β-环糊精肉桂醛包合物在食品包装中的基础应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题选用β-环糊精(β-CD)和挥发性食品抗菌剂肉桂醛,研究了环糊精在抗菌食品包装中的两种应用方式:一是先使环糊精与肉桂醛形成包合物,然后加入到食品包装材料中,通过肉桂醛从包合物中的缓慢释放以及在材料中的迁移,最后达到在食品表面发挥抗菌作用;二是先将环糊精固载在纤维包装材料上,然后通过固载环糊精对肉桂醛的包埋与缓释来实现纤维材料的抗菌性能。最后将这两种功能性包装材料应用于戚风蛋糕防霉包装上。
     肉桂醛(CIN)对食品常见腐败菌和霉菌都有很强的杀灭作用。首先以肉桂醛和β-环糊精为原料,采用密封控温法制备控释包合物,并确定了包合工艺参数和释放特性。结果表明:由单因素及响应面试验对包合工艺进行优化,最终包合条件为:加热温度100℃,加热时间2.5h,β-环糊精与肉桂醛包合比1:1.75。同时用红外光谱对包合物进行鉴定,发现已形成包合物,并通过分子模拟软件chemoffice2008确定包合形式。释放实验表明,包合物中肉桂醛释放速率与环境的相对湿度密切相关,与环境温度关系不大。
     选用聚乳酸膜作为包装材料基质,研究了肉桂醛环糊精包合物在聚乳酸膜中的迁移行为。结果表明,肉桂醛在膜中的迁移速度很大程度上受食品模拟液性质的影响,且迁移速度同时还受环糊精包合物控制释放机制的影响。在60%甘油体系和50%乙醇溶液中包合物膜中抗菌剂迁移速度较快,而在10%乙醇中则体现较明显的缓释效果,在正己烷中释放程度很低。该结果说明环糊精包合物聚乳酸膜在高水分活度的食品中可以发挥长效抗菌作用。肉桂醛包合物在膜中的释放过程可利用Fickian公式来进行预测,通过对不同时间迁移质量比的测定,利用matlab软件计算得出相应的迁移系数D,可建立起相应的数学模型。
     其次,采用柠檬酸酸作为交联剂,将β-环糊精接枝到纤维素对其工艺特点进行了探讨,然后利用该纤维素对挥发食品抗菌剂肉桂醛进行包埋,并研究了其释放特性。结果表明:柠檬酸法能够使β-环糊精固载于纤维素上,接枝工艺参数,加热时间在5~7min为宜;加热温度选择在160~180℃之间;柠檬酸和β-环糊精浓度摩尔比在5:1~7:1之间。当环糊精固载量控制在12~14%之间时,肉桂醛包埋量大约在8~9μL/g。肉桂醛在功能纤维素中的释放量随环境相对湿度增加而增大。
     最后,将制得的肉桂醛聚乳酸膜和肉桂醛功能纤维应用于戚风蛋糕,试验证明具有良好的防霉功效,可有效提高其安全性并延长货架期。
In the present study, two application patterns ofβ-cyclodextrin (β-CD) in antimicrobial food packaging were investigated using the volatile antimicrobial cinnamaldehyde (CIN).One is to prepare the antimicrobial inclusion complex withβ-CD and then incorporate the inclusion complex directly into polymers material. The other way is to covalent immobilization ofβ-CD onto polymers to obtain the antimicrobial functional material by the complexation of the fixedβ-CD with antimicrobial agents. Finally these two functional packaging materials were used in chiffon cake to anti-mildew .
     Cinnamaldehyde (CIN) has strong activity in inhibiting molds and food spoilage bacterium. In the present study, packaging systems that release volatile antimicrobials was simulated by entrapping CIN withβ-CD or fixedβ-CD in fabrics. At first the controlled-releasing inclusion complex was prepared by cinnamaldehyde andβ-cyclodextrin as raw material through sealed-thermal control method .The parameters and controlled-release properties of inclusion complex were also obtained. The results showed that the optimum conditions for inclusion were established by one factor and response surface methodolody as follows: The inclusion time and temperature were for 2.5h and at 100℃, oil:β-cyclodextrin was 1:1.75.At the same, the inclusion complex was validated by IR. And through molecular modeling software packages chemoffice2008 identified the inclusion form. Release rate of cinnamaldehyde from theβ-CD-CIN complex is correlated with environmential relative humidity (RH),not with the temperature.
     Specific migration studies were performed for CIN using polylactic acid membrane matrix filled with food stimulant. The result showed that the migration behaviors were influenced by the type of food stimulant .In the low-alcohol food system, the CIN didn’t migrate in polylactic acid membrane, but did in high-alcohol solution .when inclusion complexes of antimicrobials were added into the membrane ,the migration had been much improved due to their impact on the membrane structure properties , and more the migration rate was also affected by the control release mechanism of cyclodextrin. In 50% ethanol solution or 60% glycerol system CIN moved faster from membrane , while in 10% ethanol solution the release become slow obviously and release level is very low in hexane .It could be concluded that the antimicrobial membrane withβ-CD complexes had longer-lasting effect in high-water-activity foods.
     β-cyclodextrin(β-CD) was grafted onto cellulose fibers used citric acid (CA) as crosslinking agent ,the process parameters were studied. The antimicrobial cinnamaldehyde was complexed with fiber-reactiveβ-CD ,the release properties of the obtained inclusion complex were investigated, it was observed thatβ-CD could be grafted onto fibers by CA method , graft technical parameters, heating time is 5~7 min; heating Temperature is 160~ 180℃; molar ratio (CIN :β-CD) is 5:1~7:1 when the grafting yield ofβ-CD was between 12% and 14%,the inclusion rate of cinnamaldehyde was about 8~9μL/g .Release rate of cinnamaldehyde from the functional fiber was increased as environmential relative humidity (RH) increased.
     Finally, the cinnamaldehyde polylactic acid membrane and cinnamaldehyde functional fibers were used in the chiffon cake packaging system, the test proved that they own a good anti-mildew effectiveness, which can effectively improve their security and to extend shelf life.
引文
1.童林荟.环糊精化学-基础与应用[M].北京:科学出版社, 2001
    2. Szejtli J. Introduction and general overview of cyclodextrin chemistry[J]. Chemistry Review, 1998, 98: 1743—1753
    3. Szejtli J. Past, present, and future of cyclodextrin research[J]. Pure and Applied Chemistry, 2004, 76(10): 1825—1845
    4. Del Valle EMM. Cyclodextrins and their uses: a review[J]. Process Biochemistry, 2004, 39(9): 1033—1046
    5. Hedges A R. Industry application of cyclodextrins[J]. Chemistry Review, 1998, 98: 2035—2044
    6. Giordano F, Novak C, Moyano J R. Thermal analysis of cyclodextrins and their inclusion compounds[J]. Thermochimica Acta, 2001, 380, 123—151
    7.宋乐新.环糊精化学进展[J].苏州大学学报(自然科学版) , 1996, 4: 90—95
    8. Khan A R, Forgo P, Stine K J, et al. Methods for selective modifications of cyclodextrins[J]. Chemistry Review, 1998, 98: 1977—1996
    9.郑芸岭.环糊精在微胶囊等食品中的应用.粮食与油脂.2000:2,50—52
    10. Kompantseva E V, Gavrilin M V, Ushakova L S.β-Cyclodextrin derivatives and their applications in pharmacology [J]. Pharmaceutical Chemistry Journal, 1996, 30 (4): 258—262
    11. Uekama K, Bodor N, Buchwald P. Recent Aspects of Pharmaceutical Application of Cyclodextrins[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 44: 3—7
    12. Thorsteinn L, Marcus E B. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization[J]. Journal of Pharmaceutical Sciences, 1996, 85(10): 1017—1025
    13. Roger A R, Valentino J S. Pharmaceutical applications of cyclodextrins. 2. in vivo drug delivery[J]. Journal of Pharmaceutical Sciences, 1996, 85 (11): 1142—1169
    14. Valentine J S, Roger A R. Cyclodextrins: Their Future in Drug Formulation and Delivery[J]. Pharmaceutical Research, 1997, 14(5): 556—567
    15.李淑华,顾晓梅,周林芳.环糊精及其衍生物在织物功能整理方面的应用[J].纺织导报, 2007(2): 68—72
    16. Szejtli J. Cyclodextrins in the Textile Industry[J], Starch, 55(5): 191—196
    17. Fenyvesié, Otta K, Kolbe I. Cyclodextrin Complexes of UV Filters[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 48(3-4 ): 117—123
    18.郝爱友,童林荟.环糊精在环境保护中的功能应用[J].化学试剂, 1997, 19 (5): 302—303
    19. Szejtli J. Inclusion of guest molecules, selectivity and molecular recognition by cyclodextrins, in J. Szejtli and T. Osa (eds.), Comprehensive Supramolecular Chemistry, Elsevier, Oxford, 1996, 4: 189—203
    20.唐波,刘阳,王洪鉴等.环糊精用于分子识别分析的新进展[J].分析科学学报, 2000, 16(4): 345—352
    21.史雪岩,王敏,傅若农.环糊精衍生物气相色谱手性固定相研究进展[J].分析测试学报, 2001(6): 75—79
    22. Schneiderman E, Stalcup A M. Cyclodextrins: a versatile tool in separation science[J]. Journal of Chromatography B, 2000, 745, 83—102
    23. Gibbs B F. Encapsulation in the food industry: a review[J]. International Journal of Food Sciences and Nutrition, 1999, 5(3): 213—224
    24.郭爱莲,胡水卫.环状糊精脱除食品异味的研究[J].食品科技, 1996, 17(2): 19—23
    25. SHIEH W J, HEDGES A R. Properties and applications of cyclodextrins[J]. Journal of macromolecular science. Pure and applied chemistry 1996, 33(5): 673—684
    26. Szente L, Szejtli J. Cyclodextrins as food ingredients[J]. Trends in Food Science & Technology, 2004,15(3-4) : 137—142
    27. Cravotto G, Binello A, Baranelli E, et al. Cyclodextrins as Food Additives and in Food Processing[J]. Current Nutrition & Food Science, 2006, 2(4): 343—350
    28. Hedges A R. Industry application of cyclodextrins[J]. Chemistry Review, 1998, 98: 2035—2044
    29. Giordano F, Novak C, Moyano J R. Thermal analysis of cyclodextrins and their inclusion compounds[J]. Thermochimica Acta, 2001, 380, 123—151
    30.武伟,谭龙飞,杨连生.肉桂醛微胶囊的制备工艺[J].食品与机械,2001,6(86):19
    31.阮海燕,肖霄.肉桂醛的应用[J].牙膏工业,2006,2:32—33
    32.房翠兰,赵国华.抗菌活性包装膜研究进展[J].中国包装, 2005, 5: 94—96
    33.郭新华,张子勇.食品包装的抗菌保鲜膜的应用研究[J].包装工程, 2004, 25(15): 8—9
    34.戴瑞彤,孙承峰,吴国强.食品保鲜包装及其应用[J].保鲜与加工,2001, 1(3): 4—7
    35.赵利,王素雅,谢俊杰.食品抗菌包装技术研究进展[J].食品工业科技, 2001, 22(5): 78—80
    36. Suppakul P, Miltz J, Sonneveld K, et al. Active packaging technologies with an emphasis on antimicrobial packaging and its applications[J]. Journal Food Science, 2003a, 68: 408—420
    37. Han J. Antimicrobial food packaging[J]. Food Technology, 2000, 54(3): 56—65
    38. Labuza T, Breene W. Applications of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods[J]. Journal of Food Processing and Preservation, 1989, 13, 1—89
    39. Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3: 113—126
    40. Rice J. Gas emitting wafers a cost-effective MAP approach[J]. Food Processing, 1989, 50(10): 42
    41. Hong S I, Lee J W, Son S M. Properties of Polysaccharide-coated Polypropylene Films as Affected by Biopolymer and Plasticizer Types[J]. Packaging Technology and Science, 2005, 18: 1—9
    42. Lee C H, An D S, Lee S C. A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin andα-tocopherol[J]. Journal of Food Engineering, 2004, 62: 323—329
    43. An D, Kim Y, Lee S, et al. Antimicrobial low density polyethylene film coated with bacteriocins in binder medium[J]. Food Science and Biotechnology, 2000, 9(1): 14—20
    44. Hansen R, Rippl C, Midkiff D, et al. Antimicrobial absorbent food pad[P]. US Patent, 4865855. 1989
    45. Kim Y, An d, Park H, et al. Properties of Nisin-incorporated polymer coating as antimicrobial packaging material[J]. Packaging Technology and Science, 2002, 15: 247—254
    46. Natrajan N, Sheldon B. Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin[J]. Journal of Food Protection, 2000, 63(9): 1189—1196
    47. Sebti I, Delves-Broughton J, Coma V. Physicochemical properties and bioactivity of nisin-containing cross-linked hydroxypropylmethylcellulose films[J]. Journal Agriculture and Food Chemistry, 2003, 51: 6468—6474
    48. Bower C, McGuire J, Daeschel M. Suppression of Listeria monocytogenes colonization following adsorption of nisin onto silica surfaces[J]. Applied and Environmental Microbiology, 1995, 61(3): 992—997
    49. Daeschel M, McGuire J, Al-Makhlafi H. Antimicrobial activity of nisin adsorbed to hydrophilic and hydrophobic silicon surfaces[J]. Journal of Food Protection, 1992, 55(9): 731—735
    50. Coma V, Sebti I, Pichavant F, et al. Antimicrobial edible packaging based on cellulosic esters, fatty acids and nisin incorporation to inhibit Listeria innocua and Staphylococcus aureus[J]. Journal of Food Protection, 2001, 64(4): 470—475
    51. Vojdani F, Torres A. Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings. Effects of fatty acids[J]. Journal of Food Science, 1990. 55(3): 841—846
    52. Imakura H, Yamada H, Fukazawa R. Materials containing hinokitiol for preserving freshness of edible materials and method for preserving freshness of same[P]. European Patent, 0514578 A1, EP 91-108440. 199—10—524
    53. Halek G, Garg A. Fungal inhibition by a fungicide coupled to an ionomeric film[J]. Journal of Food Safety, 1989(9): 215—222
    54. Goldberg S, Doyle R, Rosenberg M. Mechanism of enhancement of microbial cell hydrophobicity by cationic polymers[J]. Journal of Bacteriology, 1990, 172(10): 5650—5654
    55. Pardini S. Method for imparting antimicrobial activity from acrylics[P]. US Patent 4708870. 1987
    56. Olstein A. Polymeric biocidal agents[P]. US Patent, 5142 010. 1992
    57. Oki T. Freshness preservative, and sheet and tray furnished with the same for preserving freshness[P]. Japanese Patent 11332535. 1998
    58. Lacroix M, Ouattara B. Combined industrial processes with irradiation to assure innocuity and preservation of food products-a review[J]. Food Research International, 2000, 33(2): 719—724
    59. Ozdemir M, Yurteri C, Sadikoglu, et al. Physical polymer surface modification methods and applications in food packaging polymers[J]. Critical Reviews in Food Science and Nutrition, 1999, 39(5): 457—477
    60. Paik J, Dhanasekharan M, Kelley M. Antimicrobial activity of UV-irradiated nylon film for packaging applications[J]. Packaging Technology and Science, 1998, 11, 179—187
    61. Vartiainen J, Skytta E, Enqvist J. Properties of Antimicrobial Plastics Containing Traditional Food Preservatives[J]. Packaging Technology and Science, 2003, 16: 223—229
    62. Devlieghere F, Vermeiren L, Bockstal A. Study of antimicrobial activity of a food packaging material containing potassium sorbate[J]. Acta Alimentaria, 2000, 29(2): 137—146
    63. Devlieghere F, Vermeiren L, Jacobs M, et al. The effectiveness of hexamethylenetetramine-incorporated plastic for the active packaging of foods[J]. Packaging Technology and Science, 2000(13): 117—121
    64. Suppaku P, Miltz J, Sonneveld K, et al. Characterization of Antimicrobial Films Containing Basil Extracts[J]. Packaging Technology and Science , 2006, 19: 259—268
    65. Weng Y M, Hotchkiss J H. Inhibition of surface molds on cheese by polyethylene film containing the antimycotic imazalil[J]. Journal Food Protect.ion, 1992, 55: 367—369.
    66. Weng Y, Hotchkiss J. Anhydrides as antimycotic agents added to polyethylene films for food packaging[J]. Packaging Technology and Science, 1993, 6, 123—128
    67. Siragusa G, Cutter C, Willett J. Incorporation of bacteriocin in plastic retains activity and inhibits surface growth of bacteria on meat[J]. Food Microbiology, 1999, 16, 229—235
    68. Han J. Antimicrobial food packaging[J]. Food Technology, 2000, 54(3): 56—65
    69. Labuza T, Breene W. Applications of active packaging for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods[J]. Journal of Food Processing and Preservation, 1989, 13, 1—89
    70. Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3: 113—126
    71. Rice J. Gas emitting wafers a cost-effective MAP approach[J]. Food Processing, 1989, 50(10): 42
    72. Hong S I, Lee J W, Son S M. Properties of Polysaccharide-coated Polypropylene Films as Affected by Biopolymer and Plasticizer Types[J]. Packaging Technology and Science, 2005, 18: 1—9
    73. Lee C H, An D S, Lee S C. A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin andα-tocopherol[J]. Journal of Food Engineering, 2004, 62: 323—329
    74. An D, Kim Y, Lee S, et al. Antimicrobial low density polyethylene film coated with bacteriocins in binder medium[J]. Food Science and Biotechnology, 2000, 9(1): 14—2023
    75. Hansen R, Rippl C, Midkiff D, et al. Antimicrobial absorbent food pad[P]. US Patent, 4865855. 1989
    76. Kim Y, An d, Park H, et al. Properties of Nisin-incorporated polymer coating as antimicrobial packaging material[J]. Packaging Technology and Science, 2002, 15: 247—254
    77. Natrajan N, Sheldon B. Efficacy of nisin-coated polymer films to inactivate Salmonella typhimurium on fresh broiler skin[J]. Journal of Food Protection, 2000, 63(9): 1189—1196
    78.威拉德·E·伍德,奈尔·J·比弗森.含有一种热塑塑料和相容的环糊精衍生物的防护材料[P].中国专利, 95193754.5, 1996
    79.威尔·伍德,尼尔·比弗森.具有改进防渗性能的包装材料[P].中国专利, 02819040.8, 2002
    80. Plackett D V, Holm V K, Johansen P, et al. Characterization of L-polylactide and L-polylactide -polycaprolactone co-polymer films for use in cheese-packaging applications[J]. Packaging Technology and Science, 2007, 19(1): 1—24
    81. Verstichel S, Wilde B D , Fenyvesi E. Investigation of the Aerobic Biodegradability of Several Types of Cyclodextrins in a Laboratory-Controlled Composting Test[J]. Journal of Polymers and the Environment, 2004, 12(2): 47—55
    82.环糊精食品加工技术,http://www.cyclodextrin.org/CDPDF/cavamax_new.pdf
    83. Hitoshi Hashimoto. Present Status of Industrial Application of Cyclodextrins in Japan[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2002, 44: 57—62.
    84.武伟,谭龙飞,杨连生.肉桂醛微胶囊的制备工艺[J].食品与机械,2001,6(86):19
    85. JUNG H. HAN. Antimicrobial Food Packaging[J].Food Technology. 2000 .54(3):58
    86.谭龙飞,武伟,杨连生.喷雾干燥法制备肉桂醛微胶囊工艺条件的研究[J].华南师范大学学报(自然科学版).2001.4(4):84
    87. Oguchi T, Kojima K,Watanabe D, et a1. Preparation of inclusion complexes of 1-adamantano1 with heptakis - ( 2, 6 - di - O - methy1) -β– cyclodextrin by sealed - heating [ J ]. Yakuzaigaku, 1996, 56(2) : 92.
    88. Nakai Y, Yamamoto K, Terada K, et a1. New methods for preparing cyclodextrin inclusion compounds.Ⅲ. Preparation of heptakis - (2, 6 - di- O - methy1) -β- cyclodextrin - benzoic acid inclusion compound by sealed heating[ J ]. Chem Pharm Bull, 1990, 38 (5) : 1345
    89. Shigah,Yoshiihy,Nishiyamat,et a1.Flavor encapsulation and release characteristics of spray-dried powder by the blend encapsulant of cyclodextrin and gum Arabic[J].Drying Technology,2001,19(7):1385—1395.
    90.李光水,夏文水.β-环糊精与肉桂醛包合物的制备及热分解动力学研究[J].食品科学,2005,26(2):143
    91. G. Piel , G. Dive , B. Evrard .Molecular modeling study ofβ- andγ-cyclodextrin complexes with miconazole[J]. European Journal of Pharmaceutical Sciences, 2001, 13:271—279 .
    92. Amparo L R, Almenar E, Pilar H M. Overview of Active Polymer-Based Packaging Technologies for Food Applications[J]. Food Reviews International, 2004, 20(4): 357—387
    93. Lu J, Hill M A, Hood M, et al. Formation of antibiotic, biodegradable polymers by processing with Irgasan DP300R (triclosan) and its inclusion compound withβ-cyclodextrin[J]. 2001, Journal of Applied Polymer Science, 82, 300—309.
    94. Chung D W, Paradakis S, Yam K. Release of propyl paraben from a polymer coating into water and food simulating solvents for antimicrobial packaging application[J].Journal of food processing and preservation,2001, 25: 71—87
    95. D Chung M L, Chikindas K L, Yam. Inhibition of Sac charomyces cerevisiae by slow release of propyl paraben from a polymer coating, Journal Food Protection, 2001, 64: 1420—1424
    96.王志伟,孙彬青,刘志刚等.包装材料化合物迁移研究[ J ].包装工程, 2005, 25 (5) : 1—101
    97. Han, J.H, Floros J D. Modeling antimicrobial activity loss of potassium sorbate against Baker’s yeast after heat process to develop antimicrobial food packaging materials[J]. Food Science Biotechnology, 1999, 8(1): 11—14
    98.胡赓祥,蔡王旬主编,上海市教育委员会组编.材料科学基础.上海,上海交通大学出版社,2000年11月第1版.
    99.刘志刚,王志伟,胡长鹰.塑料包装材料化学物迁移试验中食品模拟物的选用[J].食品科学, 2006, 6: 271—274
    100. Erika H I, Inus R I J, Atthjs D, et al. Predictive Modeling of Migration From Packaging Mterials into Food Poducts for Regulatory Proposes[ J ]. Trends in Food Science and Technology. 2002, 19 (5) : 102—109
    101. Brandsch J, Mercea P, Ruter M, et al. Migration modeling as a tool for quality assurance of food packaging[ J ]. Food Additives and Contaminants, 2002, 19 (5) : 92—411
    102. Pennarun P Y, Dole P, Feigenbaum A. Overestimated Diffusion Coefficients for the Prediction of Worst Case Migration from PET: App lication to Recycled PET and to functional Barriers Assessment[ J ]. Packaging Technology and Science, 2004, (17) : P307—320
    103.王志伟,孙彬青,刘志刚.包装材料化学物迁移研究.包装工程,2004年25卷第5期:P1-P10.
    104. Appendini P, Hotchkiss J H. Review of antimicrobial food packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3: 113—126
    105. Application of a Computer Model to Evaluate the Ability of Plastics to Act as Functional Barriers[J].packaging technology and science,2003;16:107—118
    106. Martin Del Valleb E M.Cyclodextrins and their uses:a review[J].ProcessBiochemistry,2003,39(9):1033—1046.
    107.詹怀宇,李志强,蔡再生.纤维化学与物理[M]北京:科学技术出版社,2005.
    108. Szejtli,Zsadon B,Fenyveai E,et al.US patent,4357468,1982.
    109. B.Martel, M.Morcellet, D. Ruffin, L.Ducoroy,M.Weltrowski.Finishing of Polyester Fabrics with Cyclodextrins and Polycarboxylic Acids as Crosslinking Agents.Inclusion Phenomena and Macrocyclic Chemistry[J]Inclusion Phenomena and Macrocyclic Chemistry,2002,44:443—446.
    110. B. Martel,M.Weltrowski, D.Ruffin,M.Morcellet.Polycarboxylic Acids as Crosslinking Agents for Grafting Cyclodextrins onto Cotton and Wool Fabrics: Study of the Process Parameters[J].Applied Polymer Science,2002,83:1449—1456.
    111. Yassine El Ghoul, Bernard Martel.Mechanical and physico-chemical characterization of cyclodextrin finished polyamide fibers[J].Phenom Macrocycl Chem,2007,57:47—52.
    112.李学红,金征宇.异硫氰酸烯丙酯的分子包埋物在不同温度下的控制释放[J].食品科学,2007,28(3):139—142.
    113.苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社:94—103
    114.李晓光,吴丽玲.加工食品的气相防霉保鲜[J].广州食品工业技.1993(3):14—17
    115.孟昭赫.新型防霉剂RQA.食品工业科技,1987(2):14
    116.金时俊.食品添加剂.上海:华东工学院出版社,1992.
    117.李影林.培养基手册[M].长春:吉林科学技术出版社,1991
    118.方黔,孙伟.戚风蛋糕的制作[J].中国烹饪研究,1988(1):19—20
    119.李春红.肉桂醛在防霉效果及在月饼中的应用研究[J].食品科学,2002(23):144—145
    120.食品卫生微生物学检验,菌落总数测定,GB 4789.2—1994
    121.食品卫生微生物学检验,霉菌计数,GB 4789.15—1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700