考虑减振结构时效特性的轻轨系统耦合振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着我国城市轨道交通的迅速发展,城市轨道交通对减振降噪的要求不断提高,各种减振降噪型轨道结构也得到了广泛应用,浮置板轨道作为目前最为有效的减振轨道结构形式,其工程应用实例也越来越多。
     本文对浮置板下橡胶减振支座的时效特性(尤其是疲劳老化特性)进行了深入研究,以加速疲劳老化试验为基础,得到了橡胶减振支座的等效刚度、阻尼损耗因子以及等效阻尼系数与试验时间的变化关系;进而编制了车辆-结构耦合动力分析程序,得到了在考虑橡胶支座疲劳老化特性的基础上,车辆-结构耦合动力系统各部分的动力特性随时间的迁移变化特性;运用基于四端参数的导纳形式功率流法,从能量的角度对浮置板轨道结构的传递特性进行研究,同时也在考虑橡胶支座疲劳老化特性的基础上,得到了浮置板轨道结构能量传递特性随时间的迁移变化特性;最后运用功率流法与传递函数法对浮置板轨道结构的传递特性做了对比研究,得到了比较一致的结论。
     本文主要从以下几方面进行了比较有创新性的研究:
     一.以浮置板橡胶支座加速疲劳老化试验为手段,得到橡胶支座的物理力学特性(等效刚度、损耗因子及等效阻尼系数)与老化试验时间的关系;将老化试验时间折算成正常工况下的服役年限,便得到橡胶支座的等效刚度、损耗因子及等效阻尼系数与服役年限的变化关系。本文的橡胶支座疲劳老化试验与一般的疲劳试验有两点不同:
     (1)一般的疲劳试验为等幅疲劳,而本文疲劳试验所用荷载为随机荷载,通过等效损伤疲劳编辑,简化为八级变幅载荷程序块谱。
     (2)一般的橡胶疲劳试验为校验性试验,即当荷载循环进行到一定次数的时候(通常为107次),终止试验并对橡胶支座的性能进行校验,如未出现破坏,则试件疲劳性能合格。但是本疲劳试验在疲劳试验进行的过程中,通过MTS疲劳试验机数据采集系统,定期采集荷载和变形信息,可以得到试件的疲劳性能在整个试验进程中的变化趋势。
     二.编制了车辆-结构耦合动力分析程序,并采用“动态单元法”对轮轨瞬时脱离问题进行求解。本文的“动态单元”并非真实的物理单元,而是为了计算方便而引入的,“动态单元”是否引入计算主要依赖于接触状态的判断,即接触状态的动态判据是时间和空间的函数。
     三.基于模块化的程序设计,将浮置板橡胶支座的老化特性引入车辆-结构耦合动力分析程序,进一步研究橡胶支座的老化特性(主要是等效刚度、损耗因子及等效阻尼系数)的变化对车辆-结构耦合系统动力特性的影响。
     四.引入基于四端参数法的导纳形式功率流理论,对浮置板轨道结构的竖向能量传递特性进行研究;同时进一步研究了橡胶支座的老化特性对浮置板轨道结构功率流传递特性的影响;最后运用传递函数法与功率流法对浮置板轨道结构的传递特性进行了对比研究。
     本文采用试验、理论分析与数值计算相结合的方式,对城市轨道交通浮置板轨道结构橡胶支座的疲劳老化特性进行了深入研究,且在此基础上,对车桥耦合系统各部分的动力学特性以及浮置板轨道结构的传递特性随时间的迁移变化特性进行了研究,对工程实践具有良好的参考价值。
The requirement for reducing noise and vibration has grown rapidly with the development of the urban rail transit (URT), at the same time various modern railway tracks have been widely used in URT. As one of the most effective railway track types for reducing noise and vibration, the floating slab track system (FST) have more and more examples in engineering applications.
     The aging characteristic of the rubber bearings which were widely used underneath the floating slab was investigated in this paper. The relationship between the equivalent stiffness coefficient, loss factorand and the equivalent damping coefficient of the rubber bearings and the experiment hours was derived from the accelerated aging experiment under fatigue loads. Program based on the FORTRAN language was developed to deal with the vehicle-structures coupling problem, further research was conducted to obtain the relationship between the vehicle-structures dynamics characteristic and the experiment hours. Energy transmission characteristics of the FST was studied based on the power flow method and further research was conducted to obtain the relationship between the energy transmission characteristics and the experiment hours. At the last of this paper a comparative analysis between the power flow method and the transfer function method was conducted to investigate transmission characteristics of the FST and a similar conclusion has been obtained.
     Following questions were investigated in this paper:
     (1) Different factors and typical strategies which were related to the aging characteristic of rubber bearings were analyzed generally, and then the fatigue loads were determined as the main factor influencing the aging characteristic of rubber bearings.
     (2) The relationship between the equivalent stiffness and damping ratio of the rubber bearings and the experiment hours was derived from the accelerated aging experiment under fatigue loads. The most important and difficult point in the accelerated fatigue experiment was how to obtain the accelerated fatigue loads spectrum. Usually the following steps were included in the whole process: data acquisition, rain-flow counting, zero-mean conversion, probability distribution checking, invalid range value filter and so on. Finally an eight-level load spectrum for the fatigue experiment was derived.
     (3) How the dynamic characteristic of whole part of vehicle-structures coupling system changed with the service life of rubber bearings which was usually in years? This question was answered by the vehicle-structure coupling dynamics program based on the aging characteristic of rubber bearings.
     (4) The power flow method which was based on the accelerated aging experiment results of rubber bearings was introduced to investigate the transmission characteristics of floating slab track from the standpoint of energy transmission. How the power flow transmission characteristic of FST was influenced by the aging characteristic of rubber bearings was also researched in this paper.
     (5) A comparative analysis between the power flow method and the transfer function method was conducted to investigate the transmission characteristics of the FST and a similar conclusion has been obtained.
     Based on the fatigue experiment results, theoretical analysis and numerical computation, the aging characteristic of FST rubber bearings was investigated in this paper, the dynamic characteristic of whole part of vehicle-structures coupling system and the transmission characteristics of the FST changed with the service life of rubber bearings was studied as a further research which should be useful of reference to engineering practice.
引文
[1]陈秀芳.轨道工程[M].北京:中国建筑工业出版社, 2005.
    [2]守田荣[日]等.振动-被忽视的环境公害[M].北京:科学出版社, 1985.
    [3]耿传智,罗雁云,吴觉波.高架轨道交通的振动与噪声控制[A].城市轨道交通学术研讨会论文集.北京:中国铁道出版社, 1999.
    [4]夏禾,张楠.车辆与结构动力相互作用(第二版)[M].北京:科学出版社, 2005.
    [5]颜华,姚力.浮置板轨道设计[J].铁道工程学报, 2002, 76(4): 12-15.
    [6]杨燕.公路板式橡胶支座早期破坏的分析及对策[J].交通标准化, 2006, 159(11):48-51.
    [7]佐藤吉彦[日].新轨道力学[M].北京:中国铁道出版社, 2001.
    [8]朱剑月,练松良.弹性支承块轨道结构落轴冲击动力性能分析[J].中国铁道科学, 2006, 27(3): 22-26.
    [9]刘扬,练松良,刘加华.弹性支承块轨道振动与噪声强度关系分析[J].城市轨道交通研究, 2005(3): 50-52.
    [10]周文海.乌鞘岭隧道弹性支承块式无碴轨道施工技术研究[J].铁道标准设计, 2005(9): 124-126.
    [11]刘赪.秦岭隧道建造关键技术[J].中国铁道科学, 2003, 24(2): 132-136.
    [12]姚京川,杨宜谦,孙宁.浮置板式轨道结构的发展[J].中国铁路, 2003(7): 20-22.
    [13]任静,姜坚白.钢弹簧浮置板道床在城市铁路西直门车站的应用[J].铁道标准设计, 2002(9): 14-17.
    [14]焦金红,黄俊飞,周宇.减振降噪型轨下基础-浮置板轨道结构[J].地铁与轻轨, 50(4): 29-31.
    [15]于春华.铁路钢轨扣件发展综述[J].铁道标准设计, 2006增刊: 188-191.
    [16]尹学军,浮置道床[P].中国专利: 1707026, 2005-12.14
    [17]王建立,张庆,张宝才.钢弹簧浮置板道床在直线电机轨道的应用[J].铁道标准设计, 2007(7): 39-40.
    [18]张宝才,徐祯祥.螺旋钢弹簧浮置板隔振技术在城市轨道交通减振降噪上的应用[J].中国铁道科学, 2002, 23(3): 68-71.
    [19]袁广尧.浮置板轨道施工技术[J].铁道建筑, 2003(7): 46-47.
    [20]王炯.浮置板轨道隔振性能研究[D].上海:上海交通大学, 2007.
    [21]郭民龙,王巍松.橡胶复合弹簧浮置板轨道施工技术[J].城市轨道交通研究, 2006(8): 54-56.
    [22] Tobolsky A. V. Properties and structure of Polymers[J]. Newyork, John Wiley and sons Ine, 1960: 233.
    [23]张凯,黄渝鸿等.橡胶加速老化试验及其寿命预测方法[J].化学推进剂与高分子材料, 2004, 2(6): 44~48.
    [24]李咏今.硫化橡胶热氧老化时物理机械性能变质规律的研究[J].特种橡胶制品, 1996, 18(1): 42~51.
    [25]胡文军,刘占芳,陈勇梅.橡胶的热氧加速老化试验及寿命预测方法[J].橡胶工业, 2004, 51: 620~624.
    [26] Bart J. LaCount, Jose M. Castro, Frederick Ignatz-Hoover. Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds.Ⅱ. Design and development of an accelerated outdoor aging simulator[J]. Polymer Degradation and Stability, 2002, 75: 213~227.
    [27] Ann T. Ha., Uv-Khanh T. Effects of thermal aging on fracture performance of polychloroprene[J]. Journal of Materials Science, 2005, 40: 5243~5248.
    [28]裴若娟,唐家祥.叠层橡胶隔振器的耐久性[J].工程抗震, 1993(3): 36-39.
    [29]熊世树,李黎,唐家祥.叠层橡胶隔振器力学性能的试验研究[J].工程抗震, 1998(2): 20-23.
    [30]许斌,唐家祥.基础隔震叠层橡胶支座耐久性试验研究[J].工程抗震, 1995(4): 41-44.
    [31] Mars W. V., Fatemi A. A literature survey on fatigue analysis approaches for rubber[J]. International Journal of Fatigue, 2002, 24: 949~961.
    [32]冯希金.轮胎疲劳寿命研究的进展[J].橡胶科技市场, 2005, 6: 8~12.
    [33] Rivlin R. S, Thomas A. G. Rupture of rubber. I. Characteristic energy for tearing[J]. Journal of Polymer Science, 1953, 10: 291–318.
    [34]户原春彦[日].防振橡胶及其应用[M].北京:中国铁道出版社, 1982.
    [35] Lake G J, Lindley P B, Thomas A G. Cut growth and fatigue of rubbers.Ⅰ.The relationship between cut growth and fatigue[J]. Rubber Chemistry and Technology, 1965, 38: 292~300.
    [36] Lake G J, Lindley P B, Thomas A G. Cut growth and fatigue of rubbers.Ⅱ.Experiments on a noncrystallizing rubber[J]. Rubber Chemistry and Technology, 1965, 38: 301~313.
    [37] Legorju-jago K., Bathias C. Fatigue initiation and propagation in natural and synthetic rubbers[J]. International Journal of Fatigue, 2002, 24: 85~92.
    [38] Lindley P. B. & Stevenson A. Fatigue resistance of natural rubber in compression[J]. Rubber Chemistry and Technology, 1982, 5: 337~351.
    [39]张冰,宋孔杰,孙玲玲等.浮筏隔振系统的传递功率流研究[J].噪声与振动控制, 2002, 12(6): 3-5.
    [40]张树生,郑继周,程林等.浮筏隔振系统功率流的另一计算方法[J].中国机械工程,2004, 15 (13): 1137-1139.
    [41]孙玲玲,宋孔杰.浮筏隔振系统功率流特性分析[J].应用力学学报. 2003, 20 (3): 99-102.
    [42]葛蕴珊,刘志刚,张文平.隔振装置中振动功率流的测量研究[J].哈尔滨大学学报, 1999, 20 (2): 7-14.
    [43]宋孔杰,张蔚波,牛军川.功率流理论在柔性振动控制技术中的应用与发展[J].机械工程学报, 2003, 39(9): 23-2.
    [44]吴广明,彭旭,沈荣.多层隔振系统功率流研究[J].噪声与振动控制, 2004, 6 (3): 1-4.
    [45]冯德振,王玉茹,马金花等.复杂隔振系统功率流子结构分析法[J].山东建材学院学报, 2000, 14(l): 39-41.
    [46]冯德振,郑效忠.基于面向对象的隔振系统功率流求解方法[J].振动与冲击, 2005, 24(l): 95 -98.
    [47] M.F.M. Hussein, H.E.M. Hunt. A power flow method for evaluating vibration from underground railways[J]. Journal of Sound and Vibration.
    [48] J.A. Forrest, H.E.M. Hunt. Ground vibration generated by trains in underground tunnels[J]. Journal of Sound and Vibration, 2006, 294: 706–736.
    [49]刘学文.城市轨道交通浮置板减振系统动力特性研究[D].上海:上海交通大学, 2007.
    [50]陈经盛.橡胶老化-防护与监测(一) [J].化工标准化与质量监督. 1996(1): 30-34.
    [51]陈经盛.橡胶老化-防护与监测(二) [J].化工标准化与质量监督. 1996(2): 23-26.
    [52] Deng Huang, Bart J. LaCount, Jose M. Castro, Frederick Ignatz-Hoover. Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds I. Cyclic aging[J]. Polymer Degradation and Stability, 2001, 74: 353–362.
    [53] Bart J. LaCount, Jose M. Castro, Frederick Ignatz-Hoover. Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds II. Design and development of an accelerated outdoor aging simulator[J]. Polymer Degradation and Stability, 2002, 75: 213–227.
    [54]高勋朝.填充橡胶材料的疲劳性能研究[D].哈尔滨:哈尔滨工业大学, 2006.
    [55]右田哲彦.橡胶的疲劳与破坏—关于机理与配方设计.橡胶译丛, 1981(2): 1~19.
    [56] Beatty J. R. Fatigue of rubber[J]. Rubber Chemistry and Technology, 1964, 37: 1341.
    [57] Abraham F. Alshuth T. Jerrams S. The effects of minimum stress and stress amplitudes on the fatigue life of non strain crystallizing elastomers[J]. Materials and Design, 2005(26): 239~245.
    [58] Lake G. J. Fatigue and fracture of elastomers[J]. Rubber Chemistry and Technology, 1995, 68(2): 435~460.
    [59]吴川,刘学文,黄醒春.浮置板橡胶减振支座疲劳老化特性试验研究[J].噪声与振动控制, 2009, 29(4).
    [60]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社, 2000.
    [61]金锋.加速疲劳试验的疲劳编辑技术探讨[J].上海汽车, 1999(2): 17-21.
    [62]周传月,郑红霞,罗慧强等. MS.Fatigue疲劳分析应用与实例[M].北京:科学出版社, 2005.
    [63]王进,左国兵.疲劳试验在橡胶减振制品寿命预测中的应用[J].铁道车辆, 2005, 43(7): 7-10.
    [64]孙大刚,诸文农等.橡胶减振器疲劳试验程序载荷谱的编制[J].筑路机械与施工机械化, 1997, 14(2): 11-14.
    [65]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社, 1985.
    [66]畦田利夫等.铁道车辆用空气弹簧耐久性评价[J].国外铁道车辆, 2002, 39(1): 36-41.
    [67]翟婉明.车辆-轨道耦合动力学[M].北京:中国铁道出版社, 2002.
    [68]雷晓燕.轨道力学与工程新方法[M].北京:中国铁道出版社, 2002.
    [69]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社, 1997.
    [70]刘正兴,孙雁,王国庆.计算固体力学[M].上海:上海交通大学出版社, 2000.
    [71]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社, 2005.
    [72] C F比尔兹著.结构振动分析[M].朱世杰,陈玉琼译,北京:中国铁道出版社, 1988.
    [73] X W Liu, X C Huang and Y C Wang. An alterable-element method for two- dimensional solids [C]. The First International Conference on Computational Methods, pp.713–724, 2004.
    [74] Chuan Wu, Xue-Wen Liu, Xing-Chun Huang. Alterable-element method for vehicle-bridge interaction considering the transient jump of wheel[J]. Journal of Shanghai Jiao Tong University, 2008, 13(3): 330-335.
    [75]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社, 1999.8.
    [76] Y B Yang, J D Yau, Y S Wu. Vehicle-bridge interaction dynamics: with applications to high-speed railways [M]. World Scientific Publishing Company (July 31, 2004).
    [77]钱雪军.轨道不平顺的时域模拟法[J].铁道学报, 2000(22).
    [78]李成辉.轨道[M].重庆:西南交通大学出版社, 2005.
    [79]雷晓燕,圣小珍.铁路交通噪声与振动[M],北京:科学出版社, 2004.
    [80]雷晓燕.铁路轨道结构数值分析方法[M].北京:中国铁道出版社, 1998.
    [81]吴川,刘学文,黄醒春.短型浮置板轨道系统隔振性能研究[J].振动与冲击, 2008, 27(8): 74-76.
    [82]刘鹏辉.轨道结构隔振系统功率流分析[D].北京:铁道科学研究院, 2006.
    [83]谷爱军,范俊杰.浮置板轨道竖向振动能量传递分析[J].铁道学报, 2004, 26(5): 125-128.
    [84] G White R, Walker J G. Noise and Vibration[M]. New York: Ellis Horwood Limited, 1982.
    [85] Goyder H G D, White R G. Vibration power flow from machines into built-up structures. Part I: Introduction and approximate analyses of beam and plate-like foundations[J]. Journal of sound and vibration, 1980, 68(1): 59-75.
    [86] Goyder H G D, White R G. Vibration power flow from machines into built-up structures. Part II: Wave propagation and power flow in beam-stiffened plates[J]. Journal of sound and vibration, 1980, 68(1): 77-96.
    [87] Goyder H G D, White R G. Vibration power flow from machines into built-up structures. Part Ill: Power flow through isolation systems[J]. Journal of sound and vibration, 1980, 68(1): 97-ll7.
    [88]王建兵.城市高架桥梁结构的功率流分析及减震研究[D].北京:北京交通大学, 2006.
    [89] R. H. Lyon. G. Maidanik. Power Flow between Linearly Coupled Oscillators[J]. J.A cous.Soc.Am.1962, 34 (5): 623-639.
    [90]姚德源,王其政.统计能量分析原理及应用[M].北京:北京理工大学出版杜, 1995.
    [91] D. W. Miller, A. H. Von Flotow. A Traveling Wave Approach to Power Flow in Structural N etworks[J]. Journal of Sound and Vibration, 1989, 128(l): 145-162.
    [92] J. Singorelli, A. H. Von Flotow. Wave Propagation, Power Flow and Resonance in a Truss Beam[J]. Journal of Sound and Vibration, 1988, 126(1): 727-144.
    [93] J. M .Cuschieri. Structural Power Flow Analysis Usinga Mobility Approach of a L-shaped Plate[J]. J.Acoust.SocAm, 1990, 87: 1159-1165.
    [94] B. Peterson. Vibrational Power Transmission to a seating of a vibration isolated motor[J]. Journal of Sound and Vibration, 1987, 118(3): 515-530.
    [95] J. P an, J. Q .P an, C .H .H ansen. Total Power Flow from a Vibrating Rigid Body to a Thin Panel through Multiple Elastic Mounts[J]. J.Acoust.SocAm.1992, 92 (2): 895-907.
    [96]朱宏平,唐家样.房屋结构振动控制的功率流方法[J].振动工程学报, 1994, 7 (1 ): 33-37.
    [97] Q.J. P an, C .H. Power Transmission from a Vibrating Source through an Intermediate Flexible Panel to a Flexible Cylinder[J]. Trans.ASME, J.Vib.Acoust. 1994, 116: 496-505.
    [98] W. L. Li, M. Daniels, W. Zhou. Vibration Power Transmission from a Machine to its Supporting Cylindrical Shell[J]. Journal of Sound and Vibration, 2002, 257(2): 283-299.
    [99]左鹤声.机械阻抗方法与应用[M].北京:机械工业出版社, 1987.
    [100]熊冶平,宋孔杰,韩玉长.复杂柔性耦合系统的功率流传递谱[J].声学学报, 1996, 21(4): 368-374.
    [101]马丰伟,孙玲玲,宋孔杰,刘保国.浮伐隔振系统的功率流研究[J].现代制造工程, 2005增刊: 133-136.
    [102]刘晶波,杜修力.结构动力学[M].北京:机械工业出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700