto, T. C. Green. A comparison of high-power converter topologies for the implementation of FACTS controllers. IEEE Trans. on Industrial Electronics, volume 49, issue 5, Oct. 2002, pp. 1072-1080.
    [147] F. Z. Peng, J.W. McKeever, D.J. Adams. Cascade multilevel inverters for utility applications. IEEE, IECON'97, volume 2, Nov. 1997, New Orleans, Louisiana, pp. 437-442.
    [148] N.A. Azli, Y.C. Choong. Analysis on the performance of a three-phase cascaded H-bridge multilevel inverter. IEEE International Power and Energy Conference, Nov. 2007, Putrajaya, Malaysia, pp. 405-410.
    [149] B.P McGrath, D.G. Holmes. Analytical modeling of voltage balance dynamics for a flying capacitor multilevel converter. IEEE Trans. on Power Electronics, volume 23, issue 2, Mar. 2008, pp. 543-550.
    [150] A. A. Ashaibi, S. J. Finney, B. W. Williams, A. Massoud. Extend the use of auxiliary circuit to start up, shut down, and balance of the modified diode clamped multilevel inverter. IEEE, PEDS '07, Nov. 2007, Bangkok, pp.1049-1053.
    [151] S. Busquets-Monge, S. Alepuz, J. Bordonau, J. Peracaula. Voltage balancing control of diode-clamped multilevel converters with passive front-ends. IEEE Trans. on Power Electronics, volume 23, isue 4, July 2008 pp.1751– 1758.
    [152] B. Mwinyiwiwa, Z. Wolanski, Chen Yiqiang, Ooi Boon-Teck. Multimodular multilevel converters with input/output linearity. IEEE Trans. on Industry Applications, volume 33, issue 5, Sept.-Oct. 1997, pp.1214-1219.
    [153] M. Saeedifard, A. Bakhshai, and G. Joos, Low switching frequency space vector modulators for high power multi-module converters, IEEE Trans. On Power Electronics, Vol. 20, No. 6, 2005,pp. 1310-1318,
    [154] Zhang Gang, Liu Zhigang, Chen Dan, Diao Lijun, Lin Wenli, Li Zhefeng. Control and implementation of reversible multi-modular converter with interleaved space vector modulation, IEEE, ICMA 2007. 5-8 Aug. 2007 pp.3463-3468.
    [155] Wang Liqiao, Idin Pmg, Li Jianlin, Zhang Zhongchao. Harmonic characteristic of sample time staggered space vector modulation for multi-modular or multilevel converters. IEEE, PESC'04, June 2004, Aachen, Germany, 2004 pp. 4554-4557.
    [156] M. Saeedifard, H. Nikkhajoei, R. Iravani, A. Bakhshai, A space vector modulated multi-module converter for Back-to-Back HVDC system. IEEE Trans. on Power Delivery, vol. 22, No. 3, July, 2007, pp. 1643-1654
    [157] Zhou Guoliang, Shi Xinchun. Research on the model and control strategy of one multi-module-converter based BTB VSC-HVDC. IEEE, ICIEA’07, May 2007, Harbin, China, pp. 1113-1117.
    [158] Derek A. Paice, Power electronic converter harmonics - multipulse methods for clean power. New York: IEEE press, 1995:39-46.
    [159] M. Aredes, A. F. C. Aquino, G. Santos Jr. Multipulse converters and controls for HVDC and FACTS systems. Electrical engineering, vol.83, no.3, 2001, pp: 137-146.
    [160] A. H. Norouzi and A. M. Sharaf. Two control schemes to enhance the dynamic performance of the STATCOM and SSSC. IEEE Trans. on Power Delivery, vol.20, no.1, Jan. 2005:435-442.
    [161] M.S. El-Moursi, A.M. Sharaf. Novel controllers for the 48-pulse VSC STATCOM and SSSC for voltage regulation and reactive power compensation, IEEE Trans. on Power Systems, vol.20, no.4, Nov. 2005:1985-1997.
    [162] D.M. Mohan, B. Singh, B.K. Panigrahi. A two-level 24-pulse voltage source converter with fundamental frequency switching for HVDC system. IEEE, ICSET 2008. 24-27 Nov. 2008 Page(s):372-377.
    [163] A.-S.A. Luiz, B.J.C. Filho. Analysis of passive filters for high power three-level rectifiers. IEEE, IECON 2008, 10-13 Nov. 2008 Page(s):3207 - 3212.
    [164] H. R. Karshenas and H. Saghafi. Performance investigation of LCL filters in grid connected converters. IEEE TDC 2006, Aug. 15-18, 2006, pp. 1-6.
    [165] Timothy CY Wang, Zhihong Ye, Gautam Sinha, Xiaoming Yuan. Output filter design for a grid-interconnected three-phase inverter. IEEE, PESC '03, 15-19 June 2003, vol.2 :779- 784
    [166] K.H. Ahmed, S.J. Finney, B.W. Williams. Passive filter design for three-phase inverterinterfacing in distributed generation. IEEE, CPE '07, May 29 2007-June 1 2007 Page(s):1 - 9
    [167] T. Erika and D.G. Holmes. Grid current regulation of a three-phase voltage source inverter with an LCL input Filter. IEEE Trans. Power Electronics, vol. 18, no. 3, pp. 888-895, May 2003.
    [168] M. Liserre, F. Blaabjerg, and S. Hansen. Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Industrial Applications, vol. 41, no. 5, pp.1281-1291, Sep. 2005.
    [169] W. Eric and P. W. Lehn. Digital current control of a voltage source converter with active damping of LCL resonance. IEEE Trans. Power Electronics, vol. 21, no. 5, pp. 1364-1373, Sept. 2006.
    [170] G. Shen, D. Xu, L. Cao, and X. Zhu. An improved control strategy for grid-connected voltage source inverters with an LCL filter. IEEE Trans. Power Electronics. vol. 23, no. 4, pp. 1899-1906, Jul. 2008.
    [171]张勇,谢少军.大功率三相静止变流器研究.南京航空航天大学学报, 2002, 23(5):55-59.
    [172]谢少军,韩军,张勇,陈勇.阶梯波合成逆变器的单脉宽调制调压技术研究.中国电机工程学报,2003,23(5):62-65.
    [173] J. Ghaisari, A. R. Bakhshai. Exact harmonics elimination in PWM multi-module converters. IEEE, APEC'05, volume 3, Mar. 2005, Austin, Texas, 2005, pp. 1845-1850.
    [174]蔡振鸿.基于空间矢量调制技术的三相多通道逆变器研究[D].南京:南京航空航天大学,2007.
    [175] D. Yazdani, A. Bakhshai, G. Joos. Multifunctional grid-connected multimodule power converters capable of operating in single-pulse and PWM switching modes. IEEE trans. on Power Electronics, volume 23, issue 3, May 2008, pp. 1228-1238.
    [176] R. Datta, Haiqing Weng, Kunlun Chen, A.M. Ritter, R. Raju. Multipulse converter - topology and control for utility power conversion. IEEE, IECON 2006, 6-10 Nov. 2006: 1950-1955.
    [177] B. Singh, B.K. Panigrahi, D.M. Mohan. Voltage regulation and power flow control of VSC based HVDC system. IEEE, PEDES '06. 12-15 Dec. 2006:1-6.
    [178] Jian Sun, H. Grotstollen. Optimized space vector modulation and regular-sampled PWM: a reexamination. IEEE, IAS '96. vol.2, 6-10 Oct. 1996:956 - 963.
    [179] R. B. Sidney and Yen-Shin Lai. The relationship between space-vector modulation and regular-sampled PWM. IEEE Trans. on Industrial Electronics, vol. 44, no. 5, Oct. 1997: 670 - 679.
    [180] Keliang Zhou, Danwei Wang. Relationship between space-vector modulation and three-phasecarrier-based PWM: a comprehensive analysis [three-phase inverters]. IEEE Trans. on Industrial Electronics, vol.49, no.1, Feb. 2002:186-196.
    [181]刘凤君.正弦波逆变器,北京,科学出版社,2002:98-238.
    [182] IEEE Industry Applications Society/Power Engineering Society, IEEE Std 519-1992, IEEE recommended practices and requirements for harmonic control in electrical power systems. New York: Institute of Electrial and Electronic Engineers, Inc., April 12, 1992.
    [183]全国电压电流等级和频率标准化技术委员会, GB/T 14549-1993,电能质量公用电网谐波,北京:国家技术监督局,1993.
    [184] Constantine H H,Gary B L.Digital control systems:theory,hardware,software.New York:McGraw-Hill book company,1985:78-88.
    [185]徐献瑜,李家楷,徐国良.Pade’逼近概论.上海:上海科技出版社,1990:24-32.
    [186] Blasko V,Kaura V.A novel control to actively damp resonance in input LC filter of a three-phase voltage source converter.IEEE Trans. on Industry Applications,1997,33(2):542-550.
    [187]林海雪.从IEC电磁兼容标准看电网谐波国家标准,电网技术, 1999, 23(5):64-67.
    [188]林海雪.用户谐波电流限值的确定,供用电, 2004, 21(06):3-4.
    [189]张慧妍.超级电容器直流储能系统分析与控制技术的研究, [博士学位论文],北京,中国科学院研究生院, 2006
    [190]赵立峰,张发明.北京地铁5号线再生电能吸收装置.现代城市轨道交通, 2008, (1):6-8.
    [191] R. Kotz, M. Carlen. Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000, 45:2483–2498.
    [192] R.L. Spyker and R.M. Nelms, Classical equivalent circuit parameters for a double-layer capacitor, IEEE Trans. Aerospace and Electronic Systems, 2000, 36(3) : 829~836
    [193]李海东.超级电容器模块化技术的研究, [博士学位论文],北京,中国科学院研究生院, 2006
    [194]唐西胜.超级电容器储能应用于分布式发电系统的能量管理及稳定性研究, [博士学位论文],北京,中国科学院研究生院, 2006
    [195]李军求,孙逢春,张承宁.纯电动大客车超级电容器参数匹配与实验.电源技术, 2004, 28(8) : 483~486
    [196]罗列英.利用超级电容的起重机械新型混合动力系统研究, [硕士学位论文],武汉,武汉理工大学, 2007
    [197]常春贺,许平勇,武树飞,等.一种用于轮胎吊节能系统的超级电容器电压均衡策略.电气应用, 2008, (9) : 136~139
    [198]唐西胜,齐智平.基于超级电容器储能的独立光伏系统研究.太阳能学报, 2006, 27(11) : 1097~1102
    [199]王斌,施正荣,朱拓,等.超级电容器——蓄电池应用于独立光伏系统的储能设计.能源工程, 2007, (05) : 37~41
    [200] Pinheiro J R, Barbi I. The Three-level ZVS PWM converter-a new concept in high-voltage DC-to-DC conversion. IEEE, IECON’92, 1992: 173-178.
    [201]何湘宁,陈阿莲.多电平变换器的理论和应用技术.北京:机械工业出版社, 2006.
    [202]金科,杨孟雄,阮新波.三电平双向变换器.中国电机工程学报, 2006, 26(18): 41-46.
    [203] Bo Y W, Jiang X J, Zhu D Q. Structure optimization of the fuel cell powered electric drive system. Proc. IEEE, PESC, 2003: 391-394.
    [204]严仰光.双向直流变换器.南京:江苏科学技术出版社, 2004.
    [205] Ray B. Bi-directional DC/DC power conversion using constant frequency quasi-resonant topology. Proc. IEEE ISCAS, 1993: 2347-2350.
    [206] F. Caricchi, F. Crescimbini, F.G. Capponi, L. Solero. Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives. IEEE, APEC'98, 15-19 Feb 1998, vol.1:287-293.
    [207] Martine L, Poveda A, Font J, et al. On the synthesis and control of bidirectional switching converters. IEEE PESC, 1993: 197-202.
    [208] Felix A, Himmelstoss. Analysis and comparison of half-bridge bidirectional DC-DC Converters. IEEE PESC, 1994: 922-928.
    [209] Espinosa P, Sable D, Lee F C, et al. A four-module zero-voltage-switched bidirectional battery charger/discharger. IEEE VPEC, 1994: 237-244.
    [210] Zhang J H, Lai J S, Kim R Y, et al. High-power density design of a soft-switching high-power bidirectional dc-dc converter. IEEE Trans. on Power Electronics, 2007, 22(4): 1145-1153.
    [211]童亦斌,吴峂,金新民等.双向DC/DC变换器的拓扑研究.中国电机工程学报, 2007, 27(13): 81-86.
    [212]张方华,严仰光.一族正反激组合式双向DC-DC变换器.中国电机工程学报, 2004, 24(5): 157-162.
    [213] Yamamoto K, Hiraki E, Tanaka T, et al. Bidirectional DC-DC converter with full-bridge / push-pull circuit for automobile electric power systems. IEEE, PESC, 2006: 1-5.
    [214]陈刚.软开关双向DC-DC变换器的研究, [博士学位论文].杭州:浙江大学, 2001.
    [215]张方华.双向DC-DC变换器的研究, [博士学位论文].南京:南京航空航天大学, 2004.
    [216] Xu X Y, Khambadkone A M, Oruganti R. A soft-switched back-to-back bi-directional DC/DC converter with a FPGA based digital control for automotive applications. IEEE IECON, 2007: 262-267.
    [217] H. Xiao, S. Xie, A ZVS bi-directional dc-dc converter with phase-shift plus PWM control scheme. IEEE Trans. on power electronics, vol.23, no.2, Mar. 2008: 813-823.
    [218]许海平.大功率双向DC-DC变换器拓扑结构及其分析理论研究, [博士学位论文].北京:中国科学院研究生院, 2005.
    [219] Caricchi F, Crescimbini F, Noia G, etal. Experimental study of a bi-directional dc-dc converter for the dc link voltage control and the regenerative braking in PM motor devoted to electrical vehicles. IEEE APEC, 1994: 381-386.
    [220]张方华,朱成花,严仰光.双向DC-DC变换器的控制模型.中国电机工程学报, 2005, 25(11): 46-49.
    [221]肖华锋,谢少军.一端稳压一端稳流型软开关双向DC/DC变换器(Ⅰ)电路原理和控制策略.电工技术学报, 2006, 21(10): 31-37.
    [222] Garcia O, Zumel P, Castro A D, et al. An automotive 16 phases dc-dc converter. IEEE PESC, 2004: 350-355.
    [223] Ayyanar R, Giri R, Mohan N. Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC converters using dynamic input-voltage reference scheme. IEEE Trans. on PE, 2004, 19(6): 1462-1473.
    [224] Kim J W, You J S, Cho B H. Input series-output parallel connected converter for high voltage power conversion applications employing charge control. IEEE ECE, 1999: 2593-2599.
    [225] Giri R, Choudhary V, Ayyanar R, et al. Common-duty-ratio control of input-series connected modular DC-DC converters with active input voltage and load-current sharing. IEEE Trans. on Industry Application, 2006, 42(4): 1101-1111.
    [226] Ruan X B, Cheng L L, Zhang T. Control strategy for input-series output-paralleled converter. IEEE PESC. 2006: 238-245.
    [227] Siri K, Willhoff M, Conner K. Uniform voltage distribution control for series connected DC-DC converters. IEEE Trans. on Power Electronics, 2007, 22(4): 1269-1279.
    [228] G. Alcicek, H. Gualous, P. Venet, R. Gallay, A. Miraoui. Experimental study of temperature effect on ultracapacitor ageing. 2007 European Conference on Power Electronics and Applications, 2-5 Sept. 2007 Page(s):1– 7
    [229] Maxwell Inc. MC Power Series BOOSTCAP? Ultracapacitors datasheet. On website: http://www.maxwell.com/pdf/uc/datasheets/MC_Cell_Power_1009361_rev9.pdf
    [230] D. Linzen, S. Buller and E. Karden. Analysis and evaluation of charge balancing circuits on performance, reliability and lifetime of supercapacitor systems. IEEE Trans. Industry Applications, vol. 41, pp. 1135-1141, 2005.
    [231]李海冬,唐西胜,齐智平.一种低损耗的超级电容器电压均衡电路的应用设计.电气应用, 2007, 26(2) : 54~58
    [232]孟丽囡,陈永真,宁武.超级电容器串联应用中的均压问题及解决方案.辽宁工学院学报, 2005, 25(1) : 1~2
    [233] D.C. Hopkins, C.R. Mosling and S.T. Hung, Dynamic equalization during charging of serial energy storage elements, IEEE Trans. Industry Applications, 1993, 29(2) : 363~368
    [234] N.H. Kutkut and D.M. Divan, Dynamic equalization techniques for series battery stacks. IEEE TEC, 1996, 514~521
    [235] C.S. Moo, Y. C. Hsieh and I. S. Tsai, Charge equalization for series-connected batteries, IEEE Trans. Aerospace and Electronic System, 2003, 39(2) : 704~710
    [236] M. Tang and T. Stuart, Selective buck-boost equalizer for series battery packs, IEEE Trans. Aerospace and Electronic System, 2000, 36(1) : 201~211
    [237]杨威,杨世彦,黄军.超级电容器组均衡充电系统.电工技术学报, 2007, 22(10) : 123~126
    [238] N.H. Kutkut, H.L.N. Wiegman, D.M. Divan, et al., Charge equalization for an electric vehicle battery system, IEEE Trans. Aerospace and Electronic System, 1998, 34(1) : 235~246
    [239] Y.C. Hsieh, C.S. Moo and W.Y. Ou-Yang, A bi-directional charge equalization circuit for series-connected batteries, IEEE PEDS, 2005, 1578~1583
    [240] S. Bolz, M. Gotzenberger, R. Knorr, et al., Device and method for equalizing the charge of serially connected capacitors belonging to a double layer capacitor, U.S. Patent 7 315 596, Jun. 7, 2007
    [241] A. C. Baughman, M. Ferdowsi, Evaluation of the new sensorless approach in energy storage charge balancing. IEEE, VPPC '06. 6-8 Sept. 2006, pp: 1 - 5.
    [242]文东国,张逸成,梁海泉.一种快速低损耗超级电容均压策略的研究.电力电子技术, 2008, 42(9) : 65~67
    [243] N. H. Kutkut, A modular non-dissipative current diverter for EV battery charge equalization, IEEE APEC, 1998, 686~690
    [244] Y.S. Lee and G.T. Cheng, Quasi-resonant zero-current switching bidirectional converter forbattery equalization applications, IEEE Trans. Power Electronics, 2006, 21(9) : 1213~1224
    [245]高云,陈永真,王春霞.超级电容器组单体电压动态均衡.电源世界, 2007, (3) : 45~47
    [246]李海冬,冯之钺,齐智平.一种超级电容器快速电压均衡方法的研究.电源技术, 2007, 31(3) : 186~190
    [247] X. Gai, S. Yang, W. Yang, J. Huang, Analysis on equalization circuit topology and system architecture for series-connected ultra-capacitors, IEEE VPPC’08, 3-5 September, 2008, Harbin, China, pp:1-5.
    [248] C. Pascual and P.T. Krein, Switched capacitor system for automatic series battery equalization, IEEE APEC’97, 1997, 848~854
    [249]李海冬,冯之钺,齐智平.一种新颖的串联超级电容器组的电压均衡方法.电源技术, 2006, 30(6) : 499~503
    [250] A.C. Baughman and M. Ferdowsi, Double-tiered switched-capacitor battery charge equalization technique, IEEE Trans. Industry Electronics, 2008, 55(6) : 2277~2285
    [251] J. M. Zhang, David M. Xu, Zhaoming Qian, An improved dual active bridge DC/DC converter. IEEE, PESC 2001, 2001: 232–236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700