钼酸钠常温磷化液的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化技术是当前采用较多的钢铁表面处理技术,在涂装工业中,由于锌盐磷化能够显著增加复合涂层的耐久性和使用寿命而被广泛应用。但大多数正在使用的磷化工艺处理温度较高,在磷化处理过的排出物中含有大量的沉渣,废油等,不仅造成了经济上的损失,而且主要因为大多数使用的磷化液中含有产生有毒气体的促进剂,造成对人体的危害。因此开发常温节能、无毒低污染的磷化工艺己成为当今磷化工艺的主要研究方向。本文就是在此背景下通过对氯酸钾、钼酸钠、对硝基苯磺酸钠(SNBS)等几种促进剂的筛选,确定钼酸钠为本磷化配方的主促进剂;同时确定基础磷化液的主要成膜物质为H3PO4和ZnO,辅助促进剂为HNO_3和Ni(NO_3)_2,其它添加剂有柠檬酸、OP乳化剂、NaF和Cu(NO_3)_2;通过正交试验法,对基础磷化液做耐蚀性正交试验分析和膜重正交试验分析,得到了钼酸钠常温磷化液的基础配方。基础配方为:H3PO4:30mL/L;ZnO:15g/L;硝酸:3.5mL/L;OP乳化剂:1mL/L;Na2MoO4:3g/L;Ni(NO_3)_2:4g/L;柠檬酸:1.0g/L;NaF:1.0g/L;Cu(NO_3)_2:0.05g/L;
     对所得磷化液基础配方做进一步研究,对钼酸钠、硝酸镍、柠檬酸、氟化钠和硝酸铜做单因素实验分析,对不同磷化时间、不同磷化温度对磷化膜性能的影响进行研究,得到了本磷化液的最优配方。最优配方为:H3PO4:30mL/L;ZnO:15g/L;硝酸:3.5mL/L;OP乳化剂:1mL/L;Na2MoO4:3g/L;Ni(NO_3)_2:4g/L;柠檬酸:1.5g/L;NaF:1.0g/L;Cu(NO_3)_2:0.05g/L;磷化温度:15~35℃;磷化时间:20min。
     通过硫酸铜点滴实验、氯化钠浸泡实验、膜重实验等对最优配方所得磷化膜做了性能测试;通过扫描电镜和X——射线能谱等物理检测技术研究了磷化膜的微观结构和元素组成;通过极化曲线的测量,研究了磷化膜的耐腐蚀性能;同时研究了超声波对磷化过程的影响;对磷化液的使用寿命和沉渣量做了初步计算。
     实验结果表明:本磷化液所得磷化膜膜层均匀、致密;硫酸铜点滴时间大于130秒,3%NaC1浸泡实验超过3小时,均超过国家标准;磷化膜的膜重为1.7~2.0g/m2,膜重在轻量级范围内;扫描电镜分析磷化膜微观结晶呈颗粒状;X——射线能谱分析结果显示磷化膜主要由Fe、P、Zn、Mo等元素组成;对比试件磷化前后的极化曲线,结果表明磷化后其自腐蚀电位变大,交换电流密度变小,耐腐蚀性增强;超声波对本磷化液的使用效果不理想;本磷化液的使用寿命经初步计算为0.3m2/L;沉渣量为0.3g/L。为本磷化工艺的推广应用提供了有用的数据,并给以后常温磷化配方的研究提供了借鉴。本文对钼酸钠常温磷化液中各组分的作用机理以及对磷化膜性能的影响做了初步探讨。
Phosphating technology is one of the most widely used surface treatment for steel nowadays. In coating projects, Zn-Phos is widely used because it prolongs the service life of the coating noticeably. But in the most phosphating technics, the higher phosphating temperature, sediment and waste oil caused economical loss, and the toxic fumes which the phosphating soluting send out is harm to human health. So developing room temperature energy-conservation, nonpoisonous and low pollution phosphating craft has already become the main research direction now.
     Under this background, In this disquisition Na2MoO4 has been chosen as the main accelerant of the phosphating solution through comparison of effect of different accelerant (KClO_3, Na2MoO4 and SNBS); The phosphating solution includes the main film forming matter (H3PO4, ZnO), the main accelerant (Na2MoO4), the accessory accelerant (HNO_3, Ni(NO_3)_2) and other additives (Emulsifier OP,Citric acid,NaF and Cu(NO_3)_2); And this disquisition educes the basic solution through orthogonal experiments. It is as follow: H3PO4: 30mL/L; ZnO: 15g/L; HNO_3: 3.5mL/L; Emulsifier OP: 1mL/L; Na2MoO4: 3g/L; Ni(NO_3)_2: 4g/L; Citric acid: 1.0g/L; NaF: 1.0g/L; Cu(NO_3)_2: 0.05g/L.
     By analysing effect of single content (Na2MoO4, Ni(NO_3)_2, Citric acid, NaF and Cu(NO_3)_2) on corrosion resistance, effect of phosphating process and temperature, the best formula of the phosphating solution has been obtained. It is as follow: H3PO4: 30mL/L; ZnO: 15g/L; HNO_3: 3.5mL/L; Emulsifier OP: 1mL/L; Na2MoO4: 3g/L; Ni(NO_3)_2: 4g/L; Citric acid: 1.5g/L; NaF: 1.0g/L; Cu(NO_3)_2: 0.05g/L; Temperature: 15~35℃; Time: 20min。
     In this disquisition the corrosion resistance of phosphate coatings and the weight of phosphate coatings has been studied. SEM, X-rays energy spectrum etc. physical detective means had been used to observe the microstructure and elements content. By means of the measurement of the polarization curve, the phosphate coatings performance has been studied. And the effect of ultrasonic phosphating has been studied in this disquisition. The result shows: The phosphate coatings is even and compact; The dropping test of CuSO4 is more than 130s; 3% of the NaC1 soaks for 3 hours there is no rusty spot appear; The coatings weight is 1.7~2.0g/m2; The microstructure is granule-shaped by means of SEM; The element of the phosphate coatings includes Fe, P, Zn and Mo etc. The life-span of this phosphate solution is calculated for 0.3m2/L tentatively; The sediment is 0.3g/L; testing of the adhesion of the coatings has been carried out. It offered the basis for popularization and application of the phosphating technology and supplied references for the room-temperature phosphate research.
     The effect of the single content of this phosphating solution on the phosphate coatings performance has been studied in this disquisition.
引文
[1]吴文镶. 锌系磷化液成膜条件及技术改进[J]. 腐蚀与防护,2007,28(3):132~134.
    [2]S. Palraj,M. Selvaraj,P. Jayakrishnan. Effect of phosphate coatings on the performance of epoxy polyamide red oxide primer on galvanized steel[J]. Progress in Organic Coatings,2005,54(1):5~9.
    [3]程烨,周德民. 环保型常温磷化液的研制[J]. 表面技术,2005,34(4):80~83.
    [4]G.Y.Li, L.Y.Niu, G.S.Lian,et al. A Black phosphate coating for C1008 steel[J]. Surface and Coatings Technology,2004,176(2):215~221.
    [5]鲁维国,李淑英. 羟胺低温磷化[J]. 材料保护,2004,37(2):39~42.
    [6]夏正斌,涂伟萍,杨卓如,等. 常温磷化技术[J]. 材料保护,1999,32(8):16~19.
    [7]王红洲. 21 世纪面向汽车工业的磷化技术[J]. 汽车工艺与材料,2006,(6):5~10.
    [8]姜泽,牛丽媛. 汽车零件的磷化膜质量及磷化发展趋势[J]. 汽车工艺与材料,2006,(7):9~11.
    [9]B.Ptacek,F.Dalard,J.J.Rameau. Iron Phosphating in a trichloroethylene[J]. Surface and Coatings Technology,1996,82(3):277~285.
    [10]E.Klusmann,J.W.Schultze. pH-Microscopy:technical application in phospha-ting solutions[J]. Electrochimica Acta,2003,48(22):3325~3332.
    [11]张丕俭,邹立状,王晓玲. 常温锌系磷化改进剂的研制[J]. 电渡与环保,1997,17(5):23~24.
    [12]邢宏楠,李新立,李安忠,等. Zn2+对钢铁磷化的影响[J]. 上海涂料,2006,44(8):5~7.
    [13]张景双,屠振密,何承群,等. 含有稀土复合促进剂的低温磷化工艺[J]. 电镀与环保,1995,15(2):26.
    [14]张圣麟,孔小波,张明明,等. 复合常温磷化促进剂研究[J]. 腐蚀与防护,2007,28(3):126~128.
    [15]安茂忠,屠振密,杨哲龙,等. 稀土化合物在磷化中的影响和作用[J]. 材料保护,2000, 33(11):20.
    [16]杨喜云,陈范,赵常就. 常温磷化促进剂的研究[J]. 表面技术,1998, 27(4):18~24.
    [17]肖先举,唐学红. 室温锌系磷化液的研究[J]. 中国资源综合利用,2007, 25 (1):8~9.
    [18]欧忠文,徐滨士,马世宁,等. 纳米材料在表面工程中应用的研究进展[J]. 中国表面工程,2000,(2):5.
    [19]郑举鸿. 论锌系磷化膜的耐蚀性[J]. 表面技术,1998, 27(2):29.
    [20]S.M.Tamborim Takeuchi,D.S.Azambuja,A.M.Saliba-Silva,et al. Corrosion protection of NdFeB magnets by phosphating with tungstate incorporation[J]. Surface and Coatings Technology,2006,200(24) :6826~6831.
    [21] E.P.Banczek,P.R.P.Rodrigues,I.Cost. Investigation on the effect of benzotriazole on the phosphating of carbon steel[J]. Surface & Coatings Technology,2006,201(6):3701~3708.
    [22]龚敏,张远声,曾毅. 钢铁的中温磷化工艺[J]. 材料保护,1999,32(4):27~28.
    [23]李方杰. 汽车车身的低(常)温磷化[J]. 材料保护,1995,28(10):23~24.
    [24]杨哲龙,何承群,李晓春. 低温磷化控制因素的研究[J]. 表面技术,2001,30(4):39~40.
    [25]G.Bikul ě ius,A.Ru inskien ,E.Matulionis,et al. Influence of a static magnetic field on the protective ability of chromatic conversion coatings on zinc[J]. Surface and Coatings Technology,2004,187(3):388~392.
    [26]P.K.Sinha,R.Feser. Phosphate coating on steel surfaces by an electrochemical method[J].Surface and Coatings Technology,2002,161 (2):158~168.
    [27]陈彬,闻志红. 常温下钢铁的磷化及工艺[J]. 郑州铁路职业技术学院学报,2005,17(3):51~52.
    [28]游中流. 一种铁系磷化液的研制[J]. 腐蚀与防护,2006,27(4):194~195.
    [29]周志虎,王舒贤. 低温黑色磷化液[J]. 全面腐蚀控制,2006,20(4):14~15.
    [30]张卫丽,李淑英. 硫酸羟胺和 pH 值对低温磷化过程的影响[J]. 材料保护,2006,39(5):33~36.
    [31]姜小莹,李晓波,黄建华,等. 低温锌系磷化液的研制与应用[J]. 河南科技学院学报(自然科学版),2006,34(1):63~65.
    [32]祝保林,陈养民. 钢铁磷化机理及新工艺研究[J]. 渭南师范学院学报,2004,19(5):36~38.
    [33] 林 修 洲 , 龚 敏 , 张 远 声 等 . 钢 铁 的 常 温 磷 化 液 配 方 优 选 [J]. 腐 蚀 与 防护,2006,27(1):35~37.
    [34]石磊,王学仁,孙文爽. 试验设计基础[M]. 重庆: 重庆大学出版社,1997,247.
    [35]张圣麟,陈华辉,李红玲,等. 常温磷化处理技术的研究现状及展望[J]. 材料保护,2006,39(7):42~47.
    [36]常青,王健. 常温快速磷化工艺的研究[J]. 表面技术,2003,32(3):40~43.
    [37]王健,付敏,丁培道,等. 超声波条件下除油技术的研究[J]. 表面技术,2002, 31(4):24~28.
    [38]刘康平,史桂军. 超声波清洗技术在磷化处理中的应用[J]. 腐蚀与防护,2002,23 (7):323.
    [39]余取民,李荣喜,许第发,等. 清洁型常温锌锰系磷化液研究[J]. 湘潭大学自然科学学报,2007,29(2):91~94.
    [40]王春明. 金属磷化处理(一)[J]. 电镀与环保,2000,20(5):34~35.
    [41]张鸿,李丽,冉鸿武,等. 高耐蚀常温磷化液的研制[J]. 表面技术,2004,33(4): 62~64.
    [42]韩恩山,王焕志,张新光,等. 常温钢铁磷化处理的研究[J]. 腐蚀科学与防护技术,2006,18(5):341~344.
    [43]余取民,赵晨曦,禹逸君. 常温清洁铁系磷化液研究[J]. 涂料工业,2006,36(5):39~41.
    [44]于凯,许淳淳. 钼酸钠对铁质文物的缓蚀作用研究[J]. 北京化工大学学报,2004,31(4):41~44.
    [45]王昕,张春丽. 钼酸钠和三乙醇胺对铜的缓蚀作用[J]. 腐蚀科学与防护技术,2004,16(1):44~46.
    [46]刘晓轩,袁朗白,李向红,等. 钼酸钠与十二烷基苯磺酸钠在盐酸介质中对钢的缓蚀作用[J]. 云南化工,2003,30(4):20~22.
    [47]余取民,黎成勇,杨宁. 清洁型刷涂铁系磷化液研究[J]. 表面技术,2005,34(4):65~66.
    [48]袁朗白,刘晓轩,王七芬. 钼酸钠和硫代氨基脲在盐酸介质中对钢缓蚀的影响[J].大理学院学报,2003,2(5):27~28.
    [49]戴永盛,裴如俊,戴惠. 磷化液中钼的分光光度法测定[J]. 电镀与精饰,2007,29(4):49~51.
    [50]张大为,李淑英. 镀锌钢板磷化液组分对磷化膜性能的影响[J]. 电镀与涂饰,2007,26(9):57~59.
    [51]黎成勇,颜克琴,王维欢. 漆前常温条件下的锌系磷化液制备[J]. 吉首大学学报(自然科学版),2006,27(3):119~121.
    [52]李灿权,孙雅茹,徐炳辉,等. 柠檬酸钠在常温磷化中的作用[J]. 材料保护,2006,39(8):16~20.
    [53]王元杭. 磷化处理技术研究[J]. 无机盐工业,2007,39(8):36~38.
    [54]董家梅. 钢铁常温“四合一”涂装前处理液的研究[J]. 材料保护,2000,33(4):23.
    [55]张玉梅,王波,吴刚. 磷化液在金属表面磷化处理中的作用分析[J]. 矿业快报,2007,454(2):41~43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700