新疆忠宝钨矿地质特征、成因研究及外围预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中天山地块位于天山山脉中部,一般认为是准噶尔与塔里木板块之间的一个微陆块,其西宽东窄,在库米什以东地区尖灭。南天山洋盆在晚古生代开始向北俯冲于中天山地块之下,致使中天山南缘在晚古生代形成一系列与俯冲-碰撞有关的火山岩及侵入岩,并控制了本区不同类型矿床的产出。忠宝钨矿即产于中天山地块南缘北西西向花岗岩带上。
     本文在野外地质工作及收集前人资料的基础上,以库米什地区区域地质背景、构造演化、忠宝岩体的成因研究为基础,详细研究了忠宝钨矿的矿床地质特征、矿体地质特征及矿床成因,并总结了矿床的成矿模式,最后结合矿区外围相关化探及遥感异常分析,对库米什地区钨矿化远景作出推断。
     库米什地区演化经弧后扩张-俯冲-碰撞-后期拉张回返构成一个典型的威尔逊旋回,后期受走滑构造作用形成拉分盆地。其中南天山洋盆向北俯冲-碰撞阶段为本区的主要成矿阶段,并控制了区内铜铅锌多金属矿床、钨矿等矿床的形成。
     忠宝二云母二长花岗岩与钨矿化关系密切,锆石U-Pb年代学研究获得其侵入年龄为298±3.2Ma,属晚石炭世。地球化学特征表明忠宝二云母二长花岗岩为具有中等-高的分异演化程度的高钾钙碱性过铝质花岗岩,为形成于同碰撞环境的壳源重熔S型花岗岩,源岩为中天山前寒武系基底。岩体钨含量高,为忠宝钨矿的主要金属成矿物质来源。
     野外观察及室内研究表明,忠宝钨矿为矽卡岩型白钨矿矿床,叠加了云英岩矿化及后期石英脉矿化。矿体产出于库米什背斜东部倾伏端,背斜转折端及两翼形成许多次级小褶皱,相邻岩层相对滑动致使褶皱的枢纽及两翼部分常形成层状、似层状、马鞍状剥离空洞,有利于岩体进入围岩进行矽卡岩交代。背斜南翼地层受NE向断裂破坏从而为岩浆侵入提供了通道及侵入空间,后期近SN向断裂构造多为对矿体的后期改造,忠宝钨矿矿体形态特征即受到上述多重控矿因素的影响。
     矿石类型主要为石榴透辉绿帘石矽卡岩型、阳起透辉符山石矽卡岩型、云英岩型、矽卡岩化大理岩型等,多为半自型粒状结构、纤状变晶结构、鳞片粒状变晶结构,块状、条带状构造。主要矿石矿物为白钨矿,呈浸染状赋存于各类矿石中,其次为少量锡石及黄铁矿。脉石矿物为透辉石、符山石、绿帘石、石榴石、硅灰石、透闪石、石英、萤石、白云母、黑云母、方解石等。
     成矿作用按先后顺序可分为矽卡岩期及云英岩-石英白钨矿期,其中矽卡岩期可分为早期矽卡岩阶段和晚期矽卡岩阶段,云英岩-石英白钨矿期可分为云英岩阶段和石英-白钨矿阶段。后三个阶段为主成矿阶段。石英碳酸盐阶段已无钨矿化形成。
     岩体及围岩的钨含量研究表明钨主要来源于成矿花岗岩体,推断中天山地块前寒武系基底为钨的有利含矿建造,而下泥盆统地层可作为贫的矿源层提供部分物质来源。石英氢氧同位素研究表明成矿流体来源为岩浆水,与忠宝岩体关系密切。白钨矿氧同位素研究显示其具有矽卡岩型白钨矿的氧同位素特征(180富集)。
     通过对矿区白钨矿、透辉石、石英、萤石、方解石的流体包裹体测试分析,对矿床的成矿物理化学条件获得以下认识:
     (1)成矿系统流体温度在140℃-440℃之间,白钨矿主矿化阶段温度为250~360℃,平均温度为308.78℃,属高-中温环境。成矿温度从早期矽卡岩阶段-晚期矽卡岩阶段-石英~白钨矿阶段-石英~碳酸盐阶段依次降低,其中晚期矽卡岩阶段和石英-白钨矿阶段为主要成矿阶段。
     (2)成矿系统流体盐度在6%-22%之间,其中白钨矿包裹体盐度在12%~15%之间,平均盐度为13.41%,为中高盐度环境。成矿流体盐度在矿化过程中亦呈逐渐下降趋势。
     (3)成矿系统流体密度在0.792 g/cm3~0.967 g/cm3之间,其中白钨矿包裹体中流体密度为0.844g/cm3。受挥发分含量及温度影响,成矿流体密度在矿化过程中亦呈逐渐增大的趋势。
     (4)成矿压力在149~461×105Pa之间,其中形成白钨矿的平均压力为353×105Pa,从早期成矿阶段到晚期成矿阶段成矿压力呈递减趋势,反映了成矿流体向浅部运移并在断裂、破碎带等有利构造部位发生矿化的过程。
     (5)不同矿物形成深度在1.1km-4.5 km之间,其中白钨矿形成深度2.7-4km,矿化形成于中等深度。
     通过以上对忠宝钨矿的矿石类型、围岩蚀变特征、含矿岩体岩石化学特征、氢氧同位素及流体包裹体研究,表明忠宝钨矿为典型的矽卡岩型白钨矿矿床,形成于晚石炭世南天山洋向中天山微板块俯冲闭合过程形成的同碰撞花岗岩带,成矿物质来源于深部地壳重熔,成矿流体为深部岩浆水,矿床形成于中-高温度(250~360℃)、高盐度(12%-15%),中等深度(2.7~4k)和较高的压力环境(353×105Pa)。
     多光谱、高光谱遥感异常,地球化学异常显示,库米什地区钨的异常具有明显的沿北西西方向分布于中天山地块南缘及地块内部的特征,该异常特征为晚古生代末期南天山洋向中天山地块俯冲形成俯冲-碰撞型富钨花岗岩的结果,受区域断裂控制而呈北西西向。综合分析各种矿致异常及其地质解释,本文认为中天山地块南缘碰撞花岗岩与异常吻合较好的地区具有良好的钨矿找矿前景,中天山地块内部及塔里木北缘亦是钨矿的有利远景区。
Middle tianshan block, a microcontinent between junggar and tarim block, is located in the middle of tianshan belt and pinches out at the east of Kumishi area. The oceanic crust of south tianshan subducted norwards under the middle tianshan block,which lead to the formation of series of volcanic and intrusive rocks related to the subduction and collision at the south of middle tianshan block in the late Paleozoic and control the formation of different types of deposits. Zhongbao tungsten deposit is located in the NWW-trending granite belt at the south of middle tianshan block.
     On the basis of geological works in the field and previous data,this paper firstly discussed the regional geological setting, tectonic evolution of Kumishi area and the genesis of Zhongbao granite and detailedly studied the geological characteristics of deposit and orebody and its genesis and then summarized the metallogenic model of Zhongbao tungsten deposit.At last,we gave the conclusion about the prospect of tungsten mineralization in Kumishi area combining with the analyse of geochemical exploration and remote sensing.
     The tectonic evolution of Kumishi area successively experience back-arc extension-subdction-collision-post collision processes which compose a typical wilson cycle and later a pull-apart basin was formed by strike-slip tectonic processes.The stage of subdction and collision between the oceanic crust of south tianshan and middle tianshan block is the main mineralization stage which control the formation of Cu-Pb-Zn polymetallic deposits and W-Sn deposites in this area.
     Zhongbao two-mica monzogranite is closely related to the tungsten mineralization.U-Pb Zircon dating for the Zhongbao granite yield a weighted mean age of 298±3.5 Ma, belonging to late-devonian carboniferous. geochemical characteristics indicate that Zhongbao granite is potassium-rich calc-alkaline and peraluminous granite which experienced a medium-high degree differential evolution process.lt belongs to Crustal melting S-type granite which formed in the collision setting and its source rock is Precambrian basement of middle tianshan block.The rock body is tungsten-rich and provides main metal source for Zhongbao tungsten deposit.
     Field observations and studies show that Zhongbao tungsten deposit belongs to skarn-type scheelite deposit with the superposition of greisen mineralization and late quartz vein mineralization. The orebodies are located in the east plunging crown of Kumishi anticline.As the Turn end and the two wings of anticline always form a number of secondary folds, The relative sliding of adjacent strata usually leads to the layered, like layered, saddle-shaped peeling space at the fold hinge and two wings which is advantageous to skarn metasomatism between the granite and wall rock.The strata at the south wing which is damaged by the NE-trending fracture provide the channel and intrusive space for the magma and the later SN-trending fracture mostly cause the later transformation of the ore body. The morphological characteristics of zhongbao tungsten deposit ore body are controlled by the affects of the multiple ore-controlling factors.
     Ore types in the district are mainly Gt-Di-Ep skarn type, Act-Di-Ves skarn type, greisen type, and skarnised marble tpye. Hypidiomorphic granular texture, nematoblastic texture, and lepido-granular blastic texture are developed and the ores are massive or banded. The ore mineral is sheelite disseminated in the all ores types and minor cassiterite and pyrite. Gangue minerals are mainly diopside, idocrase, epidote, garnet, wollastonite, tremolite, quartz, fluorite, muscovite, biotite and calcite.
     Mineralization is divided into skarn period and greisen-quartz scheelite period in Chronol-ogical order, in which the skarn period is divided into early stage and late stage, and the greisen-quartz scheelite period is divided into greisen stage and quartz scheelite stage. The late three stages is the main mineralization stage. Quartz carbonate stage doesn't form the Tungsten ore. The study of the content of tungsten in rock mass and country rock indicates that tungsten is mainly originated from the mineralization granitic intrusion, infering that precambrian system basement from middle Tianshan land mass is a beneficial ore bearing formation for tungsten, and stratum from Lower Devonian is to provide partial material source as a poor source bed. Oxygen and hydrogen isotope studies from quartz make clear that ore-forming fluid devided from the magmatic water, closely related to the Zhongbao rock mass. Hydrogen isotope study from scheelite shows that belongs to skarn type.
     After the study of the fluid inclusions in the sheelite, diopside, quartz, fluorite, and calcite, we obtained the following knowledge of ore-forming P-T conditions.
     (1)All tested data show that the homogeneous tempetature is between 140-440℃, while the main mineralizing stage of sheelite happened between 250-360℃with mean temperature of 309℃. It is belonging to the scope of high to medium temperature. Ore-forming temperature gradually descending from early skarn stage, late skarn stage, quartz-sheelite stage to quartz-carbonaite stage, among which the late skarn stage and the quartz-sheelite stage are the main ore-forming stage.
     (2) The salinity of the ore-forming fluid is between 6% to 22%. The salinity of the fluid inclusions in sheelite is between 12% to 15% with the mean salinity of 13.41%. It is belonging to middle to high salilinty settings. During the mineralization, it gradully descending.
     (3) The desity of the ore-forming fluid is between 0.792g/cm3 and 0.967g/cm3. The desity of the fluid captured in sheelite is 0.844g/cm3. Influenced by the volatiles and temperature, the fluid desity increases during the mineralizing process.
     (4) The ore-forming pressure is between 146 and 461 bar. The sheelite is formed at 353 bar. The depressing of ore-forming pressure from early stage to late stage reflects the movement of ore-forming fluid to shallow depth and deposit the minerals in the fractures and crused zones.
     (5) The minerals are formed at the depth of 1.1-4.5 km. Sheelite is formed at the depth of 2.7-4km, which is moderate.
     With the study of the ore types, wall rock alteration, geochemistry of ore-bearing pluton, fluid inclusions and H-O isotope of the fluid at Zongbao Tungsten deposit, we believe it is a typical skarn-type sheelite deposit which is formed during the subduction to the Middle Tian and close of South Tianshan ocean. The deposit is genetical associated with the co-collisional granite. The ore substances are derived from the melting of deep crust. The ore-forming fluid is deep drived magmatic water. P-T condition of the deposit is obtained with high to middle temperature (250-360℃), high salinity (12%-15%), middle depth (2.7-4km) and relatively high pressure (353 bar).
     Multispectral, hyperspectral remote sense and geochemical anomaly show that tungsten anomaly in Kumux region is characterized by apparently distributing in the southern edge of middle Tianshan land mass and inner of that along the NWW direction, which resulted from the subduction from south Tianshan ocean to middle Tianshan land mass forming Subduction-collision type tungsten-rich granite in the late Paleozoic telophase, being NWW direction under the control of regional fault. Comprehensive analyzing of various anomalies related to mineraliz- ation and the geological interpretation, this article considered Collision granites from the southern edge of middle Tianshan land mass and the religion in agreement with the anomalies has bright future for tungsten ore propects, inner of middle Tianshan land mass and the north edge of Tarim is also the favorable direction for the tungsten ore.
引文
[1]王登红、李纯杰、陈郑辉等.东天山成矿规律与找矿方向的初步研究[J].地质通报,2006,25(8):910-915
    [2]吴华.东天山地壳演化及内生成矿作用[D].中国地质大学(北京),2006
    [3]韩春明、毛景文、杨建民等.东天山晚古生代内生金属矿床系列和成矿规律[J].地质与勘探,2002,38(5):5~10
    [4]王京彬、王玉往、何志军等.东天山大地构造演化的成矿示踪[J].中国地质,2006,33(3):461-469
    [5]李锦轶、王克卓、李文铅等.东天山晚古生代以来大地构造与矿产勘查[J].新疆地质,2002,20(4):295~301
    [6]杨晓峰、刘全军.我国白钨矿的资源分布及选矿的现况和进展[J].矿业快报,2008,(4):6-9
    [7]毕承思.中国矽卡岩型白钨矿矿床基本地质特征[J].中国地质科学院院报,1987,(17):49-64
    [8]康永孚、李崇佑,中国钨矿床地质特征、类型及其分布[J].矿床地质,1991,10(1):19-26
    [9]赵斌.中国主要矽卡岩及矽卡岩型矿床[M].科学出版社,1989
    [10]王秋衡.中国钨矿床主要伴生元素分布规律[J].中国钨业,1991,(6):14~19
    [11]刘英俊、马东升.钨的地球化学[M].科学出版社,1987
    [12]肖序常、汤耀庆、冯益民、等.新疆北部及邻区大地构造[M].北京:地质出版社,1992
    [13]汤耀庆,赵民.1991.中国天山板块构造演化[M].北京:北京科学技术出版社,109~122.
    [14]吴文奎、姜常义、杨复.库米什地区古生代地壳演化及成矿规律[M].陕西科学技术出版社,1992
    [15]高俊,龙灵利,钱青等.2006.南天山:晚古生代还是三叠纪碰撞造山带?[J].岩石学报,22(5):1049~1061.
    [16]顾连兴、王金东.中天山东段花岗岩类铷-锶年代学及构造演化[J].桂林冶金地质学院学报,1990,10(1):49-55
    [17]高俊,肖序常,汤耀庆等.南天山蓝片岩的变质作用PTt轨迹及构造演化[J].地质论评,1994,40(6):544~553
    [18]杨天南,王小平.2006.新疆库米什早泥盆世侵入岩时代、地球化学及大地构造意义[J].岩石矿物学杂志,25(5):401~411.
    [19]杨天南、李景秩、孙桂华等.2006.中天山早泥盆世陆弧来自花岗质糜棱岩地球化学及SHRIMP U-Pb定年的证据.[J].岩石学报,22(1):41-48.
    [20]汤耀庆,高俊,赵民,等.西南天山蛇绿岩和蓝片岩.地质出版社,1995
    [21]刘本培等.西南天山构造格局与演化.中国地质大学出版,1996
    [22]姜常义、穆艳梅、白开寅等.南天山花岗岩类的年代学、岩石学、地球化学及其构造环境[J].岩石学报,1999,15(2):298-308
    [23]张子敏、马汉峰、蔡根庆.库米什盆地地质构造演化主要特征[J].世界核地质科学,2003,20(4):187-193
    [24]全俊仁.白银市后长川白钨矿点地质特征及找矿前景分析[J].甘肃冶金,2005,27(3):64-66
    [25]谢春华.赣南矽卡岩型白钨矿银矿地质特征及找矿方向[J].矿产与地质,2001,15(增刊):440~444
    [26]牛军平.吉林四平市三家子白钨矿矿床地质特征及成矿预测[D].2009,吉林大学
    [27]谢贵明、刘玉平.白钨矿床的地质特征及在吉林省的找矿方向[J].吉林地质,2002,21(4):29~33
    [28]徐辉煌、伍式崇、余阳春等.湖南锡田地区矽卡岩型钨锡矿床地质特征及控矿因素[J].华南地质与矿产,2006,(2):37~42
    [29]单承恒、李峰、时俊峰等.吉林省杨金沟白钨矿床地质地球化学特征及找矿标志[J].矿产与地质,2004,18(5):440~445
    [30]张文博.吉林杨金沟白钨矿床地质特征及成因探讨[J].矿床与地质,2007,21(2):122-125
    [31]钱月卿、姜水根.新邵县曹家坝层控似矽卡岩型白钨矿床的发现及其地质特征[J].湖南地质,1983,2(2):26-35
    [32]张作衡、毛景文、杨建民.北祁连加里东造山带塔儿沟矽卡岩-石英脉型钨矿床地质及成因[J].矿床地质,2002,21(2):200-211
    [33]邹春林、周仕雄、张红英.易门赵普新沟白钨矿矿床地质及控矿因素[J].云南地质,2007,26(4):421-427
    [34]徐耀鉴、黄满湘.湖南东山钨矿控矿构造条件及成矿预测研究[J].湖南有色金属,2009,25(4):41~48
    [35]刘智、涂其军、魏华.新疆托克逊县忠宝钨矿矿床地质特征及成因探讨[J].资源环境与工程,2009,23(6):771-778
    [36]Hugh R.Rollison著,杨学明、杨晓勇、陈双喜译.岩石地球化学[M].中国科学技术大学出版社,2000.
    [37]Hopson C,Wen J,Tillton G, et al. Paleozoic plutonism in East Junggar Bogdashan and eastern Tianshan,NW China[J].EOS,Trans.American Geophysical Union, 1989.70:1403-1404.
    [38]赵振华.微量元素地球化学原理[M].科学出版社,1997
    [39]李昌年.火成岩微量元素岩石学[M].中国地质大学出版社,1992
    [40]汪云亮、李巨初、周蓉生等著.岩浆岩微量元素地球化学原理及其应用-兼论峨眉山玄武岩的成因[M].成都科技大学出版社,1993
    [41]席斌斌、张德会、周利敏.南岭地区几个与锡(钨)矿有关的岩体的岩浆演化[J].地质通报,2007,26(12):1591-1599
    [42]毛景文.超大型钨多金属矿床成矿特殊性—以湖南柿竹园矿床为例[J].地质科学,1997,32(3):351-363
    [43]陈德潜、陈刚著.实用稀土元素地球化学[M].冶金工业出版社,1990
    [44]许荣华、张宗清、宋鹤彬.稀土地球化学和同位素地质新方法[M].地质出版社,1985
    [45]朱金初、徐士金.华南含钨锡矿花岗岩的稀土元素地球化学特征和岩石成因[J].矿床地质,1989,8(3):21~31
    [46]刘家远.西华山钨矿的花岗岩组成与成矿的关系[J].地质找矿论从,2005,20(1):1-7
    [47]袁洪林,吴福元,高山等..东北地区新生代侵人体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511~1520.
    [48]吴元保、郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]。科学通报,2004,49(16):1589~1604
    [49]朱永峰、宋彪.新疆天格尔糜棱岩化花岗岩的岩石学及其年代学研究兼论花岗岩中热液错石边的定年[J]
    [50]朱志新.新疆南天山地质组成和构成演化[D].中国地质科学院,2007
    [51]龙玲利,高俊,熊贤明等.新疆中天山南缘比开地区花岗岩地球化学特征及年代学研究[J].岩石学报,2007,23(4):719~732.
    [52]张成立,周鼎武,王居里.南天山库米什南黄尖石山岩体的年代学、地球化学同位素组成及其成因意义[J].岩石学报,2007,23(8):1821~1829.
    [53]毕承思、吴静淑、王美玉.新田岭白钨矿床稳定同位素地质学研究[J].矿床地质,1988,7(2):39~48
    [54]波尔谢夫斯基等著、覃运金译.不同成因类型钨矿床中白钨矿氧同位素研究[J].1979
    [55]Hall DL and Bodnar RJ. Methane in fluid inclusions from granultes:A product of hydrogen diffusion? Eochimcia et Cosmochimica Acta,1988,54:641~651
    [56]Potter R W,Calif M P.Pressure corrections for fluid-inclusion homogenization temperatures based on the volumetric proportion of the systerm Nacl-H20 [J].Journal Research,United States Geological Survey,1977,5(5):603~607
    [57]卢焕章、范宏瑞、倪陪等.流体包裹体[M].北京:科学出版社,2004,147-274
    [58]Bodnar.R.J.A Method of calculating fluid inclusion volumes based on vapor bubble diameters and PVTX properties of inclusion fluids[J].Econ.Geol.1983,78.535-542
    [59]赵斌著.中国主要矽卡岩及矽卡岩型矿床[M].北京:科学出版社,1989,281-294
    [60]Manning,David,A.C.andHendreson,P. The behaviour of tungsten in granitec melt vapour systems.Contrib.Mineral Petrol.,1984,Vol.86,No.3,286~293
    [61]邹欣.江西淘锡坑钨矿地球化学特征及成因研究[D].中国地质大学,2006
    [62]陈毓川、朱裕生.中国矿床成矿模式[M].北京:地质出版社,1993
    [63]裴荣富.中国矿床成矿模式[M].北京:地质出版社,1995
    [64]杨建民、张玉君、陈薇等.ETM+(TM)蚀变遥感异常技术方法在东天山戈壁地区的应用[J].矿床地质,2003,22(3):278~286
    [65]张玉君、杨建民、陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用-地质依据和波 谱前提[J].国土资源遥感,2002,(4):30~36
    [66]张玉君、曾朝铭、陈薇.ETM+ (TM)蚀变遥感异常提取方法研究与应用-方法选择和技术流程[J].国土资源遥感,2003,(2):44~49
    [67]苏一鸣、李向前、朱叶飞.ETM+(TM)蚀变遥感异常提取方法在宁镇地区的应用[J].地质学刊,2009,33(1):84~88
    [68]吕凤军、郝跃生、王娟.多光谱蚀变遥感异常提取方法研究[J].遥感信息,2008,(4):98-101
    [69]陈述彭,周成虎.遥感科学与空间技术的若干应用新领域[J].云南地理环境研究,1998,10(12):22~24
    [70]华仁民、陈培荣、张文兰.论华南地区中生带3次大规模成矿作用[J].矿床地质,2005,24(2):99-107
    [71]巍绍六、贾宝华、曾钦旺.南岭地区钨矿成矿机理探讨[J].资源调查与环境,2006,27(2):103~109
    [72]陈俊,陆建军,陈卫峰等.2005.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4)459~473
    [73]华仁民,陈培荣,张文兰等.2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景[J].高校地质学报,11(3):291~304.
    [74]华仁明.2005.南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义[J].地质论评,56(6):634~639.
    [75]华仁民、陈培荣、张文兰.南岭与中生代花岗岩类有关的成矿作用及大地构造环境[J].高校地质学报,2005,11(3):291-304
    [76]王汝成,朱金初,张文兰等.2008.南岭地区钨锡花岗岩的成矿矿物学:概念与实例[J].高校地质学报,14(4):485~495.
    [77]张子敏、马汉峰、蔡根庆.南天山独山锡矿床的成矿特征及成矿模式[J].新疆地质,2001,19(1):49~53
    [78]Shearlong,J.W,and Black C.P.1988.Chemical evolution of granitic rocks in the east Antarctic shild,with particular reference to post-orogenic granites [J].lithos,21:37-52
    [79]Pearce J A, Harris B W and Tindle A G.1984. Trace element discrimination diagrams for the tectonic interpret- tation of granitic rocks [J]. Journal of Petrology,25(4): 956-983.
    [80]林新多、许建国.岩浆成因矽卡岩的某些特征及形成机制探讨[J].现代地质,1989,3(3):351~357
    [81]胡志宏,胡受奚.1993.挤压-俯冲与孪生花岗岩带[M].地质出版社.
    [82]卢焕章.1986.华南钨矿成因[M].重庆出版社.
    [83]田建涛、喻亨祥、扬准等.矽卡岩成因及成矿作用研究进展综述[J].工程论坛,2005,(23):107-108
    [84]黄华盛.矽卡岩矿床的研究现状[J].地学前缘,1994,1(3):105-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700