γ-Fe_2O_3/ZnO纳米复合双层气敏膜的制备及其气敏性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先在Al_2O_3基底上以Zn(NO_3)_2·6H_2O为锌源,六次甲基四胺为沉淀剂,分别选取十二烷基苯磺酸钠、十六烷基三甲基溴化铵、柠檬酸、三聚磷酸钠、聚乙烯醇和聚乙二醇2000六种表面活性剂,采用水热法成功地制备出各种形貌的纳米ZnO如纳米片、纳米微球、纳米棒、纳米墙和花状结构等。采用XRD和FSEM技术对所获得的纳米ZnO进行了表征。研究结果表明:不同表面活性剂组合会通过吸附作用或者电荷作用来影响纳米ZnO生长基元的生长方式;表面活性剂的量则会影响纳米ZnO生长基元的自组装方式;水热前驱液浓度会对纳米ZnO颗粒大小和密集程度产生影响。
     其次,结合水热法调控纳米ZnO的结果,通过丝网印刷和水热处理相结合的工艺将体控制型气敏材料γ-Fe_2O_3和表面控制型气敏材料ZnO复合,制备出气敏性能更好的γ-Fe_2O_3/ZnO纳米复合双层膜。通过改变水热过程中表面活性剂种类和前驱液浓度,研究了不同形貌复合膜对乙醇、甲醛、氨气和甲苯四种还原性气体的敏感性能,并探讨了其气敏机理。研究结果表明:γ-Fe_2O_3/ZnO纳米复合双层膜对四种气体的灵敏度相对于单层γ-Fe_2O_3气敏膜和单层ZnO气敏膜都得到了不同程度的提高。单层丝网印刷的γ-Fe_2O_3气敏膜F0在最佳工作温度点对100ppm乙醇、甲醛、氨气和甲苯的灵敏度分别为15.1、3.9、2.2和4.0,单层水热制备的ZnO气敏膜Z2在最佳工作温度点对100ppm四种气体的灵敏度分别只有5.7、1.4、1.3和1.2;而在0.01g表面活性剂CA作用下得到的γ-Fe_2O_3/ZnO复合膜F2对100ppm乙醇的灵敏度在320℃时达到65.4,对100ppm甲醛的灵敏度在300℃时达到7.6;在0.005 g CA和_0.033g SDS共同作用下得到的γ-Fe_2O_3/ZnO复合膜F5对100ppm氨气的灵敏度在320℃时达到5.9,对100ppm甲苯的灵敏度在300℃时达到8.8;复合膜的最佳工作温度为300℃左右;不同形貌复合膜对于气体的敏感度有很大不同,这与复合膜的表面积、纳米ZnO在γ-Fe_2O_3上的生长位置以及复合膜表面能的大小有关。
     最后,本文探讨了γ-Fe_2O_3/ZnO纳米复合双层膜的气敏机理。我们认为有两个方面的原因使得γ-Fe_2O_3/ZnO纳米复合双层膜的气敏性能相对于单层的高。其一,γ-Fe_2O_3与ZnO复合后由于各自气敏机理不同,能通过不同的形式与所测气体发生反应,使得复合膜整体的电阻相较于单层膜的电阻有了更大的变化,因此响应也更高。其二,ZnO和γ-Fe_2O_3都是纳米级的,气敏材料本身的纳米效应也使得其性能有所提高。此外,复合膜对于不同气体有不同程度的响应主要与待测气体本身的分子结构有关。
In the experiment,firstly, using zinc nitrate and HMTA as zinc source and precipitator, respectively , in addition to different surfactants of dodecyl sulfate, hexadecyl trimethyl ammonium bromide,citric acid,sodium tripolyphosphate,polyvinyl alcohol and polyethylene glycol 2000, we successfully synthesized nano-ZnO with different morphologies on the Al_2O_3 substrates via a hydrothermal method, including ZnO nanorods,ZnO nano-wall,ZnO fine microspheres and flower-like ZnO etc. The obtained nano-ZnO was studied by X-ray diffraction(XRD) and field-emission scanning electron microscopy(FESEM).The results show that the different surfactants influenced the morphologies of nano-ZnO by means of electrostatic interactions or absorption interactions. The amount of surfactants would influence the assemble way of the growth unit of ZnO crystal. And the precursor concentration would influence the size and intensive degree of ZnO crystal.
     Then,using the results of controlling the mophologies of nano-ZnO via hydrothermal method,a new kind of high gas sensing property nano structure composite films composed ofγ-Fe_2O_3 and ZnO was prepared by screen printing process combined with hydrothermal treatment. By changing different kinds of surfactants and precursor concentration in hydrothermal treatment, composite sensitive films with different microstructures were fabricated and the films’sensitivities to ethanol, formaldehyde, ammonia and methylbenzene were tested .The results indicate that the sensitivities to all four gases ofγ-Fe_2O_3/ZnO composite films were higher compared with single-layerγ-Fe_2O_3 gas sensing film and single-layer ZnO gas sensing film .The sensitivities at the best working temperature of screen printing single-layerγ-Fe_2O_3 film F0 to ethanol, formaldehyde, ammonia and methylbenzene are 15.1、3.9、2.2 and 4.0, respectively; The sensitivities at the best working temperature of hydrothermal single-layer ZnO film Z2 to the four gases are only 5.7、1.4、1.3 and 1.2, respectively; The sensitivity of samble F2 synthesized with 0.01g surfanctant CA to ethanol is 65.4 at 320℃,the sensitivity of samble F2 to formaldehyde is 7.6 at 300℃,the sensitivity of samble F5 synthesized with 0.005 g surfanctant CA and 0.033g SDS to ammonia is 5.9 at 320℃,the sensitivity of samble F5 to methylbenzene is 8.8 at 300℃. The perfect working temperature ofγ-Fe_2O_3/ZnO composite films was about 300℃which was lower than that of single-layer ZnO gas sensing film. Theγ-Fe_2O_3/ZnO composite films with different morphologies displayed very different gas sensing properties. The surface area ,the growth position and the surface energy are the three factors.
     The gas sensing mechanism ofγ-Fe_2O_3/ZnO composite films was also discussed. We consider that two reasons lead to the improvement of the sensitivities ofγ-Fe_2O_3/ZnO composite films to ethanol, formaldehyde, ammonia and methylbenzene. First,because of different gas sensing mechanism ,ZnO andγ-Fe_2O_3 would react with the testing gases in different ways which lead to greater change of the bulk resistant of composite materials.Thus ,the sensing property of composite film is better than that of single film .Second, both ZnO andγ-Fe_2O_3 are nano scale,the nano effect of sensing materials would also make the composite films display better sensing property. In addition, the different structures of different gases lead to the different sensitivities .
引文
[1] Hongyu H, Fariborz H. Modeling of volatile organic compounds emission from dry building materials. Building and Environment,2002,37(11):1349-1360
    [2] Haghighat F, Donnini G. Emissions of indoor pollutants from building materiats-state of the art review. Architectural Science Review,1993,36(1):13-22
    [3] Barker P.S, Petty M.C, Monkman A.P, et al. A hybrid phthalocyanine/silicon field-effect transistor sensor for NO2. Thin Solid Films,1996,284(9):94-97
    [4] Li Xiyou, Shen Shuyin, Zhou Qingfu, et al. The gas response behavior of spin-coated phthalocyanine films to NO2. Thin Solid Films, 1998,324(1-2):274-276
    [5] Fukui K, Katsuki A. Improvement of humidity dependence in gas sensor based on SnO2. Sensors and Actuators B: Chemical,2000,65 (1-3):316-318
    [6] Xu Jiaqiang, Pan Qingyi, Shun Yu'an, et al. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical,2000,66(1-3):277-279
    [7] Wang Shengyue, Wang Wei, Wang Wenzhong, et al. Characterization and gas-sensing properties of nanocrystalline iron(Ⅲ)oxide films prepared by ultrasonic spray pyrolysis on silicon. Sensors and Actuators B: Chemical,2000,69(1-2):22-27
    [8]徐甲强,韩建军,谢冰. Au-In2O3 CO气体传感器的性能与机理研究.传感技术学报,2007,20(3):481-484
    [9]常剑,蒋登高,詹自立等.半导体金属氧化物气敏材料敏感机理概述.传感器世界,2003,(8):14-17
    [10]曾桓兴,文向阳.SnO2-Fe2O3复合气敏材料的气敏性能研究.应用化学,1992,9(1):51-55.
    [11] Xu Jiaqiang , Chen Yuping, Li Yadong, et al. Gas sensing properties of ZnO nanorods prepared by hydrothermal method. Journal of Materials Science,2005,40(11):2919-2921
    [12] Kong X.Y, Ding Y, Yang R, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts.Science,2004,303(5662):1348-1351
    [13]付三玲,蔡淑珍,张晓军等.水热法制备ZnO晶体及纳米材料研究进展.人工晶体学报,2006,35(5):1016-1020
    [14]钭启升,张辉,邹剑波等.氧化铁和羟基氧化铁纳米结构的水热法制备及其表征.无机材料学报,2007,22(2):213-218
    [15] Tong Yanhong, Liu Yichun, Dong Lin, et al. Growth of ZnO nanostructures with different morphologies by using hydrothermal technique. Journal of Physical Chemistry,2006,110(41):20263-20267
    [16] Lv Sa, Wang Chunxu, Zhou Tieli, et al. In situ synthesis of ZnO nanostructures on a zinc substrate assisted with mixed cationic/anionic surfactants. Journal of Alloys and Compounds, 2008, 477(1-2):364-369
    [17] Kim Jin Hyeok, Kim Eun Mi, David Andeen, et al. Lange growth of heterepitaxial ZnO thin films on GaN-buffered Al2O3 (0001) substrates by low-temperature hydrothermal synthesis at 90℃. Advanced Functional Materials, 2007, 17(3):463-471
    [18]张荫民,蓝鼎.水热法制备ZnO二维周期有序孔结构薄膜.化学通报, 2008,70(8):587–591
    [19] Sima A.Y.L, Goh G.K.L, Tripathy S, et al. Photoluminescence of hydrothermally epitaxied ZnO films. Electrochimica Acta, 2007, 52(8):2933-2937
    [20] Zhao Aiwu,Luo Tao, Chen Luyang, et al. Synthesis of ordered ZnO nanorods film on zinc-coated Si substrate and their photoluminescence property. Materials Chemistry and Physics,2006,99(1):50-53
    [21] Wang Y. D, Zang K. Y, Chuab S. J. Catalyst-free growth of uniform ZnO nanowire arrays on prepatterned substrate. Applied Physics Letters, 2006, 89(26): 263116
    [22] Gao Puxian, Liu Jin, Buchine Brent.A, et al. Multicolored ZnO nanowire architectures on trenched silicon substrates. Journal of Physical Chemistry,2007,111(37): 13763-13769
    [23] Liu Zhaoting, Fan Tongxiang, Zhang Di, et al. Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates. Sensors and Actuators B: Chemical,2009,136(2):499-509
    [24] Rumyantseva M.N, Kovalenko V.V, Gaskov A.M, et al. Nanocomposites SnO2/Fe2O3: wet chemical synthesis and nanostructure characterization.Sensors and Actuators B: Chemical, 2005,109(1):64-74
    [25] Jiao Zheng,Wang Shengyue. Stability of SnO2/Fe2O3 multilayer thin film gas sensor.Materials Research Bulletin ,2000,35(5):741-745
    [26] Tong Maosong, Dai Guorui, Gao Dingsan, et al. Surface modification of oxide thin film and its gas-sensing properties.Applied Surface Science,2001,171(3-4):226-230
    [27]娄向东,沈荷生,沈瑜生. Fe2O3/ SnO2和SnO2/Fe2O3双层薄膜的XPS分析.传感技术学报,1992(9):17-20
    [28]戴国瑞,何秀丽. Fe2O3-SnO2双层薄膜对氨气敏感特性及其机理研究.半导体学报,1998,19(10):745-750
    [29]郑顺镟,庄中禄,郭斯淦. Fe2O3-SnO2混合薄膜的制备及其在丙酮蒸汽中的反射光谱.激光技术,1997,21(6):365-368
    [30]马晓翠,阎大卫,赵永生. SnO2/Fe2O3双层薄膜的界面结构及其对气敏特性的影响.真空科学与技术,2003,23(2):79-83
    [31]王卫伟.水热法制备SnO2/α-Fe2O3纳米复合材料.化学研究与应用,2007,19(9):975-978
    [32] Barreca Davide,Elisabetta Comini. First example of ZnO-TiO2 nanocomposites by chemical vapor deposition: structure, morphology, composition and gas sensing performances. Chenmistry of Materials ,2007,19(23): 5642-5649
    [33] Zhu B.L, Xie C.S. Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2. Material Letters,2004,58(5):624-629
    [34] Bodade A.B, Bende A.M, Chaudhari G.N. Synthesis and characterization of CdO-doped nanocrystalline ZnO:TiO2-based H2S gas sensor. Vacuum ,2008,82(6):588-593
    [35]陈凯,吴文鹏. ZnO/TiO2多层薄膜氨气敏光学特性研究.激光技术,2001,25(3):209-213
    [36] Yoon Dang Hyok, Yu Ji Haeng, Choi Gyeong Man. CO gas sensing properties of ZnO–CuO composite. Sensors and Actuators B: Chemical,1998,46(1):15-23
    [37] Hu Ying, Zhou Xiaohua. Sensing properties of CuO/ZnO heterojunction gas sensors. Materials Science and Engineering B-Solid State Materials for Advance Technology, 2003, 99(1-3):41-43
    [38]范会涛,曾毅. ZnO-CuO纳米复合氧化物的制备及其气敏性能.物理化学学报, 2008,24(7):1292-1296
    [39] Vasiliev R.B, Rumyantseva M.N. CuO:SnO2 thin film heterostructures as chemical sensors to H2S. Sensors and Actuators B: Chemical, 1998, 50(3):186-193
    [40] Jun Tamaki , Kengo Shimanoe. Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method. Sensors and Actuators B: Chemical, 1998, 49(1-2):121-125
    [41]余龙,费正新. CuO-SnO2纳米粉体制备及其气敏元件气敏性能研究.兵器材料科学与工程,2006,29(6):15-18
    [42] Tang Huixiang, Yan Mi. A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sensors and Actuators B: Chemical,2006,114(2):910-915
    [43] Arshak K, Gaidan I. Gas sensing properties of ZnFe2O4/ZnO screen-printed thick films. Sensors and Actuators B: Chemical,2005,111(Sp. Iss. SI):58-62
    [44] Zhu C.L, Chen Y.J. Synthesis and enhanced ethanol sensing properties of a-Fe2O3/ZnO heteronanostructures. Sensors and Actuators B: Chemical,2009,140(1):185-189
    [45]徐红燕,王介强.掺杂Fe2O3对ZnO多孔纳米固体厚膜气敏传感器性能的影响.功能材料与器件学报,2008,14(6):977-982
    [46] Lee Hsiao Ching, Hwang Weng Sing . Substrate effects on the oxygen gas sensing properties ofSnO2/TiO2 thin films. Applied Surface Science,2006,253(4):1889-1897
    [47] Lin Zhidong, Chen Gaofeng. The gas sensitivity of nano TiO2-SnO2 film doped with Cd(II) ion. Materials Letters ,2009,63(27):2277-2279
    [48]方国家,王汉中,吉向东. 1mol% TiO2-SnO2薄膜的溶胶-凝胶制备及其气敏特性.襄樊学院学报,1999,2(20):8-13
    [49]曾文,林志东. SnO2掺杂纳米TiO2材料气敏性能研究.传感器世界,2007,9:13-16
    [50]李彦生,李刚,高宏.表面活性剂在纳米氧化锌制备和改性中应用研究进展.有色矿冶, 2005, 21(Z1): 75-76
    [51]侯洁,董哲,刘宗瑞等.表面活性剂在纳米氧化锌制备中的应用研究进展.内蒙古民族大学学报(自然科学版),2009,24(3):266-268
    [52]肖近新,赵振国.表面活性剂应用原理(第一版).北京:化学工业出版社,2003.1-6
    [53] Meyer B, Marx D. Density-functional study of the structure and stability of ZnO surfaces. Physical Review B, 2003, 67(3): 1-11
    [54] Ren Liufeng, Zhong Min, Wang Han, et al. Formation mechanism and influence of surfactant on morphology of zinc oxide nanorods. Journal of the Chinese Ceramic Society, 2008, 36(3):363-366
    [55] Kim Yong Jin, Lee Chul Ho, Young Joon Hong, et al. Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Applied Physics Letters, 2006, 89(16):163128
    [56]魏峰,张志焜.聚乙烯醇为助剂水热法制备氧化锌纳米棒,中国粉体技术,2004,10(特刊):90-92
    [57]沈钟,赵振国.胶体与表面化学(第三版).北京:化学工业出版社,1997.94-95
    [58] Dobryszycki J,Biallozor S.On some organic inhibitors of zinc corrosion in alkaline media. Corrosion Science,2001,43(7):1309-1319
    [59]张艳辉,田彦文,王志锋等.不同形貌氧化锌微晶的制备与控制生长.渤海大学学报(自然科学版),2008,29(3):208-213
    [60]王艳香,范学运,余熙.三聚磷酸钠辅助水热合成制备氧化锌纳米片.无机化学学报,2008,24(3): 434-438
    [61] Wang Yanxiang , Fan Xueyun, Sun Jian. Hydrothermal synthesis of phosphate-mediated ZnO nanosheets. Materials Leters,2009,63(3-4):350-352
    [62]吴国艮.表面活性剂辅助下的纳米材料的制备、表征及性能研究:[硕士学位论文].芜湖:安徽师范大学图书馆,2007
    [63] Rai Prabhakar, Ripathy Suraj Kumar, Park Nam Hee, et al.Synthesis of violet light emitting single crystalline ZnO nanorods by using CTAB-assisted hydrothermal method. Journal of MaterialsScience: Materials in Electronics ,2009,20(10):967-971
    [64] Li Fei, Hu Liang, Li Zhen, et al. Influence of temperature on the morphology and luminescence of ZnO micro and nanostructures prepared by CTAB-assisted hydrothermal method. Journal of Alloys and Compounds,2008,465(1-2):14-19
    [65] Shao Zhengzheng, Zhang Xue’ao, Wang Xiaofeng, et al. Raman spectrum study on synthesis mechanism of porous ZnO microspheres assisted with trisodium citrate. Spectroscopy and Spectral Analysis,2010,30(5): 1257-1260
    [66] Wang Huihu, Xie Changsheng. Controlled fabrication of nanostructured ZnO particles and porous thin films via a modified chemical bath deposition method. Journal of Crystal Growth,2006,291(1) :187~195
    [67]何顺爱,周双喜,张兰等.水热沉淀法制备ZnO纳米粉体.桂林工学院学报,2004,24(1):80-83.
    [68]徐甲强.氧化物纳米材料的合成、结构与气敏特性研究:[博士学位论文].上海:上海大学图书馆,2005
    [69]刘延辉.特殊形态纳米ZnO气敏性能研究:[硕士学位论文].武汉:华中科技大学图书馆,2005
    [70]冯祖勇.α-Fe2O3基气敏纳米材料的制备及其结构、性能的研究:[硕士学位论文].福建:福州大学图书馆,2001
    [71] Kawamura K, Kerman K, Fujihara M, et al. Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome. Sensors and Actuators B: Chemical,2005,105(2):495-501
    [72]居住区甲苯、二甲苯的检测,GB 11737-89,1989
    [73]杨合情,李丽,宋玉哲等. ZnO纳米片自组装空心微球的无模板水热法制备与发光性质.中国科学B辑:化学,2007,37(5):417-425
    [74] Sun Zhipeng, Liu Lang, Zhang Li, et al. Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas sensing properties. Nanotechnology, 2006,17(9): 2266-2270
    [75] Jing Z.H. Ethanol sensing properties ofγ-Fe2O3 nanopowder doped with Mg by nonaqueous medium method. Materials Science and Engineering B-Solid State Materials for Advance Technology,2006,133(1-3):213-217
    [76] Ge Chunqiao, Xie Changsheng, Zeng Dawen. Formaldehyde-, Benzene-, and Xylene-Sensing Characterizations of Zn–W–O Nanocomposite Ceramics. Journal of the American Ceramic Society,2007,9(10):3263-3267
    [77] Xie Changsheng, Xiao Liqi, Hu Mulin, et al Fabrication and formaldehyde gas-sensing property ofZnO-MnO2 coplanar gas sensor arrays. Sensors and Actuators B: Chemical, 2010, 145(1):457-463
    [78] Qi Q, Zhang T, Liu L, et al . Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sensors and Actuators B: Chemical, 2009, 141(1):174-178
    [79] Qi Q, Zhang T, Liu L, et al.Synthesis and toluene sensing properties of SnO2 nanofibers. Sensors and Actuators B: Chemical ,2009,137(2):471-475
    [80]裴素华,孙海波,张华等.γ-Fe2O3响应苯类气体敏感材料特性研究.功能材料与器件学报,2004,10(1):41-44
    [81] Gnanasekar K.I, Rambabu B, Kevin.L. Role of grain boundaries in exceptionally H2 sensitive highly oriented laser ablated thin films of SnO2. Journal of the Electrochemical Society, 2002, 149(1):19-27
    [82]潘庆谊,张剑平,程知萱等.纺锤形纳米γ-Fe2O3的气敏性能.郑州轻工业学院学报(自然科学版),2000,15(4):75-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700