新型锌基多元合金热镀工艺及耐蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热浸镀锌是钢铁防护的一种主要方法。但随着环境污染的日益加剧,传统的热镀锌产品已不能满足实际需要,因而,具有更高耐蚀性能的锌基合金镀层和特殊性能的镀层成为研究的热点。
     本文在课题组研究Zn-Al, Zn-Mg、Zn-Al-Mg合金镀层的基础上,选择加入微量的混合稀土以及钛、硼等元素,研究了锌基多元合金热镀工艺及其耐蚀性能。为减少合金元素的烧损,镀液中铝、镁、稀土、钛元素均以中间合金的方式添加,且在熔融合金表面采用熔剂保护。
     对加入不同含量的稀土及钛元素的锌基多元合金镀层,通过全浸试验和中性盐雾实验测定各试样的腐蚀失重速率。结果表明,在含稀土系列的合金镀层中,Zn-1%Al-2%Mg-0.15%Re合金镀层的腐蚀速率最小,耐蚀性能最好,稀土含量继续增加时,耐蚀性能反而有些降低。在含Ti系列镀层中,在Zn-1%Al基础上加入少量Ti也能提高镀层的耐蚀性能,且随着钛含量的增多,腐蚀速率先减小后增大,其中含0.05%Ti的耐蚀性能最优。
     对制备的合金镀层进行了电化学测试,结果表明,在Tafel极化曲线测试中,添加少量合金元素对极化曲线形状并没有较大的影响,加入稀土和钛均可以对镀层的电化学腐蚀起到抑制作用,其自腐蚀电位正移,线性极化电阻变大,自腐蚀电流变小。因此,加入稀土和钛均可以对镀层的电化学腐蚀起到抑制作用。无论是含稀土还是含钛系列的镀层,其电极的阻抗谱低频段均出现了一定程度的偏移,这与电极反应所生成的钝化膜有关,钝化膜的生成有利于耐蚀性能的提高。电化学测试结果与全浸试验相一致。
     在镀液中加入稀土元素,除了能够降低镀液的表面张力外,还能够除去镀液中的O、S元素,起到细化晶粒的作用,降低晶间腐蚀速率,提高耐蚀性能。在电镜图中可以看出,加入稀土元素后组织边界融合成为较浅的沟槽,经盐酸腐蚀后,腐蚀产物呈针状,腐蚀产物层较为致密。当Re添加量为0.1%时,对镀层晶粒的细化较为显著。加入钛后,镀层的表面为均匀的胞状组织,表观形貌有所改善。从截面的线扫描能谱中检测到混合稀土元素中含量较多的是铈元素,但并没有检测到钛元素。
     在对腐蚀产物的X-射线衍射分析表明,在加入镁、稀土元素以后,腐蚀产物中ZnO的量较少,存在较多的是碱式硫酸锌,且以沉淀物的形式附着在基体表面,附着力较强,能够防止镀层腐蚀向内部发展,提高耐蚀性能。此外,在物相分析中检测到锌铝的复杂氧化物的存在,在加入钛元素后,腐蚀产物中还有少量锌钛氧化物,这表明钛能够在提高耐蚀性能方面发挥作用,在镀层表面形成保护性好的氧化物薄膜,使腐蚀难以透过表层向内部深入。
     在所研究的合金镀层中,铝、镁、稀土、钛的加入量较少,热镀温度、热镀时间等工艺参数与传统热镀锌相比变化不大,可以在不改变热镀锌生产线的条件下进行生产,便于推广应用。
Hot-dip is an effective and economical method of steel protection. But with the increasing environmental pollution, the traditional hot dip galvanized products can not meet the actual needs, and more and more attention has been paid to alloy coatings that have a higher corrosion resistance special properties.
     The 55%Al-Zn, Zn-Mg, Zn-Al-Mg coating have been further studied. Hot dip technology and corrosion resistance of a new alloy coating based on the previous studies was discussed in this article, which containing trace amounts of rare earth and titanium. Al, Mg, Re, and Ti were added in master alloys way. And in order to reduce the loss of alloying elements, the surface of molten alloy was protected with a new type of covering agent.
     The weight loss rate of alloy coatings with different content of Re and Ti were measured by immersion testing and salt spray testing to determine the corrosion resistance. The results showed that:the corrosion rate of Zn-1% Al-2%Mg-0.15% Re alloy coating is smallest, and have the best corrosion resistance, and when rare earth content continues increasing, corrosion rate decreases; in the containing Ti alloy coatings, small amount of Ti based of Zn-1% Al can also improve corrosion resistance of coatings. And with the Ti content increases, the corrosion rate decreases and then increases, and the one which contains 0.05% Ti is the lowest.
     Electrochemical test shows that the addition of rare earth and titanium all can inhibit electrochemical corrosion. The higher corrosion potential is, the smaller corrosion current density is. And the larger capacitive loop radius is, the greater the resistance of corrosion reactions has. The low frequency part of electrochemical impedance spectroscopy (EIS) of alloy coatings containing Re and Ti appear certain degree of migration. And it may be related to the formation of passive film which is conducive to the improvement of corrosion resistance. Electrochemical test results are consistent with the immersion test.
     The Re elements can reduce surface tension, remove O, S elements, play a role in grain refinement, and reduce intergranular corrosion rate. Organizational boundaries of coating containing Re integrated into the shallow groove. And the corrosion products after hydrochloric acid corrosion are denser comprised with pure zinc. The effect of grain refinement is the best when the content of Re reaches to 0.1%. The surface of coating containing Ti is uniform cellular organization, and the surface morphology qualities improve. Spectrum from the cross-section of the line scan detected cerium, but do not detect titanium.
     X-ray diffraction analysis shows that the corrosion products of coatings added Mg and Re are mainly in the form of alkaline zinc sulfate which can attach to the substrate surface to prevent corrosion to the interior of samples and improve corrosion resistance. In addition, zinc aluminum complex oxides are detected, which can increase the corrosion resistance. And in the coatings added Ti, there is a small amount of zinc titanium oxides, which indicates that the titanium element can play a role in enhancing by formation oxide film.
     The hot dip time and temperature of the new alloy is similar with the pure zinc, due to the low Al, Mg, Ti, and Re content in the coatings. On the basis of the original galvanizing line it can produce these new alloy coatings, so the coatings have wide application prospect.
引文
[1]李金桂,吴再思.防腐蚀表面工程技术[M].北京:化学工业出版社,2003
    [2]陈厚载.浸镀技术1000例[M].上海:上海交通大学出版社,1994
    [3]陈建华.热镀新工艺中锌渣的形成及控制[J].电镀与精饰,1990(1):41-43
    [4]王义生.国外钢管热镀锌生产[M].北京:冶金工业出版社,1982
    [5]顾国成,刘邦津.热浸镀[M].北京:化学工业出版社,1991
    [6]ClaudeH.E.Belin. Synthesis and crystal structure determinations in the T and 8 phase domains of the Iron-Zinc system:Electronic and bonding analysis of Fe13Zn39 and FeZn10, a subtle deviation from the Hume-Rothery Standard [J]. J Solid State Chem, 2000(151):85-89
    [7]Brows P J. The Structure of the ζ-phase in the Transition Metal-Zinc Alloy Systems [J]. Acta Cryst,1962(15):608-612
    [8]Marder A R. The metallurgy of zinc-coated steel [J]. Progress in Materials Science, 2000(45):198-203
    [9]刘秀玉.新型热浸镀锌合金系列耐蚀性研究[D].济南:山东大学,2004
    [10]陈志远,张文波,尹泉升.带钢热镀锌及其保护气体的发展[J].冶金能源,2005,24(4),18-22
    [11]Sivakumar R and Mordike L. High temperature coatings for gas turbine blades [J]. Surface and Coating Technology,1989(37):139
    [12]李九岭.从热镀锌史看美钢联法的发展[J].武钢技术,1995,33(1):11-15
    [13]程国平,袁明生等.国外热镀锌技术最新发展趋势[C].第六届中国热浸(渗)镀学术技术交流会论文集,上海,2001(11):1-8
    [14]Fried J J. Atmospheric corrosion products on Al [J]. Zn and Al-Zn metallic coatingsCorrosion,1986,42(17),422
    [15]卢锦堂,江爱华.热镀Zn-Al合金镀层的研究进展[J],材料保护,2008,41(7),47-52
    [16]Tang N-Y, Adams GR. Studies on the inhibition of alloy formation in hot-dip galvanized coatings [J]. The Physical Metallurgy of Zinc Coated Steel,1994,27(3): 41-54
    [17]Tang N-Y, Adams GR, Kolisnyk PS. On determining effective aluminum in continuous galvanizing baths [J]. Iron and Steel Society,1995,776-779
    [18]高桥务Zn-Al系合金的晶界腐蚀[J].防蚀技术,1983(32):424-425
    [19]于萍.钢基表面热镀Zn-Mg合金镀层化学组成与电化学腐蚀行为的研究[J],材料工程,2008(3):63-66
    [20]Hideloshi S, Kazumi N. Developments and Properties of Zn-Mg galvanized steel sheet "DYMAZINC" have excellent corrosion resistance. Nippon Steel Technical Report,1999(79):63-67
    [21]李焰,魏绪钧.微量Ti和Mg对热镀锌钢丝耐腐蚀性能的影响,2001:165-167
    [22]Chen Z W, Kennon N F, See J B. Technigalva and other Developments in Datch Hot-dip Galvanizing [J]. JOM,1992,44 (1):22-26
    [23]卢锦堂等.锌浴中镍含量对热浸锌镀层厚度的影响[J].材料保护,2001,34(4):15-16
    [24]孙虎元等.镍元素在热浸镀锌中的应用与发展[C].全国真空冶金与表面工程学术研讨会会议论文集,2005,173-174
    [25]Alie.C.J. et al. Galvanizing Plant trial Using the Nickel-Zinc Process[J]. CIM Bulletin,1987,80(902):109-114
    [26]Notowidjojo et al. Possible Source of Dross Formation in Zinc-0.1% Nickel Galvanizing Process [J]. Material Forum,1989, (13):73-75
    [27]闫瑞华.添加钛镁元素对热浸镀锌层性能影响[D].青岛:中国科学院海洋研究所,2006.
    [28]朱相荣,王相润.金属材料的海洋腐蚀与防护[M].北京:国防工业出版社,1999
    [29]魏世承,朱晓飞.添加铝和钛对热镀锌层的影响[J].有色金属,2003,55(3):23-25
    [30]Yang D, Chen J, Han Q, Liu K. Effect of lanthanum addition on corrosion resistance of hot-dipped galvalume coating [J]. Journal of Rare Earths,2009(27): 114-118
    [31]刘淑荣,陈丽娟.稀土对锌铝合金镀层作用机理研究[J].中国稀土学报,1993,11(2):130-138
    [32]Amadeh A, Pahlevani B, Heshmati-Manesh S. Effects of rare earth metal addition on surface morphology and corrosion resistance of hot-dipped zinc coatings [J]. Corrosion Science,2002 (44):2321-2331
    [33]Wang K L, Zhang Q B, Sun M L et al. Microstructure and corrosion resistance of laser clad coatings with rare earth elements [J]. Corrosion Science,2001(43):255-267
    [34]吴俊琳,余仲兴,朱永达.微量添加元素对热镀锌层性能的影响[J],上海有色金属,2001,22(2):54-58
    [35]Farid Hanns. Factors affecting the quality of hot-dip-galvanized steel sheet. Surface Technology,1984(21):27-37
    [36]方淑芳,唐静.锡对热镀锌镀层组织和性能的影响[J].攀钢技术,2000(5):42-46
    [37]孔纲,卢锦堂,陈锦虹等,钢中元素对钢结构件热镀锌的影响[J].腐蚀科学与防护技术,2004,16(3):162-165
    [38]Ricards R W, Clarke H. Analysis of galvanized coatings [C]. Proceedings of the 17th International Galvanizing Conference, Paris,1994, GC8/1-8/16
    [39]Peng Bicao, Wang Jianhua, Su Xuping et al. Effects of zinc bath temperature on the coatings of hot-dip galvanizing [J], Surface & Coating Technology,202 (2008) 1785-1788
    [40]Herhsmann A. A. Alloy formation in hot dip galvaning [C]. English International Conference Hot Dip Galvaning, London,1967
    [41]吴朝玲.铝和四川稀土在在热镀锌中应用[D].成都:四川大学,2000
    [42]刘中兴,罗果萍.锌-铝-稀土合金热镀钢丝助镀剂选择的研究[J].包头钢铁学院学报,2000,19(4),300-302
    [43]Townsend H.E Hot-dip coated sheet steel-review[J]. Materials Performance,1986, 25(8):36-46
    [44]魏绪钧,冯法伦,徐秀芝.稀土对热镀层性能的影响[J].中国稀土学报,1995,24(1):475-478
    [45]王亦工.可锻铸铁热镀锌助镀剂的试验研究[J].新技术新工艺,1997(6):36-37
    [46]孙克宁.热浸镀铝工艺及水溶液助镀剂的研究[J].电镀与环保,2001,21(3):29-32
    [47]章小鸽.锌的腐蚀与电化学[M].北京:冶金工业出版社,2008
    [48]张洪斌5%Al-Zn-1.6Si%合金镀层的耐腐蚀性能[J].上海交通大学学报,1998,32(9):121
    [49]卢燕平5%AI-Zn合金镀层钢板组织与腐蚀特性[J].材料科学与工艺,1997(4):34
    [50]Lynch R F. High Temperature Oxidation Resistance of Galvalume Coating [J]. Journal of Metals,1987(8):39-43
    [51]Lynch R F. Hot·Dip Galvanizing Alloys[J]. Journal of Metals,1987,39(8):41-44
    [52]Manna M, Naidu G, Rani N, et al. Charactefisation of coating on rebar surface using hot-dip Zn and Zn-4.9A1-O.lmischmetal bath[J]. Surface and Coating Technology,2007(7):1-7
    [53]Stoyko G. Reaction Between Solid Iron and Liquid Zn-5 AlBaths[J]. Materials Research and Advanced Techniques,1997,88(4):346-352
    [54]Atsushi Komatsu, Hidefusa Izutani, Takao Tsujimura, Atsushi Andoh, Toshiharu Kittaka. Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheet under accelerated corrosion environment[J].2000,86(8):534-541
    [55]Takeshi SHIMIZU, Fukio YOSHIZAKI, Yasushi MIYOSHI. Corrosion Products of Hot-dip Zn-6 percent Al-3 percent Mg Coated Steel Sheet Subjected to Atmospheric Exposure[J].2003,89(1):166-173
    [56]Satoru Tanaka, Kazuhiko Honda, Akira Takahashi. he Performance of Zn-Al-Mg-Si Hot-Dip Galvanized Steel Sheet[C]. The 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet,2001,153-160
    [57]周有福.极好的耐腐蚀Zn-Al-Mg-Si合金热浸镀锌薄钢板[J].武钢技术,2004,42(2):56-57
    [58]王云坤,宋东明.热镀锌钢板镀层种类、结构及性能[J],腐蚀与防护,2008,29(4):202-206
    [59]张启富.热镀钢板的发展概况及我国发展对策的探讨[J].材料科学与工程, 2000(18):102-108
    [60]孙中华,曹晓明,杜安.钢板热镀锌技术的研究现状与发展趋势[J].天津冶金,2005(6):15-18
    [61]主沉浮,魏云鹤,于萍等.高速公路护栏钢基表面热镀55A1-Zn合金生产中的关键技术研究[J].中国表面工程,2003,62(5):43-47.
    [62]魏云鹤,于萍, 刘秀玉等.钢基表面热镀锌镁合金镀层及其耐蚀性能研究[J].材料工程,2005(7):40-42.
    [63]许红.新型锌铝镁合金镀层工艺及其耐蚀机理的研究[D].山东大学,2009,18.
    [64]Vera Cruz R P, Nishikata A, Tsuru T. AC impendence monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment[J]. Corrosion Science,1996,38(8):1397-1406

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700