CH_4气敏传感器用α-Fe_2O_3基纳米材料的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的快速发展,纳米气敏性材料的应用愈加广泛,继氧化锡、氧化锌之后,氧化铁系材料成为第三大系气敏材料,其良好的稳定性,广泛的选择性引起了人们的兴趣。本文分别采用两种方法合成了纯相α-Fe2O3纳米粉体,并进行了成份掺杂;对纳米粉体和所制元件进行了结构表征和性能测试,深入探讨α-Fe2O3基纳米粉体的制备工艺、微观结构和气敏性能之间的关系。得到的主要结论如下:
     以FeCl3.6H2O和NaOH为原料,分别采用化学沉淀法和超声化学法合成了纳米氧化铁粉末,并对其制备工艺进行了分析比较。实验结果表明:两种方法制备的纳米氧化铁粉末平均粒径均在20-40nm之间,且纯度较高。在化学沉淀法中选用不同烧结温度对粉体成形进行了考察:300℃和400℃烧结时有杂质相y-Fe203生成:在500℃,600℃烧结时α-Fe2O3粒径分别为32nm和37nm;采用400℃保温2h再升温至600℃焙烧0.5h后的试样无杂质相且粒径为28nm,且分散性较好,形貌呈现椭球形。在超声化学法中考察不同的震动功率对粉体的影响,随着震动功率的增大(45W-81W)粉体粒径不断减小,在81W时粒径为20nm,形貌呈现球形,分散性很好。
     在成功制备纯相α-Fe2O3纳米粉体的基础上进行掺杂试验:分别改变Sn4+、Mg2+、Ce4+与Zr4+的浓度,制备出掺杂成份的α-Fe2O3纳米粉体。借助于XRD、SEM与TEM分析测试,结果表明部分Sn4+、Mg2+、Ce4+可以代替α-Fe2O3晶格中的Fe3+,从而改变其晶格参数,减小了α-Fc2O3的晶粒大小。但Zr4+并没有进入α-Fe2O3的晶体,而是形成了两个独立的相:ZrO2和α-Fe2O3。采用超声化学法将ZrO2和Y2O3按不同浓度比也制备了掺杂成份的α-Fe2O3纳米粉体。结果表明Y3+进入了α-Fe2O3晶格内,Zr4+与α-Fe2O3形成共存,且纳米粉体的形貌主要呈现为棒状、纺锤形和球形。
     以掺杂成份的α-Fe2O3纳米粉体为基材,设计并制作了气敏元件,并测试了其对甲烷气体的敏感性。结果表明,含有Sn4+或Ce4+单相掺杂的α-Fe2O3纳米粉体气敏性优于含Zr4+或Mg2+的粉体。其中参7mol%Ce4+的试样在甲烷含量为1000ppm时的灵敏度为6.4;在响应-恢复时间上掺5mol%Sn4+的元件响应-恢复时间用时最短.分别为18s和21s。双相掺杂的纳米α-Fe2O3粉体对甲烷气体的灵敏度有所提高,掺杂5mol%Zr0210mol%Y2O3的试样在甲烷含量为1000ppm时的灵敏度为9.6;所有双相掺杂的元件响应—恢复时间都在20s左右。
With the rapid development of nonatechnology, nonamaterials for gas sensing applications become more widespread. Nowadaysα-Fe2O3 has been used as the third kind gas-sensing materials and gained wide application after the development of ZnO and SnO2 nanomaterials, which has high stability and selectivity. In this dissertation, a-Fe2O3 nano-poeder were synthesised by two methods, and carried on the ingredient doping. On the basis of measurements and characterizations of a-Fe2O3-based nano-powders and gas sensitive sensors, the correlativity between the synthesis and structre of powders and the characters of sensors studied in detail and the sensitive mechanism was discussed. The main conclusions can be drawn as follows:
     a-Fe2O3 nano-powders were made by chemistry precipitation and ultrasonic chemistry with raw materials of FeCl3 6H2O and NaOH. The experiment results showed that the a-Fe2O3 nano-powders made by two methods are of high purity with its size of 20-40nm. During the process of chemistry precipitation various sintering temperatures were used. When they were sintered at 300℃and 400℃, few by-products of y-Fe2O3 can be detected. The average diameters ofα-Fe2O3 powder were 32nm and 37nm at 500℃and 600℃,respectively. When they were sintered at 400℃for 2h and then 600℃for 0.5h, ellipsoidal-shapedα-Fe2O3 nano-powders were uniform distributed with size of 28nm, and no other impurities were found. The influence of shock power in ultrasonic chemistry on nano-powders was studied. As the shock power increases, the size of nano-powders decreases, uniform dispersion and spherical liked nano-powders with size of 20nm were obtained as the shock power reaches 81W.
     Based on the preparation ofα-Fe2O3 nano-powders,doping experiments were performed. By changing the concentration Sn4+、Mg2+、Ce4+ and Zr4+. respectively the doped were successfull、Tabricated. With the help of XRD、SEM and TEM. the results showed that Fe3+ has partial replaced by Sn4+、Mg2+ and Ce4+. which changes the crystal structure. Additionly, the size of a-Fe2O3 nano-powders were decreased. However, Zr4+ did not enter in the crystal ofα-Fe2O3, thus resulting the formation of ZrO2 and a-Fe2O3. The dopedα-Fe2O3 nano-powders were made by changing the concentration of ZrO2 and Y2O3 using ultrasonic chemistry method. Results showed that Y3+ enter into the crysral of a-Fe2O3, and coexistence of Zr4+ and found. The nano-powders show three morphology:rod-like,spiudle-shaped and spherical-shape.
     The CH4 gas-sensor properties of a-Fe2O3 doped nano-powders were studied. Among all the investigated materials, can be achieved that gas sensing ofα-Fe2O3 doped nano-poeders containing Sn4+ or Ce4+ is superior to that ofα-Fe2O3 doped nano-powders containing Zr4+ and Mg2+. When the concentration of CH4 1000ppm reaches 6.4 for doping 7mol% Ce4+ doped nao-powders. The response and recovery time for 5mol% Sn4+ doped nao-powders are 18s and 21s, respectively under the condition of 1000ppm CH4. Two phase doping ofα-Fe2O3 nano-powder increased the sensitivity of the methane gas, which reaches 9.6 for 5mol% ZrO2 and 10mol% Y2O3 doped nano-powders at 1000ppm CH4. The response-recovery time of all was around reach 20s in the atomosphere of CH4.
引文
[1]张立德.纳米材料研究的新进展及在21世纪的战略地位[J].中国粉体技术,2000,6(1):1-5.
    [2]姜秀榕.α-Fe203基纳米材料的微乳液法制备、表征及气敏性能的研究[D].硕士学位论文.福州:福州大学,2006.
    [3]王燕.低维α-Fe203纳米材料的合成、改性及气敏性能研究[D].天津:南开大学,2009.
    [4]R.P.Anders, R.S.Avehtack,W.L.Brown, et al. Research Opportunities on Clusters and Cluster Assembled Materials. A Department of Enegry,Council on Materials Science Panel Report[J].J.Mater.Res.,1989,(4),704-736.
    [5]G.J.Thomas, R.W.Siegel, J.A.Eastmna. Grain-Boundaries in NnaoPhase Palldaimu-High-Resolution.Electro-Microscopy and Image Simulation [J].Scripta Metall.Et Mater.,1990,24,201-206.
    [6]D.Li, D.Ping, Q.Ye, et al. HREM Study of The Microstructure in Nnaocrystalline Materials [J]. Mater Lett,1993,18,29-32.
    [7]W.P.Halperin. Reaction kinetics and controls of size and shape of goethite fine particles in the process by aix oxidation of alkaline suspension of ferrous hydroxide[J].Rev. of modern Phys,1986,58(6):532-535.
    [8]G.D.Mendenhall,Y.Geng, J.H. Wang. Optimization of long-term stability of magnetic fluids from magnetite and synthetic polyelectrolytes [J]. Colloid and Interface Sci,1996,184(12):519-526.
    [9]M. L.Arturo, J.Rivas. Chemical reaction in microemulsions:a powerful method to obtain ultrafine particles[J]. Langmuir,1999,15(4):447-453.
    [10]P.Ball, L.Garwin. Matrix-mediated synthesis of nanocrystalline y-Fe2O3:a new optically transparent magnetic material[J]. Nature,1992,335:761-771.
    [11]苏品书.超微粒子材料技术(第一版)[M].北京:复汉出版社,1989.
    [12]R.E.Cavicchi, R.H.Silsbee. First steps towards tailoring fine and ultrafine iron particles using microemulsions [J].Phys.Rev.Lett.1984,52(5):1453-1457.
    [13]张立德,牟季美.开拓原子和物质的中间领域纳米微粒与纳米结构[J].固体物理.1992.21(3):167-172.
    [14]冯祖勇.α-Fe203基气敏纳米材料的制备及其结构、性能的研究[D].福州:福州大学,2001.
    [15]都有为,陆怀先,王挺祥,等.γ-Fe2O3中的氢含量[J].物理学报,1986,35(8):989-992.
    [16]熊隆荣.油酸钠包覆Fe3O4磁流体的制备及其包覆结构研究[D].四川:四川大学,2007.
    [17]谢峰.影响气敏α-Fe2O3超细粒体粒度因素的研究[J].传感器技术,1999,18(5):12-16.
    [18]潘庆谊,张剑平,程知萱,等.纺锤形纳米γ-Fe2O3的气敏性能[J].郑州轻工业学院学报(自然科学版),2000,15(4):75-77.
    [19]王金忠,吴家琨,孙良彦.选择性γ-Fe2O3 LPG元件的研制[J].传感技术学报,1998,11(4):13-14.
    [20]杨志海,陈永明,杨建广,等.湿法制备纳米结构银研究进展[J].贵金属,2006,27(3):58-74.
    [21]杨玉华,王九思,许力.纳米材料制备方法简述[J].甘肃水利水电技术,2004,40(1):59-60.
    [22]胡鸿飞,李大成,吉红兵.纳米氧化铁的制备方法及进展[J].四川有色金属,2000,4(1),15-20.
    [23]照日格图,乌云,宝迪,等.沉淀法制备α-Fe2O3纳米晶[J].化学工程师,2004,105(6):1-3.
    [24]欧延,邱晓滨,许宗祥,等.均匀沉淀法合成纳米氧化铁[J].厦门大学学报(自然科学版),2004,43(6):882-885.
    [25]赵克辉,王承权,闫涛,等.纳米α-Fe2O3的制备与气敏性质的研究[J].化工进展,2002,21(8):579-581.
    [26]曹建新,张煜,聂登攀.磁性氧化铁纳米粒子制备技术的最新进展[J].现代机械,2003,,(4):80-82.
    [27]T.Sugimoro, Y.S.Wang, H.Itoh, et al.Tensile deformation of silver micro-wires of small thickness-to-grain-size ratios[J]. Colloids and surfaces A:Physicoehemieal and Engineering Aspects.1998,134(3),265-269.
    [28]张朝平,黄毅,申德君,等.凝胶—微乳液化学方法制备纳米颗粒[J].稀有金属,2002,26(4):257-261.
    [29]Y.Berkovich, A.Aserin, E.Wachtel, et al. Prepartion of Amorphous Aluminum Oxide-Hydroxide Nanoparticcs in Amphiphilic Silicone-Based Copolymer Micro emulsions [J]. Journal of Colloid and Interface Scincec.2002,245(1):58-67.
    [30]M.Nagao, H.Seto, D.Okuhara, et al. Temperature and pressure induced phase transition in a ternary micro emulsion system [J]. Journal of Physics and Chemistry of Solids,1999,60(8-9):1363-1365.
    [31]J.Esquena,Tadros,T.F.Kostarelos, et al. Preparation of narrow Distribution silica particles us-ing micro emulsions [J]. Langmuir,1997.13(24),6400-6406.
    [32]M.J.Hou, D.O.Shah. Effects of the molecular structure of the interface and continuous phase on solubilization of water in water/oil micro emulsions [J] Langmuir,1987,3(6):1086-1096.
    [33]A.Jada, J.Lang, S.J.Candau, et al. Structure and dynamics of water-in-oil Micro emulsions[J]. Colloids and Surf.,1989,38(3):251-261.
    [34]殷福珊,王墨林.微乳化技术及应用[M].北京,中国轻工业出版社,1999.
    [35]韩丽红.微反应器中催化制备Fe2O3纳米颗粒[D].河北:河北师范大学,2009.
    [36]陈龙武,甘礼毕,岳天仪,等.微乳液反应法制备α-Fe2O3超细粒子的研究[J].物理化学学报,1994,10(4):750-754.
    [37]鲁俊.制备纳米Fe2O3的微乳体系研究[J].湖北襄樊武汉科技学院学报,2006,12(9):28-30.
    [38]温立哲,邓淑华,黄慧民,等.水热法制备氧化锆微粉的进展[J].无机盐工业,2003,35(2):16-18.
    [39]吴会军,刘笑笑,朱冬生,等.水热反应法制备纳米粉体的研究进展[J].现代化工,2003,23(增刊):37-40.
    [40]钭启升,张辉,邬剑波,等.氧化铁和羟基氧化铁纳米结构的水热法制备及其表征[J].死机材料学报,2007,22(2):213-218.
    [41]X.Chen, Z.X.Deng, Y.P.Li, et al. Hydrothermal Synthesis and Superparamagnetic Behavi-iors of a Series of Ferrite Nanoparticles[J]. CHINESE JOURNAL OF INORGANIC CHE-MISTRY,2002,18(5):460-463.
    [42]曾桓兴,任福民.强迫水解制备纺锤形α-Fe2O3微粒的研究[J].科学通报,1991,36(8):627-629.
    [43]邵梅珍.纳米氧化铁的制备与展望[J].衡水师专学报,2001,3(4):57-59.
    [44]钟红梅,杨延钊,张卫民,等.回流法制备纳米氧化铁的研究[J].山东大学学报,2002,37(2),160.
    [45]R.E.Nagi, R.Wan, GH.EI-Shobaky. Solid-solid inieractions between ferric and cobalt oxides as influenced by Al2O3-doping[J].Thennochim.2000,360(5):147-156.
    [46]邱春喜,姜继森,赵振杰,等.固相法制备α-Fe2O3纳米粒子[J].无机材料学报.2001,16(5):957-960.
    [47]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2003.
    [48]S.G.Imm, M.Schultz, S.B.Rth, et al. Flame pyrolysis-aprepa rationroute for ultrafinepure γ-Fe2O3 powd ersand the control of their particle size and properties[J].Materia is Science,1997,32(4):1080-1092.
    [49]冯蕴道.氧化铁超微粉相变过程研究[J].硅酸盐学报.1991.22(3):309-313.
    [50]董立峰.崔作林.张志琨.纳米稀土α-Fe2O3的气敏特性[A].第二届中国功能材料及 其应用学术会议论文集[C],1995.
    [51]曾桓兴,王弘,沈瑜生.氧化铁气体传感器研究Ⅱ.α-Fe2O3气敏特性[J].半导体学报.1988,9(6):648-652.
    [52]席彩红,高晓平,刘国汉.二氧化锡气体传感器敏感机理的研究[J].曲阜示范大学学报.2008,34(2):65-68.
    [53]娄向东,沈荷生,沈愈生.ZnO系半导体陶瓷气敏传感器的进展[J].传感器技术,1991,35(3):1-5.
    [54]宋晓辉,海中天.接触燃烧式气敏传感器的研制[J].计量技术,2007,41,(8):76-78.
    [55]李平,余萍,肖定全.气敏传感器的近期发展[J].功能材料,1999,30(2):126-128.
    [56]吴玉峰,田彦文,韩元山.气体传感器研究进展和发展方向[J].计算机测量与技术.2003,11(10):731-734.
    [57]吴义炳.半导体气敏元件[J].机械工程与自动化.2005,6(1):105-107.
    [58]D.Raabe, U.Hangen. Simulation of the yield strength of wire drawn Cu-based in-situ composites[J].Computational Materials Science,1996,33(5):195-202.
    [59]桂阳海,崔瑞立,牛连杰,等.掺杂纳米WO3的制备及其气敏性能研究[J].矿产保护与利用,2009,29(6):32-35.
    [60]杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1999.
    [61]陈喜蓉,郑典模,陈早明.超声化学法制备纳米α-Fe203粉体研究[J].无机盐工业,2005,37(10):18-20.
    [62]Y.Wang, J.L.Cao, S.R.Wang, et al. Facile synthesis of porous a-Fe2O3 nanorods and their application in ethanol sensors[J].The Journal of Physical Chemistry C.2008,112(5):17804-17808.
    [63]H.R.Anir, R.V.Mohammad, S.Ali. et al. Synthesis of iron oxide nanoparticles via sono-chemical method and their characterization[J]. Particuology.2011,9(1):95-99.
    [64]王鹏飞,李亚东.纳米Fe2O3粉体的室温固相制备表征及钻掺杂研究[D].苏州大学,2007.
    [65]Hall, J.David. Organisational change:kinetic theory and organizational resonance[J]. Technovation.1997,17(1):11-24.
    [66]杨强,黄剑锋.超志化学法在纳米材料制备中的应用及其进展[J].化工进展,2010.29(6):1091-1095.
    [67]X.Q.Lin, S.W.Tao, Y.S.Shen. Preparation and characterization of nanocrystalline alpha-by a sol-gel process[J]. Sensors and Actuators. B, Chemical.1997.40(2-3):161.
    [68]王兢,包化成.姚鹏等.掺杂改善SnO2甲醛气敏元件灵敏特性的研究[J].维纳电子技术.2007,7(7-8):332-334.
    [69]霍丽华,刘尔生,徐浩,等.掺锡α-氧化铁纳米晶粉体的制备及其气敏特性的研究[J].云南大学学报(自然科学版).1997,19(1):44-47.
    [70]徐甲强,田志壮,朱文会.掺杂方式对α-Fe2O3气敏特性的影响[J].材料研究学报.1994,8(3):267-269.
    [71]柴长春,彭军,镇桂琴.四价金属元素(Zr)对氧化铁薄膜气敏性的影响[J].传感器技术.1996,25(2):15-17.
    [72]陈思顺,陈新华,丁明洁,等.钇掺杂纳米Fe2O3的合成及气敏性研究[J].2005,24(9):25-29.
    [73]K.Hara, N.Nishida. H2 sensors using Fe2O3-based thin film[J].Sensor Actuators B.1994,20(3):181-186.
    [74]娄向东,李新莉,赵晓华,等.Ni掺杂α-Fe2O3纳米材料的制备及气敏性能研究[J].电子元件与材料.2009,28(1):23-25.
    [75]Y.Wang, Y.M.Wang, J.L.Cao, et al. Low temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles[J]. Sensors and Actuators. B,2008,131(1):183-189.
    [76]Y.Wang, F.H.Kong,B.L.Zhu,et al. Synthesis and characterization of Pd-doped a-Fe2O3 H2S sensor with low power consumption[J].MaterSci Eng B,2007,140(1-2):98-102.
    [77]姜秀荣,沈水发.α-Fe2O3基纳米材料的微乳液法制备及其CO敏感性[J].龙岩学院学报.2008,26(6):72-77.
    [78]贺海燕.Fe203基陶瓷的气湿敏特性[J].传感器技术.1998,17(5):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700