油酸钠包覆Fe304磁流体的制备及其包覆结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流体是由磁性粒子、表面活性剂以及载液三者混合而成的一种稳定的胶状溶液。由于这种胶状液体既有固体磁性材料的磁性,又有液体材料的流动性,且这种胶体溶液在重力场和磁场作用下是稳定而不沉淀的,具有许多其它固体磁性材料与液体材料所不具有的特殊性质,可以广泛地应用于密封、研磨、热疗、靶向给药等领域。但是磁流体稳定性差的问题一直没有得到很好的解决,这大大限制了磁流体的应用。为了解决这一问题,我们系统地研究了制备工艺参数、表面活性剂及其包覆结构对磁流体稳定性的影响,并初步研究了磁流体靶向载药微球的制备技术,得到了以下一些主要结论:
     1)获得了共沉淀法制备Fe_3O_4磁性粒子的最佳制备工艺:最佳的反应温度为75℃,反应浓度是0.5mol/L。反应温度主要影响Fe_3O_4的晶体结构,在低温时主要得到反铁磁性α-FeOOH相,降低了Fe_3O_4磁性;反应浓度主要影响Fe_3O_4的生成速度,进而影响Fe_3O_4的晶体结构。
     2)油酸钠包覆磁流体的反应最佳pH值是5.5,载液的pH值是10;油酸钠同磁性粒子间形成化学吸附,降低了磁性粒子的表面能,增加了粒子间的阻力,大大提高了磁流体的稳定性。由于表面活性剂在磁性粒子表面的钉扎包覆后的磁性粒子的饱和磁化强度小于未包覆的磁性粒子。
     3)油酸钠化学吸附在第一层,多余的油酸钠物理吸附在第二层。我们提出了形成良好稳定性磁流体的表面结构条件:一是必须有一定的驱动力使表面活性剂向磁性粒子靠拢;二是粒子同表面活性剂必须形成牢固的吸附;油酸钠包覆磁流体的过程:共沉淀法制备磁性粒子在表面吸附了大量的羟基,在酸性条件下,这些羟基吸附了大量的H+而使整个粒子带正电荷。加入的油酸钠电离出带负电的油酸根,油酸根和磁性粒子间由于库仑力的作用相互靠拢在一起,油酸根中的-C=O均裂成两个相等的-C-O-单键,同磁性粒子表面结合形成第一层吸附;这时溶液中还有过量的油酸钠,而油酸钠一端疏水,另一端亲水,这种疏水和驱水的形成的驱动力使得溶液中的油酸钠疏水端物理吸附在第一层,形成第二层,而亲水端则深入水中。但是物理吸附的第二层并不牢固,很容易被有机溶剂洗掉,而化学吸附的第一层则很牢固。油酸钠包覆后的磁流体这种两层特性可以使磁流体分散在极性和非极性溶液中。
     4)磁流体可以作为靶向载药给药的载体;
Magnetic Fluid (MF) is a stability colloid which is composed of magnetic particles, surfactant and based liquid. MF has many special qualities which other solid materials and liquid materials don't have, such as solid's magnetism and liquid's fluidity. MF is also a stable colloid under gravity and magnetic field. It can be extensive used in the filed of seal, polishing, target drug deliver, hyperthermia and so on. But the problem of MF with low stability has not been solved well, limiting the extensive application. To solve this problem, we systemic studied how the method of preparation, surfactant, and the surface structure of coated layer influenced the stability of MF. At last, we primary investigated the preparation of the magnetic nano-microspheres with target drug deliver. The paper drew some original results as follows.
     The results show that the optimal reaction temperature is 75°C and the optimal concentration is 0.5mol/L.The temperature mainly influenced the crystal and then the magnetism in the conventional coprecipitation method, while the concentration mainly influenced on growth speed of magnetic particles and then on the diameter of magnetic particles.
     The optimal pH value when coated by oleate sodium was 5.5. While the optimal pH value for oleate coated magnetic fluid dispersing into water was 10. There was a chemical adsorbed between the magnetic particles and oleate sodium which decreased the surface tension and increased the resistance, so the stability of MF improved obviously. The magnetization of coated magnetic particles was lower than the uncoated ones, and this reduction is likely due to the existence of disordered spins at the surface as discussed.
     We characterized the structure of oleate coated MF layer: the oleate sodium was chemical adsorbed on the surface of particle to form the primary layer while the excess oleate sodim was physical adsorbed on the first layer to form second layer. We concluded the key condition to prepare MF with the stable structure was a drive which can make the surfactant close to the surface of magnetic particles and the surfactant was firmly adsorbed on the surface of particles. We found that the magnetic nanoparticles prepared by co-precipitation had extensive hydroxyl groups on the surface. And the H+ would adsorb on these hydroxyl groups under acidic environment. When added oleate sodium into solution, the electrostatic interaction between their carboxylic acid head groups and the hydroxyl groups will make them combine tougher. Consequently, the iron oxide particles were coated by a well-organized primary oleic acid radical molecule. Then, the excess oleate sodim was weakly adsorbed on the primary layer of the oleate sodium-coated magnetic particles to form a hydrophobic shell through the hydrophobic interaction between the subsequent molecule and the hydrophobic tail of oleate of the primary layer. So the second layer will be easily washed by acetone or alcohol. The magnetic particles coated by oleate sodium can disperse into polar or unpolar solution.
     MF can be used as target drug deliver
引文
[1] Wilson B, Account of Dr Knight's Method of making Artificial Lodestone. Pbil Tracsact, 1979
    [2] Bitter F. Physical Review, 1932, 41,507
    [3] Elmore W C. Physical Review, 1938a, 54, 309
    [4] S N Magonov, M H Whangbo. Surface Analysis with STM and AFM[J]. VCH, Germanny, 1996.
    [5] Wiedenmann, A Small-angle neutron scattering investigations of magnetic nanostructures using polarized neutrons[J]. Journal of Applied Crystallography.33 (1): 2000, 1:428-432
    [6] S.Mitura. Nanotechnology in Materials Science[M]. Elsivier Science B.V. 2000, Nertheland 5
    [7] 张立德,牟季美.纳米材料与纳米技术[M].北京:科学出版社,2001
    [8] Berkowitz, A. E.; Lahut, J. A.; Vanburen, C. E. IEEE Trans. Magn.1980, MAG-16, 184-190.
    [9] Chekanov V V, Kozhevnikov V M, Padalda V V, Yu N Skibin. Magn Gidrodin, 1985,(USSR)2:79
    [10] K.T.Wu, Y.D.Yao, H.K.Huang. Comparison of dynamic and optical properties of Fe3O4 ferrofluid emulsion in water and oleic acid under magnetic field[J]. Journal of Magnetism and Magnetic Materials 2000,209:246~248
    [11] Yu D Varlamov, Kaplun A B. Magn Gidrodin, 1986, (USSR)NO.3:43~9
    [12] Goldowsky M. New method for sealing, Filter and lubricating with magnetic fluids[J], IEEE Trans.on Magneticd, 1982,Vol.MAG-16, No.2
    [13] 李德才,袁祖贻.磁流体密封的研究[J].北方交通大学学报,1995,6(2)
    [14] Zou Jilin, Numerical Caculation for ferrofluid seals[J],IEEE on MAG, 1992,28(6):3367~3370
    [15] Walliams R A, Malsky H. Some Experimences Using a Ferrofluid Seal Against a Liquid[J], IEEE Tran on MAG, 1980,16(2):12~22
    [16] Yamaguchi.H, Shinmura.T, Takenaga,M.2003, Development of a New precision Internal Machining Process Using an Alternating Magnetic Field, Precision Engineering,27/1:51
    [17] Umehara N, Kawauchi M,Fundamental polishing properties of frozen magnetic fluid grinding[J], Journ Magn Magn Mat. 1999,201:364
    [18] Umehara N, Shibata L,Edamura, K, New polishing method with magnetic congelation liquid[J], Journal of Intelligent Matrials Systems and Structure, 1999,10:620
    [19] Zhang J G.The history and actuality of tumor hyperthermia[J]. Journal of cancer research and clinical oncology, 2003,15(5):350-353
    [20] Jordan A, Scholz R, Wust P, et al. Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles [J] JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,1999 201:413-419
    [21] Jordan A, Scholz R, Maier-Hauff K, et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia[J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS,2001 225 (1-2): 118-126
    [22] Jordan A, Wust P, Scholz R, et al. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro[J]. INT J HYPERTHERMIA,1996 12 (6): 705-722
    [23] Hergt R, et al.IEEE Trans Magnetics, 1998; 346: 3745~37541.
    [24] Brusentsov NA, et al. J Magn Magn Mater, 2001; 225(1~2): 113~1171.
    [25] Rudolf Hergt, Wilfried Andr¨a, Carl G. d'Ambly, et al. Physical Limits of Hyperthermia Using Magnetite Fine Particles, IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 5, SEPTEMBER 1998,3745~3754
    [26] 颜士岩,张东生,顾宁,等.肿瘤热疗用F2O3纳米磁性粒子的生物相容性研究.东南大学学报(医学版),2005 24(1):8-12
    [27] Kirkpatrick CJ, Bittinger F, Wagner M, et al. Current trends in biocompatibility testing[J] PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 1998 212 (H2): 75-84
    [28] Kotte AN, van Wieringen N, Lagendijk D, et al. Modelleng tissue heating with ferromagnetic seeds[J], physics in medicine and biology, 1998 43(1): 105-120
    [29] Nishioka Y Preparation and evaluation of albumin microspheres and microcapsules containing cisplatin[J], chemical & pharmaceutical bulletin, 1989,37:1399~1408.
    [30] Spenlehauar G Formation and characterization of cisplatin loaded poly microspheres for chemoem bolization[J]. Journal of pharmacy and pharmaceutical sciences, 1986,75:750~758
    [31] 龚连生,张阳德,周少波.磁性化疗纳米粒治疗大鼠移植性肝癌[J].中国现代医学杂 志.2001,11(3):14~16.
    [32] 池长青等编著.铁磁流体动力学[M].北京:北京航空航天大学出版社,1993
    [33] Rosensweig R E. Ferrohydronamic[M]. Cambride: Cambride Press, 1985
    [34] Neuringer J L, Rosensweig R E. Ferrohydrodynamics[J]. Phys Fluids, 1964,7:1927~1937
    [37] Yu, Lai Qiong Zheng, Lu J; Yang. Study of preparation and properties on magnetization and stability for ferromagnetic fluids[J]. Materials Chemistry and Physics, 2000, 66: 6~9.
    [38] Kenneths S S, Mingming F, Taeghwan Hgcon. Sonochemical synthesis of iron collids[J]. Journal of the American Chemical Society, 1996,118:11960~11961
    [39] 邹继斌,陆永平.磁性流体密封原理与设计[M].北京:国防工业出版社,2000.9~11.
    [40] Shliomis M I. Zh Eksp Teor Fiz, 1971,61:2411~2418
    [41] 邱星屏.四氧化三铁磁性纳米粒子的合成及表征[J].厦门大学学报(自然科学版),1999,38(5):711~715.
    [42] 郑忠,胡继华,表面活性剂物理化学[M],广州:华南理工大学出版社,1995:3~10.
    [43] 任欢鱼;刘蕾;刘勇健;磁流体的制备与性质研究[J].中国粉体技术,Vol.9,No.1:21~23
    [44] Limfiels W M. Anionie Surfactants[M]. Vol1,Vol2. New York:Marcel Dekker, 1976
    [45] Jungermann E. Cationic Surfactants[M]. New York:Marcel Dekker,1970
    [46] Tauber G, May A. left bracket Chemical Mechanism, Characteristics, and Application of Cationic Tensides right bracket [J]. Tenside detergents, 1982,3:151~154
    [47] 汪祖模,徐玉佩。两性表面活性剂[M].北京:轻工业出版社,1992
    [48] Schick M.J. Nonionie Surfactants[M]. New York:Marcel Dekker, 1967
    [49] 刘颖,王建华,张葆.磁流体的稳定性和制备过程[J].润滑与密封.1997(6):52~53.
    [50] Davies J T. Proc Intern Congr Surface Activity. 2nd. New York:Marcel Dekker,1957
    [51] 科尔索夫 I M.定量化学分析(上)[M],北京:人民教育出版社,1981
    [52] 刘颖,王长葆,王建华.Fe3O4超细粉分散体系的制备[J],功能材料,199,30(1):28~32
    [53] 任欢鱼,庄虹,刘勇健.Fe3O4纳米颗粒的表面改性[J],化学研究,Vol.14 No.1:11~13
    [54] S.S.Papell. Low viscosity magnetic fluid obtained by the colloidal supension of magnetic particles [P]. US Patent, 1965:3215572
    [55] Reimers G W, Khalafalla S E. Production of magnetic fluids by peptization techniques[P]. US Patent, 1974:3843540
    [56] Kilner M,Hoon S R,Lambrick D B, Potton J A,etal. Preparation and Process of Metallic Iron Ferrofluid[J]. IEEE Trans Magnetics, v MAG-20, n 5 pt 2, Sep, 1984, p 1735-1737
    [57] Thomas J R. Journ Appl Phys,1966,34:1317
    [58] Berkowitz A E, Walter J L. Ferrofluids prepared by spark erosion [J]. Journ Magn Magn Mat, 1983,39:75~78
    [59] Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science,2000, 287, 1989-1992.
    [60] Sun, S. H.; Zeng, H. Size-Controlled Synthesis of Magnetite Nanoparticles[J]. Journal of the American Chemical Society. 2002, 124, 8204-8205.
    [61] Hyeon, T. Chemical synthesis of magnetic nanoparticles[J], Chemical Communications. 2003, 8:927-934
    [62] Smith, T.W.; Nonflame Retarged Class Ⅱ/Low Smoke Polyurethane Foams [J]. Journal of American Chemical Society, Division of Organic Coatings and Plastics Chemistry, Preprints, 1980, v 43,987-991
    [63] Puntes, V. F.; Krishnan, K. M.; Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt[J].A.P. Science 2001, 291,2115-2117.
    [64] Sun, S. H.; Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices [J].Journal of Applied Physics. 1999, 85, 4325-4330.
    [65] 成国祥,张仁柏,万怡灶,等.反相胶束微反应器的特性与Fe_3O_4纳米微粒制备[J].兵器材料科学与工程,1998,21(6):27~30.
    [66] Massart R.Preparation of magnetite nanoparticles[J].IEEE Trans Magn, 1981, 17: 1247~1250.
    [67] Molday R S. Magnetic iron-dextran microspheres[P].US: 4452773.1984, 06, 05
    [68] Lefort J. Coputes Rendus Academic Sci, Paris. 1852,34,488
    [69] Massart R. Preparation and properties of monodisperse magnetic fluids[J], Journal of Magnetism and Magnetic Materials, 1995 v 149, n 1-2:1-5
    [70] 丁明,曾桓兴.中和沉淀法Fe_3O_4的生成研究[J].无机材料学报,1998,13(4):619~624
    [71] Yong-kang Sun, Ming Ma, Yu Zhang, et al. Synthesis of nanometer- size maghemite particles from magnetite.coloids and surfaces A: Physicochem [J]. Eng.Aspects., 2004, 245: 15~19.
    [72] Jun Wang, Kai Zhang, Zhenmeng Peng, et al. Magnetic properties improvement in Fe_3O_4 nanoparticles grown under magnetic fields[J]. J Crryst Growh, 2004, 266: 500~504.
    [73] 程海斌,刘桂珍,李立春,等.纳米Fe_3O_4的ζ电位和分散稳定性[J].武汉理工大学学报,2003,25(5):4~6.
    [74] 丁明,孙虹.Fe3O4/壳聚糖核壳磁性微球的制备及特性[J].磁性材料及器件,2001.6:1~3
    [75] 马啸华,马淮凌,黄华伟,丁秀云.铁氧磁流体磁性粒子形成的影响因素及其作用机[J].应用化工.2005,34(5):301~303
    [76] M.S. Dahbnefi and N. Y. Ayoub, Effect of Oleic Acid On the Stability of Magnetite Ferrofluid[J], IEEE TRANSACTIONS ON MAGNETICS, VOL 31, NO 6, NOVEMBER 1995
    [77] Lifen Shen, Paul E. Laibinis, T. Alan Hatton Aqueous magnetic fluids stabilized by surfactant bilayers[J]. Journal of Magnetism and Magnetic Materials 194 (1999) 37~44
    [78] L.Shen, Stachowiak, Agnieszka; Hatton, T. Alan; Laibinis, Paul E. Polymerization of olefin-terminated surfactant bilayers on magnetic fluid nanoparticles[J]. Langmuir, 2000,v 16, n 25:9907~9911
    [79] 黄惠忠.纳米材料分析[M].北京:化学工业出版社,2003.244~247
    [80] Yu, Lai Qiong Zheng, Lu J; Yang. Study of preparation and properties on magnetization and stability for ferromagnetic fluids[J]. Materials Chemistry and Physics, 2000, 66: 6~9.
    [81] 寇灵梅;李冰;郭祀远;李琳;杨洁贞,磁性壳聚糖微球的表征及其磁响应性,华南理工大学学报(自然科学版),2006,12:92~95
    [82] 钭启升;张辉;邬剑波;杨德仁;氧化铁和羟基氧化铁纳米结构的水热法制备及其表征无机材料学报,2007,2:213~218
    [83] Raming T P, Winnubst A J A, Van Kats C M, et al. The synthesis and magnetic properties of nanosized hematite (α-Fe_2O_3) particles. Journal of Colloid and Interface Science, 2002,249, 346~350
    [84] 张茂润,工艺参数的控制对液体磁性材料[J],功能材料,1996,27(4):228~231
    [85] 娄敏毅,王德平,黄文旵,贾秋凌,刘冰.纳米Fe_3O_4磁性粒子合成过程中分散体系的影响[J].建筑材料学报.2005,8(2):169~173.
    [86] 安德生 MA,鲁宾 AJ.水溶液吸附化学[M].北京:科学出版社,1989
    [87] GruttnerC, TellerJ, SchuttW, et al. Scientific and ClinicalApplications of MagneticCarriers New York Plenum Press, 1997:53~67
    [88] Sohn B H, Cohen R E, Papaefthymiou G C Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers J Magn Magn Mater, 1998,182:216~224.
    [89] 张立德主编,超微粉体制备与应用技术,北京:中国石化出版社,2001:223-230
    [90] 陈少贞,陈森风,材料导报,1996,3:39
    [91] 刘颖,王长葆,王建华.改善磁流体稳定性的研究[J].润滑与密封.1998,3:43~44
    [92] 胡林,张元应,汤嘉伟,张朝平,蔡绍洪.表面活性剂对磁悬浮液体稳定性的影响[J].贵州大学学报.1999,16(4):270~274.
    [93] Kenneths S S, Mingming F, Taeghwan Hgcon. Sonochemical synthesis of iron colloids[J]. Journal of the American Chemical Society, 1996, 118:11960~11961.
    [94] Morales M P, Ander-Verges M, Vointemillas-Verdaguer S, et al. Structural effects on the magnetic properties of γ-Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 1999,203:146.
    [95] Popplewell J, Sakhnini L. The dependence of the physical and magnetic properties of magnetic fluid particle size. Journal of Magnetism and Magnetic Materials, 1987,65:252.
    [96] Kaiser R, Miskolczy G.J. Magnetic properties of stable dispersions of subdomain magnetite particles[J]. Journal of Applied Physics, Appl Phys, 1970,41:1064~1072.
    [97] Xiao QingLiu, J MMM, 270 (2004) 1
    [98] 李德才.磁性液体理论及应用,科学出版社,2003
    [99] 王伟,沈辉.纳米Fe3O4颗粒改性详析[J].材料科学与工艺,2001,9(4):431~433.
    [100] 安丽娟,李兆强,徐娓等,CHEMICAL JOURNAL OF CHINESE UN IVERSITIES(高等学校化学学报)2005,26:2
    [101] Kristy M. Ainslie, Gaurav Sharma, Maureen A. Dyer, Attenuation of Protein Adsorption on Static and Oscillating Magnetostrictive Nanowires[J]. Nanoletters, 2005 Vol. 5, No. 9,1852~1856
    [102] Emnlen P H. Harkness R W J Am Chem. Soc,1935, 57, 1631
    [103] Brunauer S, Em 2neu P H, I。e[ler 2 J Am Chem. Soc 1938, 60. 309
    [104] 顾惕人,束步瑶,马季铭等 表面化学 北京:科学出版社,1994,268
    [105] Thomas Rheinlander, Roman Kotitz, Wemer Weitschies, Magnetic fractionation of magnetic fuids[J], Journal of Magnetism and Magnetic Materials, 2000, 219:219~228
    [106] Ingrid Hilger, Katrin Fruhauf, Wilfried Andra, Robert Hiergeist, Heating Potential of Iron Oxides for Therapeutic Purposes in Interventional Radiology[J], Acad Radiol 2002; 9:198~202
    [107] 张宝峰.穆斯堡尔谱学[M].天津:天津大学出版社,1991,12.107
    [108] 王秀宇,杨桂琴,张之圣,严乐美,孟建华,磁流体制备中磁性颗粒的表面处理[J].应用化 学Vol.22 No.5
    [109] R.H.Kodama, Magnetic nanoparticles[J],Joumalof Magnetism and Magnetic Materials , 1999,200:359-372
    
    [110] Shouhu Xuan , Lingyun Hao , Wanquan Jiang, Preparation of water-soluble magnetite nanocrystals through hydrothermal approach[J] Journalof Magnetism and Magnetic Materials. 2007,308:210-213
    
    [111] Lifen Shen, Paul E. Laibinis, T. Alan Hatton Aqueous magnetic fluids stabilized by surfactant bilayers[J]. Journal of Magnetism and Magnetic Materials 1999, 194:37-44
    
    [112] R.Y. Hong, S.Z. Zhang, Y.P. Han, H.Z. Li, J. Ding, Y. Zheng Powder Technology. 2006, 170:1-11
    
    [113] Xianqiao Liu, Michael D. Kaminski, Yueping Guan , et al. Preparation and characterization of hydrophobic superparamagnetic magnetite gel. Journal of Magnetism and Magnetic Materials.[J]306 (2006) 248-253
    
    [114] Bekovdky B M.Magnetic Fluids Engineering Application[M].Oxford: Oxford University Press, 1994:56
    
    [115] 汪明明,抗癌新药顺铂的研究进展[J],癌症,1989,5:105-108
    
    [116] Schurig J E, Brander W T, Haftalen J B, et al. Cisplatin: current State and New development[M]. New York: Academic Press,1980
    
    [117] Seki guchil, Suzuki M, Tamada T, et al. Effects of cisplat on cell cycle kinetics, morphological change, and cleavage patern of DNA in two human ovarian carcinoma cell lines[J]. Oncology, 1996,53 1 :19-26.
    
    [118] Youqing Shen ,Peisheng Xu; Van Kirk, E.A.; Li, S.; Murdoch, W.J.; Jun Ren; Hussain, M.D.; Radosz, M. Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy [J]. Colloids and Surfaces B (Biointerfaces), v 48, n 1, 1 March 2006, p 50-7.
    
    [119] Jin-Sung Park, Byeongha Jeong, Lee, K.J, Seok-Cheol Hong;The elastic property of a single DNA molecule cross-linked by cisplatin: a magnetic tweezers study[J]. Journal of the Korean Physical Society, 2006, 49(3), 963-7
    
    [120] Berners-Price, Susan .; Ronconi, Luca; Sadler, Insights into the mechanism of action of platinum anticancer drugs from multinuclear NMR spectroscopy[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2006, 49(1):65~98
    
    [121] Stefanka, Hann, Koellensperger, Stingeder, nvestigation of the reaction of cisplatin with methionine in aqueous media using HPLC-ICP-DRCMS[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(7): 894~898
    [122] Spiegel, Katrin; Rothlisberger, Ursula; Carloni, Paolo, Cisplatin binding to DNA oligomers from hybrid car-parrinello/molecular dynamics simulations[J]. Journal of Physical Chemistry B, 2004, 108(8), 2699~2707
    [123] 何跃明,吕新生,艾中立,刘志苏,王平康.纳米及微米磁微粒磁性顺铂微球对肝癌细胞的影响及机理[J].中国普通外科杂志,2004,13(3):179~184
    [124] 谢明强,陈帅君,徐雪青等.两种顺铂磁性纳米颗粒制备及其特性的比较[J].科学通报,2005,50,19:2079~2084
    [125] 王平康,王光志,李朴,马锦琦,莫耀南.磁性顺铂微球的药物控释研究[J].生物磁学:9~11
    [126] 何跃明,吕新生,艾中立,刘志苏,王平康.磁介导热疗联合顺铂化疗对肝癌细胞的影响及其机制[J].中华实验外科杂志,2004,10:1070~1072
    [127] 邱广亮 李咏兰 邱广明等,中国医药工业杂志2001,32(12),544~546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700