钢铁热浸镀层的设计和氧化动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全世界每年因钢铁腐蚀造成的直接经济损失高达数千亿美元,通过合金化镀层保护钢铁构件,延长其使用寿命,一直倍受国内外关注。55wt.%Al-Zn-1.6Si合金镀层是一种应用广泛的钢铁防护涂层,但合金元素Ti的添加对镀层的组织和高温氧化性影响的作用机理目前尚不清楚。有人认为添加Ti可促使Fe_4Al_(13)析出,成为形核核心,利于组织细化;而另一部分研究者认为,Ti与Al形成TiAl3,成为(Al)的形核核心,利于组织细化。这两者的分歧在于形成什么中间合金。该分歧可借助Al-Zn-Si-Ti-Fe体系相图数据库来澄清。另一方面,对于镀层板的氧化动力学,目前大多数的实验反复测定恒温条件下的反应分数与时间的关系,很少研究升温速率、样品形状及尺寸、氧化物体积变化等因素。故本文围绕55wt.%Al-Zn-Si-Ti镀层体系的相图热力学和氧化动力学开展研究。
     本论文通过CALPHAD方法优化和完善Al-Zn-Si-Ti-Fe体系富Al角的热力学数据库;计算不同Ti和Si含量的等温截面相图,结合实验分析微量Ti对镀层中金属间化合物种类和形成量的作用;通过X-ray衍射分析(XRD)、扫描电镜(SEM)和热天平(TG)等分析技术对比研究55wt.%Al-Zn-Si和55wt.%Al-Zn-Si-Ti镀层板的恒温氧化和变温氧化动力学行为,得到镀层板氧化的组织演变规律;建立具有实际物理意义的动力学方程,定量探讨氧化物与金属体积比,反应温度、氧分压、升温速率和样品形状及尺寸等对反应速率的影响。
     本论文得到的主要结果如下:
     1)通过HR-XRD和HR-TEM,结合结构精修的方法解析Al-Zn-Ti体系中τ-Ti_(26)Al_(55)Zn_(19)的晶体结构,为有序的面心立方结构,其中Ti占据1a(0,0,0)位置,Al/Zn共同占据3c(0,0.5,0.5)位置。采用扩散偶和平衡合金的实验方法,获得Al-Zn-Ti体系富Al-Zn侧、Al-Zn-Fe体系富Al-Fe侧和Al-Si-Ti体系富Al角在450~700°C的等温截面相图。
     2)根据实验相图的结果,通过CALPHAD方法优化Al-Zn-Ti、Al-Zn-Fe和Al-Si-Ti的热力学相图,结合已有的Al-Zn-Si-Ti-Fe体系其它子体系的热力学数据,外推得到可靠的Al-Zn-Si-Ti-Fe体系富Al角的热力学相图,据此阐明Ti添加细化组织的机理:一方面Ti添加形成的TiAl3,降低镀液中有效Si的含量,降低镀液中Fe的饱和溶解度,增加Fe_4Al_(13)的析出量;另一方面,TiAl_3和Fe_4Al_(13)都可以作为形核核心,增加镀液中形核密度,细化晶粒。
     3)通过XRD和SEM对55wt.%Al-Zn-Si和55wt.%Al-Zn-Si-Ti镀层板在550°C、650°C、700°C和750°C恒温氧化过程进行分析,得到镀层板在恒温氧化过程中组织演变规律。利用TG系统地研究了温度、气体分压、升温速率和粉末粒度对镀层板、纯Zn、纯Ni氧化反应速率的影响。
     4)引入金属体积与氧化物体积比参数,提出球形和平板形金属气-固相反应以扩散为控速环节时的动力学模型,定量地表达氧化物体积变化、温度、气体分压、升温速率、粉末粒度对反应速率的影响。利用模型分析镀层板在550~750°C的恒温氧化、350~950°C的变温氧化、纯Zn和纯Ni粉末的恒温氧化动力学,得到满意的结果。
     综上所述,本论文关于热浸镀镀层体系的材料设计和氧化动力学研究结果对钢铁热浸镀有重要的科学价值和应用价值。Al-Zn-Si-Ti-Fe体系数据库不仅可以应用在热浸镀层的设计,还可以用于其它铝合金的的材料设计。提出的金属气-固相反应模型,由于引入了氧化物与金属体积比参数,并采用一次回归的方法,使计算结果更为准确。该模型可以推广到冶金和材料中其它的气-固相反应动力学研究中。
Every year, the direct economic loss caused by steel corrosion is up to severalhundred billion dollars around the world. How to extend the service life of steelthough alloy coating has been much concerned in domestic and international. The55wt.%Al-Zn-1.6Si alloy coating is a widely used steel protective coating. However,the mechanism that the addition of alloy element Ti causes the changes inmicrostructure and oxidation kinetics is still unclear. Some people thought that theaddition of Ti lead to the precipitation of Fe_4Al_(13)which acts as nucleation sites torefine the microstructure. But other researchers thought that Ti would combine withAl to form TiAl3which acts as nucleation sites. The problem is which intermetalliccompounds would form. This can be clarified by Al-Zn-Si-Ti-Fe thermodynamicdatabase. For the oxidation kinetics of coated steels, most of experimental worksdetermined repeatedly the relationship between reaction fraction and time inisothermal conditions recently. Few researches investigated the influence of heatingrate, sample shape and size and the volume change of scale. Therefore, this thesis willstudy the thermodynamic phase diagram and oxidation kinetics of the55wt.%Al-Zn-Si-Ti coating system.
     The Al-rich corner of the Al-Zn-Si-Ti-Fe system was optimized and improvedthrough CALPHAD method. The precipitated phases and precipitated quantities wereinvestigated through calculating the isothermal sections at different Ti and Si content.The effects of the Ti addition on the intermetallics in the alloy layer and themicrostructure of the55wt.%Al-Zn-Si coating were investigated by experiments. TheX-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetry(TG) were used to investigate the isothermal oxidation and non-isothermal oxidationof55wt.%Al-Zn-Si and55wt.%Al-Zn-Si-Ti coatings. The evolution of the coatingmicrostructure during isothermal oxidation process was analyzed based on theexperimental results. A kinetic model with physical meaning was proposed, discussing quantitively the effect of oxidation induced volume change, temperature, oxygenpressure, heating rate, sample shape and size.
     The main results in this thesis can be summarized as following:
     1) The crystal structure of the ternary intermetallic τ-Ti26Al55Zn19was determinedthrough HR-XRD and HR-TEM, which showed that τ is an ordered face centeredcubic with Ti atoms occupying1a(0,0,0) positions and Al/Zn atoms occupying3c(0,0.5,0.5) positions. The Al-Zn riched side of Al-Zn-Ti system, Al-Fe riched sideof Al-Zn-Fe system and Al riched corner of Al-Si-Ti system at the temperature rangeof450~700oC were obtained by diffusion couple method and equilibrium alloys.
     2) Based on the experimental data, the Al-Zn-Ti, Al-Zn-Fe and Al-Si-Ti systemwere optimized through CALPHAD method and Pandat software. Then the reliable Alriched corner of Al-Zn-Si-Ti-Fe system was assessed. The calculated phase diagramsillustrated the effect of Ti addition on the55wt.%Al-Zn-Si coating: on the one hand,The TiAl_3forming in the bath makes the Si content decrease in the bath, leading to thesolubility of Fe in bath decrease and the amount of precipitated Fe4Al3increase. Onthe other hand, both the Fe4Al3and TiAl3can be the nucleation sites of (Al), leadingto the nucleation density increase and refining the grains.
     3) The isothermal oxidation of55wt.%Al-Zn-Si and55wt.%Al-Zn-Si-Ti coatedsteels at550,650,700and750oC were investigated by XRD and SEM. The evolutionof the coating microstructure during isothermal oxidation process was observed. Theeffect of temperature, partial gas pressure and particle size on the reaction rate ofcoated steel, zinc powders and nickel powders were systematically studied by TG.
     4) The kinetic model was deduced to describe the isothermal and non-isothermalgas-solid reaction of metals in the form of sphere and flat plate with consideringoxidation induced volume change when diffusion is the rate controlling step. Theeffect of oxidation induced volume change, temperature, partial gas pressure, heatingrate and particle size on the oxidation reaction fraction were quantitively analyzedthrough an explicit function. Using the model to analyze the kinetics of isothermaloxidation of coated steel at550~750°C, non-isothermal oxidation at350~950°C,isothermal oxidation of zinc and nickel powders, the results showed that a good agreement has been obtained.
     In this thesis, the study of material design and oxidation kinetics on the hot-dipcoating system is significant and useful for practical application. The Al-Zn-Si-Ti-Fesystem database not only can be used to design the hot-dip coatings, but also can beused in designing other aluminum alloys. The proposed gas-solid model makes thecalculated results more accurate because of considering the oxidation induced volumechange and avoiding multi-fitting. This model can be used to other gas-solid reactionsin metallurgy and material fields to obtain an accurate prediction.
引文
[1]卢锦堂,许乔瑜,孔纲.热浸镀技术与应用[M].北京:北京工业出版社;2006.
    [2] Neil B., Gerald H. M., Fred S. P. Introduction to the high-temperature oxidation of metals [M].New York: Cambridge University;2006.
    [3]朱铄金,朱丽慧,刘茜,刘庆峰,王利.热浸镀锌合金技术的研究现状[J].热处理, Vol.23,2008, pp.20-23.
    [4] Honda K., Hatanaka H., Onozawa H. High corrosion-resistant hot dip coated steel productexcellent in surface smoothness and formability, and method for producing hot dip coatedsteel product. EP1557478;2005.
    [5] Cho N. G. Method of manufacturing a coated steel. US005571566;1996.
    [6] Zhang X. G. Corrosion and electrochemistry of zinc [M]. New York: Plenum;1996.
    [7]李凌.钢铁表面热浸镀铝新工艺及镀层厚度控制模型研究[Ph.D thesis].武汉:武汉理工大学;2005.
    [8] Selverian J. H., Notis M. R., Marder A. R. The microstructure of55w/o Al-Zn-Si (Galvalume)hot dip coatings [J]. Journal of Materials Engineering, Vol.9,1987, pp.133-140.
    [9] Niederberger C., Michler J., Jacot A. Origin of intragranular crystallographic misorientationsin hot-dip Al–Zn–Si coatings [J]. Acta Materialia, Vol.56,2008, pp.4002-4011.
    [10] Phelan D., Xu B. J., Dippenaar R. Formation of intermetallic phases on55wt.%Al–Zn–Si hotdip strip [J]. Materials Science and Engineering: A, Vol.420,2006, pp.144-149.
    [11]李锋,吕家舜,贾丽娣,郭海天,文伟.影响热浸镀锌钢板锌花形成的因素[J].材料保护, Vol.39,2006, pp.1-3.
    [12] Dutta M., Mukhopadhyay A., Chakrabarti S. Effect of galvanising parameters on spangle sizeinvestigated by data mining technique [J]. ISIJ international, Vol.44,2004, pp.129-138.
    [13]郭难先,李九岭.小锌花生产技术研究[J].武钢技术, Vol.36,1998, pp.13-20.
    [14] Liu Q. Y. Relationship between Si levels in the coating bath and spangle size.WO2009/055843;2009.
    [15] Liu Q. Y., Williams J., Smith R. M. Metal-coated steel strip. US2010/0021760;2010.
    [16] Mcdevitt E. T. Aluminum-zinc alloy composition comprising spangle for hot-dipping steelproduct, method and product obtainable thereof. EP1428898;2007.
    [17] McDevitt E. T. Composition for controlling spangle size, a coated steel product, and a coatingmethod. US7041386;2006.
    [18] Xu B. J. Nucleation and growth of55%Al-Zn alloy on steel substrate [Ph.D thesis]. Australia:University of Wollongong;2005.
    [19] Honda K., Ushioda K., Yamada W. Nucleation of the primary Al phase on TiAl3duringsolidification of a hot-dip Zn-11%Al-3%Mg-0.2%Si coating on steel sheet [J]. Applicationsof Texture Analysis, Vol.,2008, pp.355-362.
    [20] Honda K., Hatanaka H. Highly corrosion-resistant coated steel plate having excellentsharpness. JP2004225157;2004.
    [21] García F., Salinas A., Nava E. The role of Si and Ti additions on the formation of the alloylayer at the interface of hot-dip Al–Zn coatings on steel strips [J]. Materials Letters, Vol.60,2006, pp.775-778.
    [22] Xu B. J., Phelan D., Dippenaar R. Role of silicon in solidification microstructure inhot-dipped55wt%Al–Zn–Si coatings [J]. Materials Science and Engineering: A, Vol.473,2008, pp.76-80.
    [23] Fox-Rabinovich G., Wilkinson D., Veldhuis S., Dosbaeva G., Weatherly G. Oxidationresistant Ti-Al-Cr alloy for protective coating applications [J]. Intermetallics, Vol.14,2006,pp.189-197.
    [24] Kattner U. R. The thermodynamic modeling of multicomponent phase equilibria [J]. JOMJournal of the Minerals, Metals and Materials Society, Vol.49,1997, pp.14-19.
    [25] Lukas H. L., Fries S. G., Sundman B. Computational Thermodynamics: The Calphad Method[M]: Cambridge University Press;2007:3-4.
    [26] Chou K. C., Austin Chang Y. A study of ternary geometrical models [J]. Berichte derBunsengesellschaft für physikalische Chemie, Vol.93,1989, pp.735-741.
    [27] Chou K. C. A general geometrical model. CALPHAD XXIII-CAMSE94. Madison,Wisconsin, USA,1994.
    [28] Chou K. C. A general solution model for predicting ternary thermodynamic properties [J].CALPHAD, Vol.19,1995, pp.315-325.
    [29] Chou K. C., Wei S. K. A new generation solution model for predicting thermodynamicproperties of a multicomponent system from binaries [J]. Metallurgical and MaterialsTransactions B, Vol.28,1997, pp.439-445.
    [30] Fan P., Chou K.-C. A self-consistent model for predicting interaction parameters inmulticomponent alloys [J]. Metallurgical and Materials Transactions A, Vol.30,1999, pp.3099-3102.
    [31] Chou K. C., Li W. C., Li F. S., He M. H. Formalism of new ternary model expressed in termsof binary regular-solution type parameters [J]. CALPHAD, Vol.20,1996, pp.395-406.
    [32]周国治.新一代的溶液几何模型及其今后的展望[J].金属学报, Vol.33,1997, pp.126-131.
    [33] Liu Y., Liang D. A contribution to the Al-Pb-Zn ternary system [J]. Journal of Alloys andCompounds, Vol.403,2005, pp.110-117.
    [34] Zivkovic D., Kostov A., Katayama I., Manasikevic D., Strbac N. Calculation ofthermodynamics properties in the Al-Co-Me(MeTi, Mo) systems, in the liquid phase [J].Materials at High Temperatures, Vol.24,2007, pp.73-78.
    [35] Klan nik G., Medved J. Thermodynamic investigation of the Al-Sb-Zn system [J]. Materialiin Technologije, Vol.45,2011, pp.317-323.
    [36] Balanovi L., ivkovi D., Mitovski A., Manasijevi D., ivkovi. Calorimetricinvestigations and thermodynamic calculation of Zn-Al-Ga system [J]. Journal of ThermalAnalysis and Calorimetry, Vol.103,2011, pp.1055-1061.
    [37] Hindler M., Mikula A. Calorimetric investigations of liquid gold-antimony-tin alloys [J].International Journal of Materials Research, Vol.103,2012, pp.858-865.
    [38] Zivkovic D., Du Y., Balanovic L., Manasijevic D., Minic D., Talijan N. Prediction of thethermodynamic properties for liquid Al-Mg-Zn alloys [J]. Materiali in Tehnologije, Vol.46,2012, pp.477-482.
    [39] Gomid elovi L., Mihajlovi I., Kostov A., ivkovi D. Cu-Al-Zn system: Calculation ofthermodynamic properties in liquid phase [J]. Hemijska Industrija,2012, pp.41-41.
    [40]刘玉芹,杜勇,刘树红.材料热力学[M].北京:北京工业出版社;2009.4:43-46.
    [41] Murray J. L. The Al-Zn (Aluminum-Zinc) system [J]. Journal of Phase Equilibria, Vol.4,1983, pp.55-73.
    [42] Mey S. A., Effenberg G. A thermodynamic evaluation of the aluminum-zinc system [J].Zeitschrift fur Metallkunde, Vol.77,1986, pp.499-453.
    [43] Mey S. A. Reevaluation of the Al-Zn system [J]. Zeitschrift fur Metallkunde, Vol.84,1993,pp.451-455.
    [44] Chen S. L., Chang Y. A. A thermodynamic analysis of the Al-Zn system and phase diagramcalculation [J]. CALPHAD, Vol.17,1993, pp.113-124.
    [45] Wasiur-Rahman S., Medraj M. A thermodynamic description of the Al-Ca-Zn ternary system[J]. CALPHAD, Vol.33,2009, pp.584-598.
    [46] Jacobs M. H. G., Spencer P. J. A critical thermodynamic evaluation of the systems Si-Zn andAl-Si-Zn [J]. CALPHAD, Vol.20,1996, pp.307-320.
    [47] Seierstein M. System Al–Fe [J]. Ansara, AT Dinsdale, MH Rand, Editors ThermochemicalDatabase for Light Metal Alloys, Vol.1,1998, pp.34-39.
    [48] Jacobs M. H. G., Schmid-Fetzer R. Phase behavior and thermodynamic properties in thesystem Fe-Al [J]. CALPHAD, Vol.33,2009, pp.170-178.
    [49] Sundman B., Ohnuma I., Dupin N., Kattner U. R., Fries S. G. An assessment of the entireAl-Fe system including D03ordering [J]. Acta Materialia, Vol.57,2009, pp.2896-2908.
    [50] Nakano J., Malakhov D. V., Yamaguchi S., Purdy G. R. A full thermodynamic optimization ofthe Zn-Fe-Al system within the420–500oC temperature range [J]. CALPHAD, Vol.31,2007,pp.125-140.
    [51] Reumont G., Perrot P., Fiorani J. M., Hertz J. Thermodynamic Assessment of the Fe-ZnSystem [J]. Journal of Phase Equilibria, Vol.21,2000, pp.371-378.
    [52] Su X. P., Tang N. Y., Toguri J. M. Thermodynamic evaluation of the Fe-Zn system [J]. Journalof Alloys and Compounds, Vol.325,2001, pp.139-136.
    [53] Petersen S., Spencer P. J., Hack K. A thermodynamic evaluation of the iron-zinc system [J].Thermochimica Acta, Vol.129,1988, pp.77-87.
    [54] Xiong W., Kong Y., Du Y., Liu Z. K., Selleby M., Sun W. H. Thermodynamic investigation ofthe galvanizing systems, I: Refinement of the thermodynamic description for the Fe-Znsystem [J]. CALPHAD, Vol.33,2009, pp.433-440.
    [55] Liang W. W. A thermodynamic assessment of the aluminum-titanium system [J]. CALPHAD,Vol.7,1983, pp.13-20.
    [56] Murray J. L. Phase diagrams of binary titanium alloys [J]. ASM International,1987, pp.354.
    [57] Kattner U., Lin J. C., Chang Y. Thermodynamic assessment and calculation of the Ti-Alsystem [J]. Metallurgical and Materials Transactions A, Vol.23,1992, pp.2081-2090.
    [58] Zhang F., Chen S. L., Chang Y. A., Kattner U. R. A thermodynamic description of the Ti-Alsystem [J]. Intermetallics, Vol.5,1997, pp.471-482.
    [59] Ohnuma I., Fujita Y., Mitsui H., Ishikawa K., Kainuma R., Ishida K. Phase equilibria in theTi-Al binary system [J]. Acta Materialia, Vol.48,2000, pp.3113-3123.
    [60] Gr bner J., Mirkovi D., Schmid-Fetzer R. Thermodynamic aspects of grain refinement ofAl-Si alloys using Ti and B [J]. Materials Science and Engineering: A, Vol.395,2005, pp.10-21.
    [61] Seifert H. J., Lukas H. L., Petzow G. Thermodynamic optimization of the Ti-Si system [J].Zeitschrift fuer Metallkunde, Vol.87,1996, pp.2-13.
    [62] Kaufman L. Coupled phase diagrams and thermochemical data for transition metal binarysystems-VI [J]. CALPHAD, Vol.3,1979, pp.45-76.
    [63] Murray J. L. Phase diagrams of binary titanium alloys [J]. Metals Park ASM International,1987, pp.289.
    [64] Vahlas C., Chevalier P. Y., Blanquet E. A thermodynamic evaluation of four Si-M (M=Mo,Ta, Ti, W) binary systems [J]. CALPHAD, Vol.13,1989, pp.273-292.
    [65] Vassilev G. P., Liu X. J., Ishida K. Reaction kinetics and phase diagram studies in the Ti-Znsystem [J]. Journal of Alloys and Compounds, Vol.375,2004, pp.162-170.
    [66] Chen X. A., Jeitschko W., Danebrock M. E., Evers C. B. H., Wagner K. Preparation,Properties, and Crystal Structures of Ti3Zn22and TiZn16[J]. Journal of Solid State Chemistry,Vol.118,1995, pp.219-226.
    [67] Anderson E. A., Boyle E. J., Ramsey P. W. Rolled Zinc-Titanium Alloys [J]. Trans AIME, Vol.156,1944, pp.278-287.
    [68] Doi K., Ono S., Ohtani H., Hasebe M. Thermodynamic study of the phase equilibria in theSn-Ti-Zn ternary system [J]. Journal of Phase Equilibria and Diffusion, Vol.27,2006, pp.63-74.
    [69] Gloriant T., Reumont G., Perrot P. The Fe-Zn-Ti system at450oC [J]. Zeitschrift furMetallkunde, Vol.88,1997, pp.539-544.
    [70] Ghosh G., Delsante S., Borzone G., Asta M., Ferro R. Phase stability and cohesive propertiesof Ti–Zn intermetallics: First-principles calculations and experimental results [J]. ActaMaterialia, Vol.54,2006, pp.4977-4997.
    [71] Okamoto H. Ti-Zn [J]. Journal of Phase Equilibria and Diffusion, Vol.29,2008, pp.211-212.
    [72] Delsante S., Ghosh G., Borzone G. A calorimetric study of alloys along the Ti(Zn, Al)3section [J]. CALPHAD, Vol.33,2009, pp.50-54.
    [73] Lacaze J., Sundman B. An assessment of the Fe-C-Si system [J]. Metallurgical and MaterialsTransactions A, Vol.22,1991, pp.2211-2223.
    [74] Kumar K. C. H., Wollants P., Delaey L. Thermodynamic reassessment and calculation ofFe-Ti phase diagram [J]. CALPHAD, Vol.18,1994, pp.223-234.
    [75] Chen Z. W., Sharp R. M., Gregory J. T. Fe-Al-Zn ternary phase diagram at450°C [J].Materials Science and Technology, Vol.6,1990, pp.1173-1176.
    [76] Perrot P., Tissier J. C., Dauphin J. Stable and metastable equilibria in the Fe-Zn-Al system at450°C [J]. Zeitschrift fuer Metallkunde, Vol.83,1992, pp.786-790.
    [77] Tang N. Y. Comment on Fe-Al-Zn (iron-aluminum-zinc)[J]. Journal of Phase Equilibria, Vol.15,1994, pp.237-238.
    [78] Tang N. Y. Refined450°C isotherm of Zn-Fe-Al phase diagram [J]. Materials Science andTechnology, Vol.11,1995, pp.870-873.
    [79] Tang N. Y.450°C isotherm of Zn-Fe-Al phase diagram update [J]. Journal of PhaseEquilibria, Vol.17,1996, pp.396-398.
    [80] Uwakwen O. N. C., Liu Z. T. Kinetics and phase transformation evaluation of Fe-Zn-Almechanically alloyed phases [J]. Metallurgical and Materials Transactions A, Vol.28A,1997,pp.517-525.
    [81] Tang N. Y. Characteristics of continuous-galvanizing baths [J]. Metallurgical and MaterialsTransactions B, Vol.30,1999, pp.144-148.
    [82] Koester W., Goedecke T. The iron-aluminium-zinc ternary system [J]. Proc9th InternationalConference, Hot Dip Galvanizing,1971, pp.128-139.
    [83] Urednicek M., Kirkaldy J. S. Investigation of the phase constitution of iron-zinc-aluminium at450oC [J]. Zeitschrift fuer Metallkunde, Vol.64,1973, pp.419-427.
    [84] Tang N. Y., Su X. P. On the ternary phase in the zinc-rich corner of the Zn-Fe-Al system attemperatures below450°C [J]. Metallurgical and Materials Transactions A, Vol.33,2002, pp.1559-1561.
    [85] Raman A., Schubert K. Uber den aufbau einiger zu TiAl3verwandter legierungsreihen. I.Untersuchungen in einigen T4-Zn-Al-, T4-Zn-Ga-und T4-Ga-Ge-systemen [J]. Zeitschriftfuer Metallkunde, Vol.56,1965, pp.40-43.
    [86] Krajewski W. K. Determination of Al site preference in L12TiZn3-Base trialuminides [J].Materials Science Forum, Vol.508,2006, pp.615-620.
    [87] Yang S., Su X. P., Wang J. H., Yin F. C., Li Z., Tu H., Peng H. P. The Zn-rich corner of theZn-Al-Ti system at723K [J]. Journal of Alloys and Compounds, Vol.499,2010, pp.194-199.
    [88] Ghosh G. Aluminium-iron-silicon [M]. In: Effenberg G, Ilyenko S, editors. Light metalternary systems: phase diagrams, crystallographic and thermodynamic data.LandolteBornstein New Series IV/11A2. Berlin, Heidelberg, Germany: Springer-Verlag,2005.
    [89] Bosselet F., Pontevichi S., Sacerdote-Peronnet M., Viala J. C. Affinement expérimental del'isotherme Al-Fe-Si à1000K [J]. Journal De Physique IV, Vol.122,2004, pp.41-46.
    [90] Krendelsberger N., Weitzer F., Schuster J. C. On the reaction scheme and liquidus surface inthe ternary system Al-Fe-Si [J]. Metallurgical and Materials Transactions A, Vol.38,2007, pp.1681-1691.
    [91] Liu Z. K., Chang Y. A. Thermodynamic assessment of the Al-Fe-Si system [J]. Metallurgicaland Materials Transactions A, Vol.30A,2007, pp.1081-1095.
    [92] Du Y., Schuster J. C., Liu Z. K., Hu R. X., Nash P., Sun W. H., et. a. A thermodynamicdescription of the Al-Fe-Si system over the whole composition and temperature ranges via ahybrid approach of CALPHAD and key experiments [J]. Intermetallics, Vol.16,2008, pp.554-570.
    [93] Gupta S. P. Intermetallic compounds in diffusion couples of Ti with an Al-Si eutectic alloy [J].Materials Characterization, Vol.49,2003, pp.321-330.
    [94] Schubert K., Frank K., Gohle R., Maldonado A., Meissner H. G., Raman A., Rossteutscher W.Structural Data on Metallic Phases VII [J]. Naturwissenschaften, Vol.50,1963, pp.41.
    [95] Brukl C., Nowotny H., Schob O., Benesovsky F. The Crystal Structure of TiSi, Ti(Al,Si)2andMo(Al,Si)2[J]. Monatshefte für Chemie, Vol.92,1961, pp.781-788.
    [96] Bulanova M., Tretyachenko L., Golovkova M., Meleshevich K. Phase Equilibria in theα-Ti-Al-Si Region of the Ti-Si-Al System [J]. Journal of Phase Equilibria and Diffusion, Vol.25,2004, pp.209-229.
    [97] K ster W., G decke T. Das dreistoffsystem eisen-silizium-zink [J]. Zeitschrift fuerMetallkunde, Vol.59,1968, pp.605-613.
    [98] K ster W. The ternary system iron-silicon-zinc [J]. Metallurgical, GB, Vol.80,1969, pp.219-229.
    [99] Wang J. H., Su X. P., Yin F. C., Li Z., Zhao M. X. The480°C and405°C isothermal sectionsof the phase diagram of Fe–Zn–Si ternary system [J]. Journal of Alloys and Compounds, Vol.399,2005, pp.214-218.
    [100] Su X. P., Yin F. C., Li Z., Tang N. Y., Zhao M. X. Thermodynamic calculation of theFe-Zn-Si system [J]. Journal of Alloys and Compounds, Vol.396,2005, pp.156-163.
    [101] Dew-Hughes D., Kaufman L. Ternary phase diagrams of the Mg-Ti-Fe and the Al-Ti-Fesystems: a comparison of computer calculations with experiment [J]. CALPHAD, Vol.3,1979, pp.175-203.
    [102] Palm M., Lacaze J. Assessment of the Al–Fe–Ti system [J]. Intermetallics, Vol.14,2006, pp.1291-1303.
    [103] Tang X. H., Yin F. C., Wang X. M., Wang J. H., Su X. P., Tang N. Y. The450oC IsothermalSection of the Zn-Fe-Ti System [J]. Journal of Phase Equilibria and Diffusion, Vol.28,2007,pp.355-361.
    [104] Pan S. W., Yin F. C., Zhao M. X., Liu Y., Su X. P. The zinc-rich corner of the450°Cisothermal section of the Zn-Al-Fe-Si quaternary system [J]. Journal of Alloys andCompounds, Vol.470,2009, pp.600-605.
    [105]杨帆. Al-Zn-Si-Fe体系相平衡研究.上海:上海大学;2010.
    [106]陈记龙. Al-Zn-Si-Fe体系热力学评估及相平衡研究.上海:上海大学;2012.
    [107] Li Z., Shen W. J., Yin F. C., Wang X., Wu Y., Zhao M. X. Phase equilibria of theAl-Zn-Fe-Ti quaternary system at600oC [J]. Journal of Phase Equilibria and Diffusion,2013,pp.1-10.
    [108] Khanna A. S. Introduction to high temperature oxidation and corrosion [M]: ASMInternational (OH);2002.
    [109] Gaskell D. R. Introduction to the Thermodynamics of Materials [M]. New York:Hemisphere Pub;2003.
    [110] Pilling N. B., Member M. S., Bedworth R. E. The oxidation of metals at high temperatures[J]. Journal of the Institute of Metals, Vol.29,1923, pp.529-591.
    [111] Zhang G. B. Applications of protective ceramics. US5838530;1998.
    [112] Meier G. H., Appalonia D., Perkins P. A., Chiang K. T. Oxidation of high-temperatureintermetallics [M]: Amerian Society for Metals, Materials Park, OH;1989.
    [113] Hirano K., Iijima Y., Dayananda M. A., Murch G. E. Diffusion in solids: Recentdevelopments [M]: Metallugical Society, Warrendale, PA;1985.
    [114] Tenório J. A. S., Espinosa D. C. R. High-temperature oxidation of Al-Mg alloys [J].Oxidation of metals, Vol.53,2000, pp.361-373.
    [115] Tuck C., Whitehead M., Smallman R. A fundamental study of the kinetics of zinc oxidationin the temperature range320–415°C in atmospheres of pure oxygen and oxygen doped withgaseous impurities [J]. Corrosion Science, Vol.21,1981, pp.333-352.
    [116] Pettit F. S., Goebel J. A., Goward G. W. Thermodynamic analysis of the simultaneous attackof some metals and alloys by two oxidants [J]. Corrosion Science, Vol.9,1969, pp.903-910.
    [117] Kai W., Ren I. F., Wang R. F., Kao P. C., Liu C. T. The oxidation behavior of anFe61B15Zr8Mo7Co5Y2Cr2bulk metallic glass at650oC in various oxygen-containingenvironments [J]. Intermetallics, Vol.17,2009, pp.165-168.
    [118] Bertrand N., Desgranges C., Poquillon D., Lafont M.-C., Monceau D. Iron oxidation at lowtemperature (260–500oC) in air and the effect of water vapor [J]. Oxidation of Metals, Vol.73,2010, pp.139-162.
    [119] Othman N. K., Zhang J. Q., Young D. J. Temperature and water vapour effects on the cyclicoxidation behaviour of Fe–Cr alloys [J]. Corrosion Science, Vol.52,2010, pp.2827-2836.
    [120] Pérez-Trujillo F., Castaneda S. Study by Means of the Mass Spectrometry of VolatileSpecies in the Oxidation of Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe and Ferritic/Martensitic SteelSamples at923K in Ar+(10to80%) H2O Vapor Atmosphere for New-Materials Design [J].Oxidation of metals, Vol.66,2006, pp.231-251.
    [121] Palm M. Concepts derived from phase diagram studies for the strengthening of Fe-Al-basedalloys [J]. Intermetallics, Vol.13,2005, pp.1286-1295.
    [122] Niu Y., Wang S., Gao F., Zhang Z. G., Gesmundo F. The nature of the third-element effect inthe oxidation of Fe–xCr–3at.%Al alloys in1atm O2at1000°C [J]. Corrosion Science, Vol.50,2008, pp.345-356.
    [123] Wagner C. Passivity and inhibition during the oxidation of metals at elevated temperatures[J]. Corrosion Science, Vol.5,1965, pp.751-764.
    [124] Zhang Z. G., Gesmundo F., Hou P. Y., Niu Y. Criteria for the formation of protective Al2O3scales on Fe–Al and Fe–Cr–Al alloys [J]. Corrosion Science, Vol.48,2006, pp.741-765.
    [125] Castle J. E., Surman P. Self-diffusion of oxygen in magnetite. Techniques for sampling andisootopic analysis of micro quantities of water [J]. The Journal of Physical Chemistry, Vol.71,1967, pp.4255-4259.
    [126] Himmel L., Mehl R., Birchenall C. Self diffusion of iron in iron oxides and the Wagnertheory of oxidation [J]. Trans AIME, Vol.197,1953, pp.827.
    [127] Appannagaari N., Basu S. N. Modeling of O-18tracer distribution during "doubleoxidation’’ experiments for inward growing scales [J]. Journal of applied physics, Vol.78,1995, pp.2060-2069.
    [128] Wegener W., Borchardt G. Analysis of oxygen-18tracer profiles in two-stage oxidationexperiments (I): predominant oxygen diffusion in the growing scale [J]. Oxidation of metals,Vol.36,1991, pp.339-357.
    [129] Nakagawa K., Matsunaga Y., Yanagisawa T. Corrosion behavior of ferritic steels on the airsides of boiler tubes in a steamair dual environment [J]. Materials at High Temperatures, Vol.18,2001, pp.51-56.
    [130] Trindade V., Christ H.-J., Krupp U. Grain-size effects on the high-temperature oxidationbehaviour of chromium steels [J]. Oxidation of metals, Vol.73,2010, pp.551-563.
    [131] Huntz A. M. Scale growth and stress development [J]. Materials Science and Technology,Vol.4,1988, pp.1079-1088.
    [132] Kofstad P. Fundamental aspects of corrosion by hot gases [J]. Materials Science andEngineering: A, Vol.120,1989, pp.25-29.
    [133] Zhou H. G., Qu J. M., Cherkaoui M. Stress–oxidation interaction in selective oxidation ofCr–Fe alloys [J]. Mechanics of Materials, Vol.42,2010, pp.63-71.
    [134] Tammann G. über Anlauffarben von metallen [J]. Zeitschrift für anorganische undallgemeine Chemie, Vol.111,1920, pp.78-89.
    [135] Wagner C. Beitrag zur theorie des anlaufvorgangs [J]. Zeitschrift für Physikalische ChemieB, Vol.21,1933, pp.25-41.
    [136] Wagner C., Koch E. Electrical conductivity of oxides of cobalt and iron [J]. Zeitschrift fürPhysikalische Chemie B, Vol.32,1936, pp.439-447.
    [137] Cabrera N., Mott N. Theory of the oxidation of metals [J]. Reports on Progress in Physics,Vol.12,2002, pp.163-184.
    [138] Gulbransen E. A., Andrew K. F. The kinetics of oxidation of high purity nickel [J]. Journalof the Electrochemical Society, Vol.101,1954, pp.128-140.
    [139] Jost W. Diffusion in solids, liquids, gases [M]. New York,1952.
    [140] Hoar T., Price L. The electrochemical interpretation of Wagner's theory of tarnishingreactions [J]. Transactions of the Faraday Society, Vol.34,1938, pp.867b-872.
    [141] Chou K. C., Hou X. M. Kinetics of high-temperature oxidation of inorganic nonmetallicmaterials [J]. Journal of the American Ceramic Society, Vol.92,2009, pp.585-594.
    [142] Chou K. C. A kinetic model for oxidation of Si–Al–O–N materials [J]. Journal of theAmerican Ceramic Society, Vol.89,2006, pp.1568-1576.
    [143] Hou X. M., Chou K. C. Investigation of isothermal oxidation of AlN ceramics usingdifferent kinetic model [J]. Corrosion Science, Vol.51,2009, pp.556-561.
    [144] Hou X. M., Chou K. C. Model of oxidation of SiC microparticles at high temperature [J].Corrosion Science, Vol.50,2008, pp.2367-2371.
    [145] Chou K. C., Xu K. D. A new model for hydriding and dehydriding reactions in intermetallics[J]. Intermetallics, Vol.15,2007, pp.767-777.
    [146] Hou X. M., Chou K. C., Li F. S. Some new perspectives on oxidation kinetics of SiAlONmaterials [J]. Journal of the European Ceramic Society, Vol.28,2008, pp.1243-1249.
    [147]王志鹏,胡晓军,侯新梅,束奇峰,周国治.金属镁粉直接氮化合成Mg3N2[J].中国稀土学报, Vol.26,2008, pp.845-848.
    [148] Hou X. M., Chou K. C., Chong Z. X., Seshadri S. Oxidation kinetics of aluminum nitride atdifferent oxidizing atmosphere [J]. Journal of Alloys and Compounds, Vol.465,2008, pp.90-96.
    [149] Hou X. M., Liu X. D., Guo M., Chou K. C. A theoretical analysis for oxidation of titaniumcarbide [J]. Journal of materials science, Vol.43,2008, pp.6193-6199.
    [150] Hou X. M., Chou K. C., Hu X. J., Zhao H. L. A new measurement and treatment for kineticsof isothermal oxidation of Si3N4[J]. Journal of Alloys and Compounds, Vol.459,2008, pp.123-129.
    [151] Vourlias G., Pistofidis N., Chrissafis K., Stergioudis G. Zinc coatings for oxidationprotection of ferrous substrates Part I. Macroscopic examination of the coating oxidation [J].Journal of Thermal Analysis and Calorimetry, Vol.90,2007, pp.769-775.
    [152] Vourlias G., Pistofidis N., Pavlidou E., Chrissafis K. Zinc coatings for oxidation protectionof ferrous substrates Part II. Microscopic and oxidation mechanism examination [J]. Journalof Thermal Analysis and Calorimetry, Vol.90,2007, pp.777-782.
    [153] Liu P. S. The main degradation modes of an aluminide coating on a Co-Base superalloyduring high-temperature oxidation in air [J]. Oxidation of Metals, Vol.58,2002, pp.331-336.
    [154]郑毅然,高文禄,原国生.热浸镀铝钢的合金层抗高温氧化机理[J].东北大学学报,Vol.19,1998, pp.26-28.
    [155] Smyslov A. M., Nev'yantseva R. R., Bybin A. A. Some features of high-temperarureoxidation of aluminide coatings on alloy TsNK-7P [J]. Materials Science and Heat Treatment,Vol.46,2004, pp.350-354.
    [156] Glasbrenner H., Nold E., Voss Z. The influence of alloying elements on the hot-dipaluminizing process and on the subsequent high-temperature oxidation [J]. Journal of NuclearMaterials, Vol.249,1997, pp.39-45.
    [157] Wang C. J., Chen S. M. The high-temperature oxidation behavior of hot-dipping Al–Sicoating on low carbon steel [J]. Surface and Coatings Technology, Vol.200,2006, pp.6601-6605.
    [158] Wang C. J., Chen S. M. Microstructure and cyclic oxidation behavior of hot dip aluminizedcoating on Ni-base superalloy Inconel718[J]. Surface and Coatings Technology, Vol.201,2006, pp.3862-3866.
    [159] Tsaur C. C. High temperature oxidation and NaCl-induced accelerated corrosion of hot-dipaluminized9Cr-1Mo and310stainless steel. Texas: Texas A&M University;2004.
    [160] Chang Y. Y., Tsaur C. C., Rock J. C. Microstructure studies of an aluminide coating on9Cr-1Mo steel during high temperature oxidation [J]. Surface&Coatings Technology, Vol.200,2006, pp.6588-6593.
    [161]高文录,李国喜,郑毅然.热浸镀铝,铝锌硅钢板的耐高温抗氧化性能[J].东北工学院学报, Vol.10,1989, pp.452-456.
    [162]杜鹏翔.热浸镀55%铝锌合金镀层钢板的抗高温硫化氢腐蚀性能分析[J].西南工学院学报, Vol.15,2000, pp.39-41.
    [163]曾鹏,蒙继龙.混合稀土对热浸镀55%Al-Zn合金涂层抗氧化性能的影响[J].中国稀土学报, Vol.12,1994, pp.154-158.
    [164]郝士明.局部平衡原理与相图的扩散偶法测定[J].材料与冶金学报, Vol.2,2003, pp.203-209.
    [165] Kodentsov A. A., Bastin G. F., Van Loo F. J. J. The diffusion couple technique in phasediagram determination [J]. Journal of Alloys and Compounds, Vol.320,2001, pp.207-217.
    [166] Meschel S. V., Kleppa O. J. in: Faulkner J. S., Jordan R. G., editors. Metallic alloys:expermental and theoretical perspectives.[J]. Dordrecht: Kluwer,1997, pp.103.
    [167] Nassik M., Chrifi-Alaoui F. Z., Mahdouk K., Gachon J. C. Calorimetric study of thealuminium-titanium system [J]. Journal of Alloys and Compounds, Vol.350,2003, pp.151-154.
    [168] Naoi D., Kajihara M. Growth behavior of Fe2Al5during reactive diffusion between Fe andAl at solid-state temperatures [J]. Materials Science and Engineering: A, Vol.459,2007, pp.375-382.
    [169] Yamaguchi S., Makino H., Sakatoku A., Iguchi Y. Proceedings of the3rd InternationalConference on Zinc and Zinc Alloy Coated Steel Sheet [J]. Galvatech,1995, pp.787-794.
    [170] Yamaguchi S. Coating microstructure and properties of galvannealed steel sheets [J]. in: ISIJ,2004, pp.137-140.
    [171] Raghavan V. Al-Fe-Zn (Aluminum-Iron-Zinc)[J]. Journal of Phase Equilibria and Diffusion,2013, pp.1-3.
    [172] Li Y., Luo Q., Zhang J. Y., Li Q. Experimental study of the Al-rich corner of the Al-Si-Tisystem at500oC [J]. The TMS2013Annual Meeting and Exhibition,2013, pp.391-393.
    [173]吴广新.热浸镀铝锌合金工艺优化、组织结构及锌花尺寸研究.上海:上海大学博士后研究工作报告;2011.
    [174]钢的抗氧化性能测定方法.中华人民共和国国家标准, GB/T13303-91;1991.
    [175]热重-差热分析仪.中华人民共和国机械行业标准, JB/T6856-93;1993.
    [176] Chen R. Y., Yuen W. Y. D. Review of the high-temperature oxidation of iron and carbonsteels in air or oxygen [J]. Oxidation of metals, Vol.59,2003, pp.433-468.
    [177]齐新华. LaNi5基储氢材料微观特性研究:四川大学;2005.
    [178] Varin R. A., Czujko T., Wronski Z. S. Nanomaterials for solid state hydrogen storage [M]:Springer;2008.
    [179] Huot J., Liang G., Boily S., Van Neste A., Schulz R. Structural study and hydrogen sorptionkinetics of ball-milled magnesium hydride [J]. Journal of Alloys and Compounds, Vol.293,1999, pp.495-500.
    [180] Muthukumar P., Satheesh A., Linder M., Mertz R., Groll M. Studies on hydriding kinetics ofsome La-based metal hydride alloys [J]. International Journal of Hydrogen Energy, Vol.34,2009, pp.7253-7262.
    [181] Hsu C.-W., Lee S.-L., Jeng R.-R., Lin J.-C. Mass production of Mg2Ni alloy bulk byisothermal evaporation casting process [J]. International Journal of Hydrogen Energy, Vol.32,2007, pp.4907-4911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700