金川铜镍硫化物矿床铂族元素地球化学特征及成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金川矿床作为一个世界级超大型矿床,是我国最大的铂族元素生产基地,不仅是铜、镍、铂族等多种金属元素超常富集的产物,也是典型的地质条件和完整的成矿机制长期作用的结果。随着金川矿床勘探的不断深入,坑道及钻探揭露大量的地质信息,提供了大量新的矿床地质信息。随着成矿理论和测试技术的不断快速发展,为系统深入研究金川矿床铂族元素的富集机理及成矿作用奠定了基础。
     在成矿环境、成岩成矿时代、岩石特征方面,通过与全球硫化镍矿床的对比分析,认同金川矿床产出环境为地台边缘裂谷环境,具有地台区地质特征;根据K—Ar法和Sm-Nd法同位素测定,推测金川岩体形成于长城纪晚期;岩石化学、稀土元素特征,表明金川原始的含矿岩浆属于高镁质拉斑玄武岩浆。
     在前人总结提出的深部熔离一分期贯入的金川矿床成矿模式基础上,应用液态硫化物结晶分异理论,紧密联系岩浆成因、演化及地幔源区性质和构造环境;同时开展稀土元素、硫同位素、矿物流体包裹体成分和温度的测定,研究铂族元素赋存状态、矿物学特征、成矿地质条件:着重研究岩浆形成和演化过程中铂族元素结晶分异过程中的地球化学行为,探讨铂族元素的富集机制及成矿作用,建立铂族元素成矿模式。
     金川铂族元素成矿模式包括岩浆源特征、岩浆上侵动力、岩浆上侵方式、岩浆的深部熔离作用、同化作用、结晶分异作用、重力滞后作用等,导致在岩浆房中产生贫PGE+Au的含矿岩浆、含PGE+Au的含矿岩浆、富PGE+Au的富矿岩浆和硫化物残余岩浆的分层体系。经历了早期岩浆喷发、三期岩浆上侵定位,含矿岩浆上侵就位后就地熔离和聚集,以及后期的气化热液、热液叠加成矿作用和矿床的后期改造等,导致产生一个完整的、动态的成矿模式,形成复式超基性岩体和复式矿体,这就是深部熔离一脉动侵入一多次贯入成矿模式。正是这一个成矿模式致使在一个面积1.34km2的小岩体中,赋存了世界级的超大型矿床。正是这一成矿机制,可能是唯一能够使“小岩体成大矿”的机制。
Jinchuan deposit, as a world-class super-large deposit, it is the largest production base of platinum group elements in China, not only copper, nickel, platinum group elements metals and other extraordinary metals'product of enrichment, it is also the long-term result of a typical geological conditions and complete ore-forming mechanism. With the continuous deepening of the Jinchuan deposit exploration, tunnel and drilling exposed a lot of geological information, Provided a large number of new deposit geological information. With the rapid development of ore-forming theory and testing techniques, which laid a solid foundation for systematic in-depth study of Jinchuan copper-nickel sulfide deposit platinum group elements'enrichment mechanism and mineralization.
     In terms of ore-forming environment, diagenetic ore-forming epoch, rock characteristics, by making a comparative analysis of global nickel sulfide deposit, they agreed with the Jinchuan deposit, output environment for platform marginal rift, with the geological features of the platform. According to K-Ar method and Sm-Nd isotopic method, Speculated that Jinchuan rock formed in the late changchengian, of which rock chemistry, rare earth elements'feature, showed that the original ore in Jinchuan is a high magnesian tholeiitic basaltic magma.
     On the basis of the jinchuan deposit metallogenic model of predecessors summarized and proposed, application of the theory of liquid sulfide fractionation, closely contacted with magmatic origin, evolution and mantle source region, property and the tectonic setting; at the same time, carry out the measurement of rare earth elements, sulfur isotope, Fluid fluid inclusion composition and temperature, research the occurrence of platinum group elements, mineralogical characteristics, ore-forming geological conditions, focused on the geochemical behavior of magma formation and evolution of which platinum-group elements crystallization differentiation,research enrichment mechanism and mineralization of platinum group elements.
     Jinchuan ore-forming model, including igneous rocks'characteristics, power on the magma intrusion, mode on the magma intrusion, molten magma from the role of the deep, assimilation, crystallization differentiation, gravity hysteresis, bring about magma chamber generate layered System which is poor PGE+Au ore magma, with PGE+Au ore magma, rich PGE+Au ore magma and residual magmatic sulfide. Experienced early magmatic eruption, three periods'location magma intrusion, ore magma' invasion, liquation, aggregation, as well as the late hydrothermal gasification, superimposed hydrothermal mineralization and post-transformation etc. which lead to generate a complete, dynamic model of mineralization, formed double-ultrabasic rock and multiple orebody, this is metallogenic model of deep segregation-pulse invasive-repeated penetration. It is this leading to in a 1.34km2 small rock, ccurrenced the world-class super-large deposits. It is this ore-forming mechanism may be the only one to make "little rock becomes large ore" mechanism.
引文
[1]Keays RR and Davison RM,1976. Palladium, mdium and gold in ores and host rocks of nickel sulfide deposits in Western Australia. Econ. Geol,.71:1214-1225.
    [2]Naldrett A J.1981. Nickel sulfides deposits:Classification. composition,and genesis[J]. Econ. Geol,.6:28-85.
    [3]Hou QL. Kolesnikov E M. Xie L W. et al.2004. Platinum group element abundances in a peat layer associated with the Tunguska event. further evidence for a cosmic origin [J]. Planet.Space Sci..52:331-340.
    [4]Siehert C, Kramers. J D, Meisel TH, et at.2005. PGE, Re-Os and Moisotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J]. Geochim. Cosmochim. Acta.69:1787-1801.
    [5]Keller G. Stinnesbeck W. Adatte T. et al.2003. Multiple impacts across the Cretaceous Tertiary boundary [J]. EartlrSci. Rev..62:327-363.
    [6]Gikson A and Allen C.2004. Iridium anomalies and fractionated siderophile element patterns in impact ejecta. Brockman Iron Formation. Hamersley Basin. Western Australia:evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic earth [J]. Earth Planet. Sci. Lett..220:247-264.
    [7]Irvine GJ.Graham D. Kjarsgaard P B A.2003. A Re-Os isotope and PGE study of kimberlite-derived peridotite xenoliths from So merest Island and a comparison to the Slave and Kaapvaal craton[J]. Litbos,71:461-488.
    [8]Zhong H. Yao Y. Prevec S A. et al.2003. Trace-element and Sr-Nd isotopic geochemistry of the PG&bearing Xinjie layered intrusion in SW China[J]. Chem203:237-252.
    [9]Crocket J H and Paul D K.2004. Platinuro-group elements in Deccanmafic rocks:a comparison of suites differentiated by Ir content [J].Chem 208:273-291.
    [10]Zheng J. Sun M.Zhou M F and Robinson P.2005. Trace elemental and PGE geochenucal constraints of Mesozoic and Cenozoic peridotitic xenolithson lithospheric evolution of the North China Craton [J]. Gieochim. Cnsmochim. Acta,69:3401-3418.
    [11]Barnes S J. Maier W D and Ashwal L D.2004. Platinm-group element distribution in the Main Zone and Upper Zone of the Bushveld Complex. South Africa[J]. Chem. Geol.,208:293-317.
    [12]BUchl A. BrUgmann G and Batanova V G.2004. Formation of podiform chromitite deposits:implications from PGE abundances and Os isotopic compositions of chronutes from the Troodos complex. Cyprus[J]. Chem. Geol.208:217-232.
    [13]Zhou M F, Lesher CM, Yang Z, et al.2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) suffide bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China:implicationsfor the tectonic evolution of the Central Asian orogenic belt[J]. Chem. Geol.,209:233-257.
    [14]Li, X.H., L. Su, S. L. Chung, Z. X. Li, Y. Liu, B. Song, D. Y. Liu (2005), Formation of the Jinchuan ultramafic intrusion and world's third largest Ni-Cu sulfide deposit: Associated with the ~825 Ma south China mantle plume, Geochemistry Geophysics Geosystems, 6(1):1-16.
    [15]Hanley J J. Pettke Th.Mungall J E. et al.2005. The solubility of platinum and gold in NaCI brines at 1.5 kbar.600 to 800℃:A laser ablation ICP-MS pilot study of synthetic fluid inclusions [J]. Geochim. Cosmochim. Acta.69:2593-2611.
    [16]Maier W D.2005. Platinunfgroup element (PGE) deposits and occurrences:Mineralization styles, genetic concepts, and exploration criteria [J].J. Afr. Earth Sci..411:165-191.
    [17]储雪蕾,孙敏,周美夫.化学地球动力学中的铂族元素地球化学[J].岩石学报,2001,17(1):112-122.
    [18]王瑞廷.煎茶岭与金川镍矿床成矿作用比较研究[博士论文][D].导师:赫英,汤中立.西安:西北大学.2002,1-143.
    [19]汤中立.超大型岩浆硫化物矿床的类型及地质对比意义[J].甘肃地质学报,1992,1(1):24-47.
    [20]范育新,张铭杰.超大型铜镍硫化物矿床研究进展[J].甘肃地质学报,1999,8(2):47-52.
    [21]NALDRETT A J.1992. A Model for the Ni-Cu-PGE Ores of the Noril'Region and Its Application to Other Areas of Flood Basalt. ECONOMIC GEOLOGY AND THE BULLETIN OF SOCIETY ECONOMIC GEOLOGISTS, Vol.87 No.8:1945-1962
    [22]汤中立,李文渊.金川铜镍硫化物矿床模式及地质特征对比[M].北京:地质出版社.1995,14-209.
    [23]陈毓川,赵逊,张之一,等.世纪之交的地球科学—重大地学领域进展[M].北京:地质出版社.2000,1-69.
    [24]毛景文,柯洪,等.铜镍岩浆硫化物矿床成矿作用研究综述[J].矿产与地质,2003,17(增刊):281-284.
    [25]涂光炽,等.中国超大型矿床[M].北京:科学出版社,2000,3-9.
    [26]汤中立.超大型岩浆矿床的划分与找矿[J].地质与勘探,2002,38(3):1-7.
    [27]朱训主编.中国矿情(第二卷)[M].北京:科学出版社,1999,312-3311
    [28]甘肃省地矿局第六地质队.甘肃永昌县白家咀子硫化铜镍矿第一矿区地质勘探最终报告,第一卷,1961.
    [29]汤中立.金川硫化铜镍矿床成矿模式[J].现代地质,1990,4(4):55-64
    [30]罗照华,AA马拉库舍夫等.矿床的成因—以诺里尔斯克(俄罗斯)和金川(中国)为例[J].矿床地质,2000,19(4)330-33.
    [31]陈国达,成矿构造研究法[M],地质出版社,1978.
    [32]杨振德,潘行适,杨易福.阿拉善断块及邻区地质构造特征与矿产[M].北京:科学出版社,1988,40-45.
    [33]陈毓川,朱裕生,孙文珂,等.中国矿床成矿模式[M].北京:地质出版社,1993,98-102.
    [34]程裕淇主编.中国区域地质概论[M].北京:地质出版社,1994,448-476.
    [35]董显扬,李行,叶良和,等.中国超镁铁质岩[M].北京:地质出版社,1995,1-74,98-129.
    [36]李文渊.中国铜镍硫化物矿床成矿系列与地球化学[M].西安:西安地图出版社,1996.
    [37]董中葆.等.中国变质作用及其与地壳演化的关系[M].北京地质出版社,1986,1233.
    [38]肖序常,陈国铭,朱志直.祁连山古蛇绿岩带的地质构造意义[J].地质学报.1978,52(4):281-294.
    [39]裴荣富,吴良士,熊群尧,等.中国特大型矿床成矿偏在性与异常成矿构造聚敛场[J].北京:地质出版社,1998,262-286.
    [40]甘肃省地质矿产局第六地质队.白家嘴子硫化铜镍矿床地质[M.北京:地质出版社,1984,1-225.
    [41]贾恩环.甘肃金川铜镍硫化物矿床成矿模式和成矿系列[J].地质论评,1986.32(3):276-286.
    [42]Du Andao,Sun Yali,Zou Xiaoqiu, et al.Study on Rhenium-Osmium isotope system by inductively coupled plasma mass spectrometry and its application to copper-nickel sulfide and molybdenite to copper-nickel sulfide and molybdenite dating.岩矿测试,1996,15(4):263-266.
    [43]汤中立.金川铜镍硫化物矿床岩浆成矿作用的偏在性[J].甘肃地质学报,1996,5(2):73-85.
    [44]汤中立.中国岩浆硫化物矿床的主要成矿机制[J].地质学报,1996,70(3):237-243.
    [45]邓万明,钟大费.壳幔过渡带及其在岩石圈构造演化中的地质意义[J].科学通报,1997,42(23):2474-2482.
    [46]李人澍.成矿系统分析的理论与实践[M].北京:地质出版社,1996,1-262.
    [47]邓晋福,莫宣学,罗赵华,等.火成岩构造组合与壳—幔成矿系统[J].地学前缘,1999,6(2):259-270.
    [48]宋恕夏.金川硫化铜镍矿床二矿区矿床地质特征[J].地质与勘探,1983,19(11):8-11.
    [49]宋谢炎,李十彬,王玉山,等.2005,含矿岩浆通道对于岩浆铜镍硫化物矿床找矿工作的意义[J].矿物岩石地球化学通报,24(4):293-298.
    [50]梁有彬,朱文凤,宋国仁,等.金川铜镍型铂族元素矿床地质地球化学特征[J].矿产与地质,1997,11(57):1-13.
    [51]骆华宝.中国主要硫化铜镍矿床及其成因研究(硕士论文)[D].中国地质科学院,1990,1-101.
    [52]杜安道,赵敦敏,王淑贤,等.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J],岩矿测试.2001,20(4):247-252.
    [53]李献华,苏犁,宋彪,等.金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J].科学通报,2004,49(4):401-402.
    [54]张宗清,杜安道,唐索寒,等.金川铜镍矿床年龄和源区同位素地球化学特征[J].地质学报.2004,78(3):359-365.
    [55]Keays, R. R., C. Ihlenfeld,B. I. A. McInnes, M. F. Zhou, D. D. Lambert (2004),Re-Os isotope Dating of the Jinchuan Ni-Cu-PGE Sulfide Deposit, China, Proceedings of the IGCP 479 Hong Kong Workshop, Recent Advances in Magmatic Ore Systems in Mafic-ultramafic Rocks:41-42.
    [56]Su, S.G.,J. F. Deng, Z. L. Tang, M. L. Liu, D. B.Lou (2004),Mineralization characteristics of platinum group elements in Jinchuan Cu-Ni-PGE deposit, Proceedings of the IGCP 479 Hong Kong Workshop, Recent Advances in Magmatic Ore Systems in Mafic-ultramafic Rocks:43-47.
    [57]Yang, G.., A. D. Du, W. J. Qu, J. F. Chen, G. Yu, Z. C. Peng (2004), Pt-Os and Re-Os dating of ores from Jinchuan Cu-Ni-PGE deposit, a world class Ni deposit, Proceedings of the IGCP 479 Hong Kong Workshop, Recent Advances in Magmatic Ore Systems in Mafic-ultramafic Rocks:40.
    [58]屈文俊,杜安道.铜镍硫化物的Re-Os同位素定年方法及应用实例[J].地球学报.2005.26增刊:140-142.
    [59]杨刚,杜安道,卢纪仁等.金川Ni-Cu-PGE矿床块状硫化物矿石的Re-Os(ICP-MS)定年.中国科学(D辑),2005,35(3):241-245.
    [60]杨胜洪,陈江峰,屈文俊等,金川铜镍硫化物矿床的Re-Os“年龄”及其意义.地球化学.2007,36(1):27-36.
    [61]田毓龙,武栓军,孟蓉等,金川超镁铁质岩体LA-ICPMS锆石U—Pb年龄[J].矿物学报.2007,27(2):211-217.
    [62]Chai Gang and Naldrett A J.1992bThe Jinchuan ultramafic intrusion:cumulate of a high-Mg basaltic magma. Journal of Petrology,33(2)277-303
    [63]贾恩环.金川硫化铜镍矿床地质特征[J].矿床地质,1986,5(1):27-38.
    [64]王瑞廷,毛景文,赫英,等.金川超大型铜镍硫化物矿床的铂族元素地球化学特征[J].大地构造与成矿学,2004,28(3):279-286.
    [65]汤中立,闫海卿,焦建刚等,中国小岩体镍铜(铂族)矿床的区域成矿规律[J].地学前缘,2007,14(5):92-103.
    [66]杨合群.论金川硫化铜镍矿床成因[J].中国地质科学院院报,1991,第22号:117-135.
    [67]汤中立,S J Barnes.岩浆硫化物矿床成矿机制[M].北京:地质出版社,1998,1-19
    [68]汤中立,白云来.华北古大陆西南边缘构造格架与成矿系统[J].地学前缘,1999,6(2):271-284.
    [69]汤中立,白云来.华北板块西南边缘大型、超大型矿床地质构造背景[J].甘肃地质学报,2000,9(1):1-15.
    [70]杨轩柱,彭礼贵,董显扬,等.金川含铜镍超基性岩体的岩浆包裹体特征及其地质意义[J].地质论评,1991,37(1):70-79.
    [71]杨轩柱,安二元.金川岩体稀土元素特征其成因意义.西安地质学院学报,1991,13(1):15-22.
    [72]杨轩柱.金川硫化铜镍矿床铂族元素和金的地球化学.中国地质科学院西安地质矿产研究所 所刊,1989,第26号:59-68.
    [73]孙桂玉.脆-韧性剪切带控矿的初步探讨-对金川铜镍矿控岩控矿构造的新见解[J].矿床地质,1990,9(4):352-362.
    [74]杨合群.金川铜镍矿床硫同位素地球化学[J].西北地质,1989,10(2):20-23.
    [75]吴志勇,郭原生.金川铜镍硫化矿床成矿温度压力计算及成矿[J].矿物岩石,1992(1):89-95.
    [76]师占义.金川铜镍矿床超基性岩体的矿物岩石学[J].中国地质科学院院报西安地质矿产研究所分刊,1980,1(1):78-90.
    [77]师占义,洛长义,杨合群.中国主要含镍岩体(带)岩是类型与组构特征[J].西北地质科学,1992,13(1):1-16.
    [78]杨星,李行,杨钟堂,等.中国含铂基性超基性岩体与铂(族)矿床[M].西安:西安交通大学出版社,1993,1-28.
    [79]石应骏,张朝文,寸树仓.龙首山推覆构造的发现及其意义[J].科学通报,1995,40(9):812-813.
    [80]徐章华,汤中立,徐克勤.金川铜、镍(含PGE)岩浆硫化物矿床母岩浆成分的估计[J].现代地质,1998,12(4),506-514.
    [81]解广轰,汪云亮,范彩云,等.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制[J].中国科学(D辑),1998,28(增刊):31-36
    [82]李士彬,宋谢炎,胡瑞忠等,甘肃金川Ⅱ号岩体岩相学特征及分离结晶过程探讨[J].岩石学报.2007,23(10):2553-2560.
    [83]查仁荣,林关玲.甘肃省金川公司龙首矿深部地球化学找矿研究[J],地质地球化学.1995,6:1-4.
    [84]刘月星.铜镍硫化物矿床成矿作用及成矿模式研究[J].矿产与地质,1997,11(4):225-231.
    [85]王静,纯施晶.金川富铜矿体金银赋存特征[J].矿物岩石地球化学通报,1999,18(4):358-361.
    [86]Rao B V, Ripley E M Petrocherrncal studies of the dunlsc road C-Ni deposit.Ibid,1985,78:1222-1238.
    [87]Pye E, Naldrett A J, Gibhn F The geology and ore deposits of the Sudbury structure. Ont Geol Surv,1984, Spec(1):601.
    [88]Genkin A D,Distler V V,Gladyshev G D, et al. Sulfide copper-nickel ores of the Voril'sLs deposit(in Russian). Moscow:Nsake.1981.234.
    [89]Grinenko L N.Sources of sulfur of the nickehferrous and barren gabbro-dolente intrusions of the northwestern Sibenan platform. Int geol Rev.1985,695-708.
    [90]Marnwaring P R,Naldrett A J,Country rock association and the genesis of Ni-Cu sulfides in the Waterhen intrusion, Duluth complex, Minnesota. Econ Geol,1997,72:1269-1284.
    [91]何国琦,李茂松,唐延龄等.新疆古生代地壳演化及成矿[M].乌兽木齐:新疆人民出版社.1994,314-320.
    [92]Barnes S J, Brand N W. The distribution of Cr, Ni.and chromite in komatiites, and application to exploration for komatiite-hosted nickel sulfide deposits. Econ. Geol.,1999,94:29-132.
    [93]骆华宝,乔德武.中国主要含镍岩体特征及其成因[J].岩石矿物学杂志,1993,12(4):312-324
    [94]Jagoutz E, Palme H.The abundances of major, minor and trace elements in the earth's mantle as derived from primitive ultramafic nodules. Geochim. Cosmochim. Acta,1979,11: 2031-2050.
    [95]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992,1-188.
    [96]Rajamani V, Naldrett A J.Partitioning of Fe, Co, Ni,Cu between sulfide liquid and basaltic melts aid the composition of Ni-Cu sulfide deposits. Econ. Geol,1978,73:82-93.
    [97]顾雪祥,刘建明,Oskar Schulz,等.湖南沃溪金-锑-钨矿床成因的稀土元素地球化学证据[J],地球化学,2005,34(5):428-442.
    [98]梁有彬,刘同有.中国铂族元素矿床[M].北京:冶金工业出版社,1998.
    [99]宋恕夏.金川硫化铜镍矿床-矿区铂富集体的发现及其赋存状态研究[J].地质与勘探,1986,22(3):36-39.
    [100]朱文凤,梁有彬.金川铜镍硫化物矿床铂族元素的赋存状态及分布规律[J].地质与勘探,2000,36(1):26-28.
    [101]朱文凤,吕俊武,金川铜镍矿床铂族元素成矿作用探讨,矿物岩石地球化学通报[J],2000,19(4):328-332.
    [102]王瑞廷,毛景文,柯洪,等.铜镍岩浆硫化物矿床成矿作用研究综述[J].矿产与地质,2003,17(增刊):281-284.
    [103]余金生,李裕伟.地质因子分析[M].北京:地质出版社,1985,1-421.
    [104]Barnes S J, Couture J F, Sawyer E W. Nickel-copper occurrences in the Belleterre-Angliers belt of the Pontiac subprovince and the use of Cu-Pd rations in interpreting platinumgroup element distributions[J]. Economic Geology,1993,88:1402-1418.
    [105]Maier W D, Barnes S J, De klerk W J, Teigler B, Mitchell A A. Cu/Pd and Cu/Pt of silicate rocks in the Bushveld complex;Implications for platinum-group element exploration[J]. Economic Geology,1996, 91:1151-1158.
    [106]Fleet M E, Crocket J H,Stone W E.Partition of platinum Group elements (Os、Ir、 Ru、Pt、Pd) and gold between sulfide liquid and basalt melt[J]. Geochimica et CosmochimcaActa,1996,60(13):2397-2412.
    [107]Barnes S J, Naldrett A J, Gorton M P. The origin of the Fractionation of platinum-group elements in terrestrial magmas [J]. Chem. Ueol.,1985,53:303-323.
    [108]Keays R R, Nickle E H, Groves D I, McGoldrick P J. Iridium and palladium as discriminants of volcanic exhalative, hydrothermal, and magmatic nickel sulfide mineralization[J].Econ Geol,1982,77; 1535-1547.
    [109]Keays R R.The role of komatiitic and picritic magmatism and S-saturation in the formation of the ore deposits[J]. Lithos,1995,34:1-18.
    [110]杨合群.金川超基性岩体铬尖品石的自然分类及其成因意义[J].西北地质,1987,(6):25-29.
    [111]苏尚国,周美夫,漆亮,等.甘肃金川铜镍铂矿床铂把富集体富集机理[J].2004,第八届全国矿床会议沦文集,238-241.
    [112]杨合群.论金川硫化铜镍矿床中贵金属元素的分带机制[J].西北地质学,1991,13(1):75-80.
    [113]戈德列夫斯基,M.H.含矿超基性岩浆的形成条件及演化[J].方古译.地质科技情报,1983,2(2):62-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700