稻壳液化油的选择性分离、分析和酯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质液化油的利用包括燃料利用和非燃料利用。然而由于生物质液化油的组成的复杂性,目前的研究主要偏重于燃料利用。
     本论文以稻壳液化油为主要原料,把稻壳液化油经过水分离与离心分离后所得的两部分即水溶性和水不溶性稻壳液化油作为分析样本,对两种稻壳液化油利用石油醚等多种极性不同的有机溶剂按照极性由小到大的顺序进行分级萃取,利用GC/MS技术分析萃取物的主要成分。结果表明:稻壳液化油中的化合物在溶剂氯仿、乙醚和乙酸乙酯中的溶解性质比较好,其萃取率均在15%以上。稻壳液化油的成分十分复杂,主要含有酚、酮、醛、酯、酸和烷烃,大部分化合物都含有氧元素以及含氧官能团,如羟基和甲氧基等。由于稻壳液化油含有羧酸类化合物,导致稻壳液化油呈酸性。同时还发现少量的蒽类、菲类多环化合物和酰胺类化合物。用同种有机溶剂萃取水溶和水不溶两部分稻壳液化油,所检测到的物质有很大差异,同时用不同有机溶剂分级萃取同种稻壳液化油得到的萃取物中所含的化合物的种类也不尽相同。在水不溶性稻壳液化油的苯萃取物中,烷烃的相对含量很高,达到了57.0%,而在其它溶剂的萃取物中却含有很少甚至不含有烷烃。用石油醚和二硫化碳萃取出稻壳液化油中一定量的4-羟基3-甲氧基苯甲醛,该化合物有高附加值。次氯酸钠对老化组分的氧化产物中发现非芳香族化合物含量较多,说明稻壳液化油的老化主要与非芳香族化合物有关。
     考察了不同种类的有机溶剂/无机盐双水相体系的分相能力,表明了NaH2PO4/乙醇体系对稻壳热解液具有较好的分相效果以及萃取分离效果;实验研究中,同时优化了该双水相体系的操作条件,选取质量百分比为38.5%的NaH2PO4和15.4%的乙醇构成的双水相体系对稻壳液化油进行初步改性。处理后的稻壳液化油再利用催化酯化技术对其进行改性处理,催化酯化后采用常压蒸馏,得到60 oC-85 oC馏分、85 oC-95 oC馏分和残留组分,利用气相色谱质谱联用仪(GC/MS)分析各馏分的组成;同时对经过双水相萃取处理后的和未经处理的稻壳液化油催化酯化的效果进行了对比。利用柱层析分离技术对蒸馏后的稻壳液化油双水相萃取物进行分离,分离馏分采用GC/MS分析其组成。通过测定模型化合物的分配系数,研究了模型化合物双水相萃取的分配行为。实验表明:双水相萃取体系使得稻壳液化油中水含量降低了34.8%,达到了较好的改性效果。催化酯化提质有效地提高了双水相处理和未处理的稻壳液化油的pH值;酯化后的双水相萃取稻壳液化油和稻壳液化油原油常压蒸馏过程中,主要馏分都在60 oC-85 oC之间,产率分别为63.0%和67.7%;两种酯化后的稻壳液化油各馏分检测到的组分相似,以烷烃类化合物以及酚、酮和醛等含氧化合物为主;同时发现双水相萃取的稻壳液化油酯化产物中检测到酯类化合物的种类远多于稻壳液化油酯化产物中酯类化合物的种类。通过对双水相萃取稻壳液化油下相的分离与分析,表明双水相体系可用于稻壳液化油中左旋葡聚糖的提取。模型化合物双水相萃取的分配行为的研究,为稻壳液化油在双水相萃取的分配行为提供了理论基础。
     考察了稻壳液化油中的组分和氨反应的机理,发现纯羟基丙酮与氨反应可以得到3,5-二甲基-2-恶唑啉-4-甲醇,在乙酸参与和酸性条件下生成嘧啶、吡嗪。优化了羟基丙酮与氨在微波环境下的反应条件,反应温度、时间和氨浓度分别为90oC、10 min和15%。
     该论文有图78幅,表29个,参考文献207篇。
Fuel and non-fuel employments are important two parts in biomass liquefied oil usage. However, there are few reports on non-fuel employment of biomass liquefied oil due to the complexion of it.
     In this paper, oil from rice husk liquefacation was separated by water under centrifugalization into two part, as water soluble part and water insoluble part, respectively. They were fatherly extracted with organic solvent, such as petroleum ether, carbon disulfide, chloroform, diethyl ether and acetic ether by step, the extract from which was analyzed by GC/MS. The result has shown the better solubility of rice husk liquefied oil in chloroform, diethyl ether and acetic ether, in which the extract ratio reaches more than 15%. It has shown us a complex component of rice husk liquefied oil, which mainly contains phenols, ketones, aldehydes, esters, acids and alkanes. Most compounds carry oxygen, such as hydroxyl and methoxyl. Carboxylic acids gift the oil acidity. Anthracene, humble and acylamino were also detected from these extracts. Different compounds exist in these two parts of rice husk liquefied oil, and those extracts by different solvents. Especially, alkanes from insoluble part are detected in benzene, which has reached as high as 57%. 4-hydroxyl, 3-methoxyl- benzaidehyde, a useful compound in rice husk liquefied oil, can be extracted with some solvents such as PE and carbon disulfide. It is detected that there are more non-aromatics in the product of aging rice husk liquefied oil that oxidized by sodium hypochlorite, which means the non-aromatics take important role in the aging reaction of the rice husk liquefied oil.
     The phase separating ability of different organic solvent / salt aqueous two-phase systems (ATPS), which testified that sodium dihydrogen phosphate / ethanol ATPS had good effects on phase separation and extraction to rice husk liquefied oil. The operating conditions of the ATPS was optimized, in which system the condition was 38.5% (w/w) sodium dihydrogen phosphate and 15.4% (w/w) ethanol, and was arranged to upgrade the rice husk liquefied oil. The rice husk liquefied oil in the upper layer of ATPS was upgraded by catalytic esterification, after which the average distillation of esterification oil, 60 oC-85 oC, 85 oC-95 oC and residue fraction were investigated. The distillation fractions were analyzed by GC/MS. The effects of the rice husk liquefied oil upgraded by aqueous two-phase extraction and esterification with the rice husk liquefied oil upgraded just by esterfication were compared. Column chromatography was arranged to extract the rice husk liquefied oil distillated after upgraded by ATPS, and the extraction fraction were analyzed by GC/MS. By measuring the distribution coefficient of main components in rice husk liquefied oil, the present author studied the distribution behavior of model compounds in ATPS. Experimental results show that:The water content of rice husk liquefied oil was upgraded by ATPS decreased by 34.8%. Catalytic esterification can raise the pH of these two esterification oils. The content of 60-85 oC fractions of esterification from the rice husk liquefied oil treated by ATPS and the crude rice husk liquefied oil are 63% and 67.7%, respectively. The detected compositions of the distillation fractions from these two upgraded esterification oil are similar, which contain hydrocarbons, phenolic compounds, ketones and aldehydes. Meanwhile, it is found that esters in which was treated ATPS were far more than those in rice husk liquefied oil, after esterification. Through the separation and analysis of phase from the rice husk liquefied oil upgraded by ATPS, the study shows that ATPS can be used to extract L-glucan from rice husk liquefied oil. The study of the distribution behavior of ATPS model compounds can provide a theoretical basis for the distribution behavior of rice husk liquefied oil extraction in ATPS.
     The mechanism of the reaction between rice husk liquefied oil and ammonia was studied. It is discovered that 3,5-dimethyl-2-oxazoline-4-methanol can be obtained by the reaction between pure hydroxyl acetone and ammonia, while with acetic acid in acidic condition, pyridines and pyrazines are obtained. The optimized temperature, time and the concentration of ammonia for the reaction between hydroxyl acetone and ammonia in micro wave are 90oC, 10min and 15%, respectively.
引文
[1]赵炜.农作物秸秆在亚/超临界醇中的液化[D].徐州:中国矿业大学,2009.
    [2]徐农显,刘晓,王伟.我国生物质废物污染现状与资源发展趋势[J].再生利用,2008,1 (5):31-34.
    [3]吴树栋.我国农作物秸秆综合利用现状[J].人造板通讯,2005,(8):2-4.
    [4]周磊.生物油的物理化学性质表征和组成分析[D].徐州:中国矿业大学,2008.
    [5]唐仕荣.玉米秆粉末在超临界甲醇中的解聚及其产物的高速逆流色谱分离与分析[D].徐州:中国矿业大学,2009.
    [6]熊万明,傅尧,陆强,等.生物质裂解油老化行为与机理研究[J].科学通报,2009,54 (15):2188-2195.
    [7] Zhang T,Zhou Y J,Liu D H,et al.Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol [J]. Bioresource Technol, 2007, 98(7):1454-1459.
    [8] Yuan X Z,Li H,Zeng G M,et al.Sub-and supercfitical liquefaction of rice straw in the presence of ethanol-water and 2-propanol-water mixture[J]. Energy,2007,32(11):2081-2088.
    [9]童朝晖.麦草化学液化及其机理研究[D].天津:天津轻工业学院,2000.
    [10]张求慧,赵广杰.木材液化技术研究现状及产业化发展[J].木材工业,2005,19(3):5-11.
    [11]袁振宏,吴创之,马隆龙.生物质能利用原理与技术[M].北京:化学工业出版社,2005.
    [12] Minowa T,Zhen F,Ogi T.Cellulose decomposition in hot-compressed water with alkali or nickel catalyst[J].J Supercrit Fluid,1998,13 (1-3):253-259.
    [13]徐艾清.三倍体毛白杨乙二醇解的初步研究[D].北京:北京林业大学,2006.
    [14]张素萍,颜涌捷,任铮伟,等.生物质快速裂解液体产物的分析[J].华东理工大学学报,2001,27(6):666-668.
    [15]王梦亮,王华,常如波,刘滇生.纤维素类废弃物的热化学催化液化试验研究[J].中国环境科学,2004,24(4):469-473.
    [16]姜洪涛,李会泉,张懿.生物质高压液化制生物原油研究进展[J].化工进展,2006,25(1):8-13.
    [17]谢文,袁兴中,曾光明等.催化剂对亚临界水中生物质液化行为的影响[J].资源科学,2008,30(1):129-133.
    [18] Xu C B,Timothy E.Hydro-liquefaction of woody biomass in sub-and super-critical ethanol with iron-based catalysts[J].Fuel,2008,87(3):335-345.
    [19] Song C C,Hu H Q,Zhu S W,Wang G,Chen G H.Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water[J].Energy Fuel,2004,18(1):90-96.
    [20] Demirbas A.Effect of lignin content on aqueous liquefaction products of biomass [J].Energ Convers Manage,2000,41(15):1601-1607.
    [21]国家发改委(http://www.sdpc.gov.cn/)
    [22]崔小明.稻壳综合利用的研究[J].企业技术开发,1997(12):4-7.
    [23]中国农村能源年鉴编辑委员会.中国农村能源年鉴[M].北京:中国农业出版社,1999.
    [24]赵永进.关于稻壳炭化/气化产品全利用技术的研究[J].可再生能源,2004(6):7-9.
    [25]王世荣,庄建华.用稻壳棒代替原煤做燃料燃烧试验结果与环保效益[J].节能技术,2005,23(2 ):174-176.
    [26]廖艳芬,王树荣,洪军,等.生物质热裂解制取液体燃料的实验研究[J].新能源及工艺,2002(3):1-3.
    [27]陆强,朱锡锋,李全新,等.生物油快速热解制备液体燃料[J].化学进展, 2007 , 19(7/8): 1064-1071.
    [28]吴创之.生物质气化发电技术讲座(6)——小型生物质气化发电系统应用实例分析[J].可再生能源, 2003( 6):66-67.
    [29]吴创之.生物质气化发电技术讲座(7)——大中型生物质气化发电系统应用实例分析[J].可再生能源, 2004( 1):62-64.
    [30]吴创之,周肇秋,马隆龙,等.生物质气化发电项目经济性分析[J].太阳能学报,2009,30(3):368-373.
    [31]陈伯平.稻壳发电技术简介[J].新能源,1998,20(2):1-5.
    [32]周肇秋,马隆龙.中国稻壳资源状况及气化/燃烧发电前景[J].可再生能源,2004(6):7-9.
    [33]何珍,吴创之,赵增立. 1MW循环流化床生物质气化发电系统的碳循环[J].太阳能学报,2006,27(3):230-236.
    [34]侯贵华,罗驹华.稻壳制备高纯高表面积S iO2的研究[J].化学世界, 2004,45(9):458-460.
    [35]崔文雷,胡建.稻壳制备白炭黑[J].无机硅化合物,2007,(3):20- 22.
    [36]刘厚凡,甘露.稻壳制备白炭黑新方法研究[J].无机盐工业,2007,39 (2): 40-42.
    [37]刘荣厚,牛卫生,张大雷,等.生物质热化学转化技术[M].北京:北京化学工业出版社,2005.
    [38]侯贵华.稻壳裂解制备S iO2气凝胶的研究[J].无机材料学报, 2003, 18(2): 407-411.
    [39]卫延安,朱春山.由稻壳灰制备活性炭的工艺及应用研究[J].中国粮油学报, 2003, 18 (6): 29-33.
    [40]刘娟,侯书恩.稻壳灰制水玻璃的正交试验研究[J].粮食与饲料工业, 2008(12): 6-10.
    [41]朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[J].太阳能学报, 2006,27 (12): 1285-1288.
    [42]左秀风,朱永义.氯化锌活化稻壳制备活性炭的研究[J].粮食与饲料工业, 2005, 12 (12): 5-7.
    [43]历悦,李湘洲.稻壳基活性炭制备及表征[J].中南林业科技大学学报, 2007, 27 (6): 183-187.
    [44]周金凤,魏贤勇,李倩倩,等.稻壳粉末乙醇解残渣的组成分析[J].武汉科技大学学报,2010,33 (2):206-209.
    [45]胡志杰,李淳.水蒸气活化法制备稻壳活性炭的研究[J].生物质化学工程, 2007, 41 (5): 21-24.
    [46]纪俊敏,毕艳兰,杨国龙.酸化稻壳灰用于废煎炸油脱色工艺的研究[J].食品工业科技, 2007, 28 (10): 139-141.
    [47]钱俊青,谢祥茂.稻壳吸附剂提高啤酒稳定性的研究[J].离子交换与吸附, 2001, 17 (2): 145-151.
    [48]洪建捷,谢荣辉.用于印染废水脱色的稻壳吸附剂的研制[J].粮食与食品工业, 2008, 15 (4): 51-55.
    [49]刘志生,尹军,张立国,等.炭化稻壳吸附去除水中硝基苯的试验[J].环境化学, 2008, 27(2): 109-192.
    [50]李政一.利用白酒糟稻壳制备无污染吸附剂的研究[J].北京工商大学学报, 2004, 22(1): 7-11.
    [51]王东香.刨花板用异氰酸酯树脂胶粘剂的研究[D].哈尔滨:东北林业大学林产工业学院, 1998.
    [52]赵林波.异氰酸酯胶稻壳板生产工艺实验[J].东北林业大学学报, 2001, 29(2): 83-85.
    [53]赵林波,赵长全.复合胶稻壳板生产工艺[J].东北林业大学学报, 2005, 32(3): 93-94.
    [54]龚七一,周永进.稻壳-水泥预制木砖的研制[J].房材与应用, 1997, 25(3): 41-42.
    [55]欧阳东.纳米低温稻壳灰用于混凝土的研究[J].建筑石膏与凝胶材料, 2003(8): 7-8.
    [56]刘亚臣.稻壳的综合利用[J].中国林副特产, 2002 (2): 21.
    [57]余其俊,赵三银,冯庆革,等.高活性稻壳灰的制备及其对水泥性能的影响[J].武汉理工大学学报, 2003, 25(1): 15-18.
    [58]欧阳东.用稻壳开发混凝土高活性掺合料[J].粮油食品科技, 2003, 11 (4): 41- 43. [59 ]刘琼琼,丛后罗.稻壳灰在橡胶工业中的应用[J].橡胶工业, 2008, 55 (7): 444- 447.
    [60]王卫星,曾幸荣,刘安华,等.由稻壳灰制备的新型硅环氧化合物改性白炭黑增强硅橡胶的性能[J].合成橡胶工业, 2001, 24 (4): 237.
    [61]王象民.稻壳灰在硅橡胶中的应用[J].橡胶参考资料, 2002, 32 (1): 21-23.
    [62]吴德明.稻壳及其产品综合开发[J].陕西粮油科技,1995,20(2):49-53.
    [63]黄宝祥.稻壳利用现状综述[J].现代农业科技, 2007,(6): 113-115.
    [64]李浩洋,汪海滨.从稻壳中提取二氧化硅和木糖的工艺研究[J].广东化工,2007,34 (11):43-45.
    [65]石荣铭,梁莉丽.常温酸水解法从稻壳中提取木糖的研究[J].食品科技, 2007 (12): 212-214.
    [66]李丽坤,赵丽红,李伟群.利用稻壳提取阿拉伯木聚糖的研究[J].黑龙江农业科学, 2008(1): 22-24.
    [67]刘宝亮,方桂珍.从稻壳中提取木聚糖的研究[J].林产化学与工业, 2005, 25(增刊): 121-124.
    [68]张春雨,韩玉洁.稻壳中木聚糖的提取工艺研究[J].食品科技, 2009, 43(1): 146-149.
    [69]陈永红.稻壳综合利用技术[J].安徽科技, 1997 (5): 51-52.
    [70]刘永春.陇东地区玉米秆制取糠醛研究[J].宝鸡文理学院学报, 2004, 24 (3): 201-204.
    [71]马军强,冯桂颖.稻壳制备糠醛的研究[J].安徽农业科学, 2007, 36 (16): 473 -4739.
    [72] Gross R, Leach M, Bauen A. Progress in renewable energy [J].Environmengt International, 2003, 29 (1):105-122.
    [73]米锦欣,王龙.论金融危机下生物能源开发与粮食安全问题[J]商业时代,2009,19:12-13.
    [74]刘天霞,刘雅琴.稻壳粉水解条件优化及燃料酒精发酵的研究[J].宁夏农林科技, 2008 (1): 27-28, 88.
    [75]吕秀阳,夏文莉,刘田春.稻壳资源化新工艺的研究[J].农业工程学报,2001(3): 132-135.
    [76]舟彤.日本开发稻草生物乙醇技术[J].中外能源,2009,14:112.
    [77] Jun Xiao, Laihong Shen, Yanan Zhang, et al. Integrated Analysis of Energy, Economic, and Environmental Performance of Biomethanol from Rice Straw in China [J]. Ind. Eng. Chem. Res. 2009, 48, 9999–10007.
    [78] Li Deng, Jiang Li, Da-Ming Lai, et al. Catalytic Conversion of Biomass-Derived Carbohydrates into g-Valerolactone without Using an External H2 Supply [J]. Angew. Chem. Int. Ed. 2009, 48: 6529–6532.
    [79]刘学苏,李广学.木质素的应用进展[J].广州化工,2005,33 (4):9-11.
    [80]梁国治,李广学,孙文娟.木质素在农业中的研究进展[J].应用化工,2006,35 (1):12-6.
    [81]杨爱丽,高伟,魏文韫,等.新型木质素季铵盐絮凝剂的合成与絮凝性能[J].中国造纸学报,2008,23 (2): 60-63.
    [82]方桂珍,何伟华,宋湛谦.阳离子絮凝剂木质素季铵盐的合成与脱色性能研究[J].林产化学与工业,2003,23 (2):34-37.
    [83]彭福勇,乔瑞平,卢庆亮,等.木质素絮凝剂的制备及处理造纸废水的研究[J].工业水处理,2008,28 (5): 24-27.
    [84] Renate M S, Fernando M L. Optimization of the direct liquefaction of lignin obtained from sugar cane bagasse [J]. Energy Sources, 2001 (23): 369-375.
    [85] Lalvani S B, Muchmore C B, Koropchak J, et al. Lignin augmented coal depolymerization under mild reaction condition [J]. Energy & Fuel, 1991, 5 (2): 347- 352.
    [86] Lalvani S B, Muchmore C B, Koropchak J, et al. Coal liquefaction in lignin derived liquids under low severity conditions [J]. Fuel, 1991, 70 (12): 1433- 1438.
    [87] Kim J W, Lalvani S B, Muchmore C B, et al. Coliquefaction of coal and black liquor to environmentally acceptable liquid fuels [J]. Energy Sources, 1999, 21 (9): 839-847.
    [88] Akash B A, Muchore C B, Koropchak J A, et al. Investigation of si multaneous coal and lignin liquefaction-Kinetic studies [J]. Energy & Fuel, 1992, 6 (5): 629-634.
    [89]肖雷,姚菁华,万永周,等.褐煤/生物质成型机理及工艺参数优化[J].中国矿业大学学报,2010,39 (3):352-356.
    [90] Chen Y P, Cheng X S. Preparation and characteristic analysis of rice husk high boiling solvent lignin [J]. Journal of Forestry Research, 2008, 19 (2):159-163.
    [91]陈婷,程贤甦.高沸醇溶剂法制备稻壳木质素[J].亚热带农业研究,2006,2 (2):54-57.
    [92] Qu Y L, Tian Y M, Zou B, et al. A novel mesoporous lignin/silica hybrid from rice husk produced by a sol–gel method [J]. Bioresource Technology, 2010, 101: 8402-8405.
    [93] Zeng F X, Liu W J, Jiang H, et al. Separation of phthalate esters from bio-oil derived from rice husk by a basi?cation–acidi?cation process and column chromatography [J]. Bioresource Technology, 2011, 102: 1982-1987.
    [94]张士莹.香兰素的合成与应用[J].黎明化工,1996,(4):23-25.
    [95]张春梅,刘荣厚.生物质热裂解液化物质平衡及影响因素分析[J].农机化研究,2006,(10):144-146.
    [96]王琦,王树荣,王乐,等.生物质快速热裂解制取生物油试验研究[J].工程热物理学报,2007,28(1):173-176.
    [97]董芃,齐国利,王丽,等.生物质快速热解制取生物质油[J].太阳能学报,2007,28(22):223-226.
    [98] Zhou L, Zong ZM, Tang SR, et al. FTIR and Mass Spectral Analyses of an Upgraded Bio-oil [J]. Energ Source Part A 2010, 32: 370-375.
    [99] Boucher ME, Chaala A, Pakdel H, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase [J]. Biomass Bioenerg 2000, 19: 351-361.
    [100] Peng J, Chen P, Lou H, et al. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol [J]. Bioresource Technology, 2009, 100 (13): 3415-3418.
    [101] Peng J, Chen P, Lou H, et al. Upgrading of bio oil over aluminum silicate in supercritical ethanol [J]. Energy & Fuels, 2008, 22 (5): 3489-3492.
    [102] Tang SR, Zong ZM, Zhou L, et al. Molecular composition of soluble fraction from depolymerized cornstalk powder in supercritical methanol and ethanol [J]. Renew Energ 2010, 35: 946-951.
    [103]周金凤.稻壳粉末分级醇解所得醇溶物的分析和醇解机理研究[D].徐州:中国矿业大学,2010.
    [104] Li J H, Wu L B, Yang Z Y. Analysis and upgrading of bio-petroleum from biomass by direct deoxy-liquefaction [J]. J. Anal. Appl. Pyrulysis 2008, 81: 199-204.
    [105] Libin Wu, Shipeng Guo, Chao Wang, et al. Production of alkanes (C7–C29) from different part of poplar tree via direct deoxy-liquefaction [J]. Bioresource Technology, 2009, 100: 2069–2076.
    [106]刘守新,张世润.生物质的快速热解[J].林业化学与工业,2004,24 (3): 95-101.
    [107] Piskorz J, Majerski P, Radlein D, et al. Conversion of lignins to hydrocarbon fuels [J]. Energy & Fuels, 1989, 3 (6): 723-726.
    [108]王树荣.生物质热解制油的试验与机理的研究[D].杭州:浙江大学,1999.
    [109] Gallivan R M, Matschei P K. Fractionation of oil obtained by pyrolysis of lignocellulosic materials to recover a phenolic fraction for use in making phenol-formaldehyde resins [P]. US: Patent 5943387.
    [110] Chun H L, Black S K. Process for fractionating fast-pyrolysis oils and products derived thereform [P]. US: Patent 4942269.
    [111] Amen-Chen C, Pakdel H, Roy C. Separation of phenols from Eucalyptus wood tar [J]. Biomass and Bioenergy, 1997, 13 (1-2): 25-27.
    [112]徐绍平,刘娟,李世光,等.杏核热解生物油萃取-柱层析分离分析和制备工艺[J].大连理工大学学报,2005,(4): 505-510.
    [113] Bridgwater A V. Biomass fast pyrolysis [J]. Thermal Science, 2004, 8 (2): 21-49.
    [114] Carazza F, Rezende M E A, Pasa VMD, et al. Fractionation of wood tar[J]. Advances inThermochemical Biomass Conversion, 1994, (1): 1465-1474.
    [115] Murwansshaka JN, Pakdel H, Roy C. Seperation of syringol from birch wood-derived vacuum pyrolysis oil [J]. Seperation and Purification Technology, 2001, 24 (1-2): 155-165.
    [116]姚燕.生物油的分馏及品位提升试验研究[D].杭州:浙江大学,2008.
    [117]徐任生.天然产物化学(第二版)[M].北京:科学出版社,2004.
    [118] Zarate R, Sukrasno, Yeoman M M. Application of two rapid techniques of column chromatography to separate the pungent principles of ginger,Zingiber officinale Roscoe [J]. Journal of Chromatography A, 1992, 609: 407-413.
    [119] Stephen N, Csernica, Hsu J T. Simple and Efficient Method for the Analysis of Transesterification Reaction Mixtures for Biodiesel Production by Reversed-Phase High Performance Liquid Chromatography [J]. Energy & Fuel, in press.
    [120]唐仕荣,周磊,郑宇宣,等.玉米秆醇解产物高效液相分析[J].可再生能源,2008,26 (1):24-26.
    [121]李世光,徐绍平,陆庆花,等.快速热解生物油柱层析分离与分析[J].太阳能学报,2005,26 (4):549-555.
    [122]谭洪,王树荣,骆仲泱,等.生物质三组分热裂解行为的对比研究[J].燃料学报,2006 (1):61-65.
    [123]孟志强,秦鹏,刘景委,等.有机抽提物族组分小柱状色谱分离[J].化学世界,2006,47(5):271-272.
    [124]徐世平,孙勇革.一种适于沉积有机质族组分分离的微型柱色谱法[J].地球化学,2006,35(6):681-688.
    [125] Onay O, Bayram E, Kockar O M. Copyrolysis of soyitomer-lignitic and safflower seed: influence of the blending ratio and pyrolysis temperature on product yields and oil characterization [J]. Energy & Fuel, 2007, 21 (5): 3049-3056.
    [126] Sevgi S, Ilknur D, Gereelb H F. Olive bagasse (Olea enropea L) pyrolysis [J]. Bioresour Thechnol.2006, 97 (3): 429-436.
    [127] Das P, Sreelatha T, Ganesh A. Bio oil from pyrolysis of cashew nut shell-characterisation and related properties [J]. Biomass Bioenerg, 2004, 27 (3): 265-275.
    [128] Grobmann C, Tintinger R, Zhu J, et al. Aqueous two-phase systems of poly (ethylene glycol) and dextran-experimental results and modeling of thermodynamic properties [J]. Fluid Phase Equilibria, 1995, 106: 111-138.
    [129]刘茉娥,陈欢林.新型分离技术基础(第二版)[M].浙江:浙江大学出版社,1999.
    [130]张成强. PEG2000(-NH4)2SO4-H2O双水相体系对钼基体中微量铬的分离富集研究[D].昆明:昆明理工大学,2005.
    [131]郑楠.牛血清白蛋白在两水相体系中分配特性的研究[D].南昌:南昌大学,2007.
    [132]江波.双水相萃取分离发酵液中2,3-丁二醇[D].大连:大连理工大学,2009.
    [133]朱自强,关怡新,李勉.双水相系统在抗生素提取和合成中的应用[J].化工学报, 2001, 52 (12): 1039-1048.
    [134] Babu B R, Rastogi N K, Raghavarao K S M S .Liquid Liquid Extract ion of Bromelain and Polyphenol Oxidase Using Aqueous Two-Phase System[J]. Chemical Engineering and Processing, 2008, 47 (1): 83-89.
    [135] Nitsawang S, Hatti-Kaul R, Kanasawud P. Purification of Papain from Carica Papaya Latex: Aqueous Two-phase Extraction Versus Two- step Salt Precipitation [J]. Enzyme and Microbial Technology, 2006, 39 (5): 1103-1107.
    [136] Mirjana G A. Partitioning of Pectinase Produced by Poiyporus Squamosus in Aqueous Two-Phase System Polyethylee Glycol4000/Crude Dextran at Different Initial pH Valules [J]. Carbohydrate Polymers, 2004, 56 (3): 295-300.
    [137] Durate M C T, Portugal E P, Ponzei A N, et al. Production and Purification of Alkalinexylanases [J]. Bioresource Technology, 1999, 68 (1): 49-53.
    [138] Pan I H, Yao H J, Li Y K. Effective Exraction and Purification of b-Xylosidase from Trichoderma Koningii Fermentation Culture by Aqueous Two-Phase Partitioning [J]. Enzyme and Microbial Technology, 2001, 28 (2-3): 196-201.
    [139] Wu Y T, Pereira M, Venancio A, et al. Separation of Endo-Polygalacturonase Using Aqueous Two-Phase Partitioning [J]. Chromatography A, 2001, 929 (1-2): 23-29.
    [140]刘杨,王雪青,庞广昌等.双水相萃取法富集分离螺旋藻藻蓝蛋白的研究[J].海洋科学, 2008, 32 (7) : 30-32, 37.
    [141] Luechau M S, Keating C D. Nanoparticle Conjugation Increases Protein Partitioning in Aqueous Two-Phase Systems [J]. Anal. Chem., 2006, 78 (2): 379-386.
    [142]薛珺,李蕾,练萍. PEG800-Tween80-硫酸铵双水相萃取紫外分光光度法测定银杏叶中的芦丁[J].化学分析计量, 2004, 13 (5) : 34-36.
    [143]谢涛,王雯娟,吴如春等. PEG/(NH4)2SO4双水相体系萃取甘草中的有效成分[J].化学研究与应用, 2005, 17 (2) : 230-232.
    [144]练萍,李蕾,赖闻玲,等.双水相体系萃取分离-紫外分光光度法测定桑叶中芦丁[J].理化检验(化学分册),2006,42 (10) :821-823.
    [145]石慧,陈媛梅. PEG/(NH4)2SO4双水相体系在加杨叶总黄酮萃取分离中的应用[J].现代生物医学进展,2008,8 (5):854—857.
    [146]那吉,董学畅,王雪梅,等.超声波协同丙醇-硫酸铵双水相体系提取灯盏花总黄酮的研究[J].化学与生物工程, 2007,24( 12):51-53.
    [147]王志辉.双水相体系对葛根中葛根素的萃取技术的研究[D].南昌:南昌大学,2007.
    [148]陈毅坚,那吉,达爱斯,等.双水相萃取法提取虫草发酵液中甘露醇的研究[J].食品科技,2008,33 (11):215-218.
    [149]戚琦,李蕾,李勋,等.聚乙二醇800- PVP双水相体系萃取荧光测定阿司匹林肠溶片中水杨酸[J].光谱实验室,2005,22 (1):103-105.
    [150]李羚,杨雪滢.丙醇-硫酸铵双水相体系集成提取桑叶中植物多酚的研究[J].安徽农业科学,2008,36 (22) :9593-9594,9606.
    [151]练萍,李蕾,戚琦,等. PEG600-Triton X-100组合表面活性剂双水相体系萃取测定类黄酮[J].分析试验室,2005,24 (5):55-58.
    [152]甘林火,翁连进.双水相体系萃取分离L-组氨酸的研究[J].食品工业科技,2007,28 (7):165-167.
    [153] Lacerda V G, Mageste A B, Santos I J B, et al. Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems [J]. Journal of Power Sources, 2009,193 (2): 908-913.
    [154] Bulgariu L, Bulgariu D, Sarghie I, et al. Cd(Ⅱ) Extraction in PEG-Based Two-Phase Aqueous System in the Presence of Iodide Ions. Analysis of PEG-Rich Solid Phases[J]. Central European Journal of Chemistry, 2007, 5 (1): 291-302.
    [155] Bulgariu L , Bulgariu D. The Extract ion of Zn(Ⅱ) in Aqueous PEG(1550)- (NH4)2SO4 Two-Phase System Using Cl- Ions as Extracting Agent [J]. J. Serb.Chem. Soc., 2007, 72 (3): 289-297.
    [156] Silva L H M, Silva M C H, Junior J A, et al. Hydrophobic Effect on the Partitioning of [Fe(CN)5(NO)]2- and [Fe(CN)6]3- Anions in Aqueous Two- Phase Systems Formed by Triblock Copolymers and Phosphate Salts [J]. Separation and Purification Technology, 2008, 60 (1): 103-112.
    [157]杜惠蓉.乙醇-盐-水-5-Br-PADA P体系中萃取分离测定钌[J].四川师范大学学报(自然科学版), 2005, 28 (5): 594-597.
    [158] Shibukawa M, Nakayama N, Hayashi T, et al. Extraction Behaviour of Metal Ions in Aqueous Polyethylene Glycol-Sodium Sulphate Two-Phase Systems in the Presence of Iodide and hiocyanate Ions [J]. A nalytica Chimica Acta, 2001, 427 (2): 293-300.
    [159]许虹,吴艳平.应3, 5二溴水杨基荧光酮-乙醇体系萃取分离钨[J].广东化工, 2005, 32 (9): 9-10, 84.
    [160] Zhang T X, Li W J, Zhou W J, et al. Extraction and Separation of Gold (I) Cyanide in Polyethylene Glycol-Based Aqueous Biphasic Systems [J]. Hydrometallurgy, 2001, 62 (1): 41-46.
    [161] Yoshikuni N, Baba T, Tsunoda N, et al. Aqueous Two-Phase Extraction of Nickel Dimethylglyoxima to Complex and Its Application to Spectrophotometric Determination of Nickel in Stainless Steel [J]. Talanta, 2005, 66 (1): 40-44.
    [162] Akama Y, Sali A. Extraction Mechanism of Cr(Ⅵ) on the Aqueous Two-Phase System of Tetrabutylammonium Bromide and (NH4)2SO4 Mixture [J]. Talanta, 2002, 57(4): 681-686.
    [163] Chethana S, Nayak C A et al. Aqueous Two Phase Extraction for Purification and Concentration of Betalains [J]. Journal of Food Engineering, 2007, 81 (4): 679-687.
    [164]陈继,张冬丽,邓岳锋.双水相萃取富集水中芳香类化合物的方法:中国,200710056179 [P]. 2007-10-16.
    [165]辜鹏,谢放华,黄海艳等.双水相萃取的研究现状与应用[J].化工技术与开发.2007.36 (17):32-35.
    [166]李丽敏.氨基酸在乙醇/K2HPO4双水相体系中的分离行为[D]..2006.哈尔滨:东北师范大学.
    [167]王章存,张文叶,张世涛.双水相液液相平衡的热力学模型以及关联方法[J].郑州轻工业学院学报,2001,16 (2):22-25.
    [168]李勉,朱自强,梅乐和.聚合物-聚合物双水相系统相平衡的计算[J].化学工程,1996,24 (2):60-64.
    [169] Diamond.A.D,Hsu.Fundamental studies of biomolecule partition in aqueous two-phase system[J].Biotechnology and Bioengineering,1989,34 (1):1000-1014.
    [170]梅乐和,朱自强,林东强,等.聚合物/盐系统中BSA分配系数的测定和关联[J].浙江大学学报,1999,33 (1):52-55.
    [171]吴有庭,朱自强,等.多元渗透维里方程通式的表达-双水相系统的液液平衡的计算[J].高校化学工程学报,1997,11 (4):337-342.
    [172]王华,刘厚荣,张春梅,等.卡尔费休方法测定生物油含水量的试验研究[J]可再生能源,2005,121 (3):17-20.
    [173]张春梅,刘厚荣,易维明,等.玉米秸秆等离子体热裂解液化实验[J].农业机械学报,2009,40 (8):96-99.
    [174]董军芳,林金清.乙醇-水-硫酸铵三元体系的溶解度和液相平衡[J].福建化工,2002,4:49-52.
    [175] Boon JJ, Pastorova I, Botto RE, et al. Structural studies on cellulose pyrolysis and cellulose char by PYMS, PYGVMS, FTIR, NMR and by wet chemical techniques [J]. Biomass Bioenerg, 1994, 7 (1-6): 25-32.
    [176]张平,汤小红,陈文莉.超临界CO2萃取生物油脂成份的GC-MS分析[J].武汉化工学院学报,2005,27(4):11-12.
    [177] Zhou L, Zong ZM, Tang SR, et al. FTIR and Mass Spectral Analyses of an Upgraded Bio-oil. Energ Source Part A, 201, 32: 370-375.
    [178]徐勇,欧阳平凯.用生物质资源替代化石资源是大势所趋[J].科学新闻,2006(13):2.
    [179]尹晓路,郭东彦,张玉杰,等.生物质原料对循环流化床燃烧过程的影响[J].农业环境科学学报,2006,25(9):629-631.
    [180]孙丽慧.微生物发酵制备2,3-丁二醇及其双水相萃取[D].大连:大连理工大学,2009.
    [181] Domínguez A, Menéndez JA, Inguanzo M, Pis JJ. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J]. Bioresour Technol 2006, 97: 1185-1193.
    [182] Karayildirim T, Yanik J, Yuksel M, Bockhorn H. Characterisation of products from pyrolysis of waste sludge[J]. Fuel 2006; 85: 1498-1508.
    [183] Cao JP, Zhao XY, Morishita K, Wei XY, Takarada T. Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge[J]. Bioresour Technol 2010b; 101: 7648-7652.
    [184] Boucher ME, Chaala A, Pakdel H, Roy C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: Stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase [J]. Biomass Bioenerg 2000, 19: 351-361.
    [185]彭军.超临界流体中生物油提质的研究[D].杭州:浙江大学, 2009.
    [186] Peng J, Chen P, Lou H, et al. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol [J]. Bioresour Technol. 2009, 100 (13): 3415-3418.
    [187] Peng J, Chen P, Lou H, et al. Upgrading of bio-oil over aluminum silicate in supercritical ethanol [J]. Energy Fuels. 2008, 22 (5): 3489-3492.
    [188]陆强,邓修.提取与分离天然产物中有效成分的新方法-双水相萃取技术[J]。中成药,2000,22(9):653-655.
    [189]李全民,张青芬,刘奇.硫酸铵-水杨基荧光酮-乙醇体系萃取分离铝[J].分析化学,1997,25(10):1143-1147.
    [190]王志华,马会民,马泉莉,等.双水相萃取体系的研究[J].应用化学,2001,18(3):173-175.
    [191]极性比较[EB/OL]. http://emuch.net/html/201004/1916574.html.
    [192] Tanaka T, Kawase M, Tani S. a-Hydroxyketones as inhibitors of urease [J]. Bioorg Med Chem 2004;12: 501–5.
    [193] Levene PA, Walti A. Acetol [J], Org Synth 1930;10:1–3.
    [194] Wang, Z, Lin WG., Song WL, et al. Preliminary investigation on concentrating of acetol from wood vinegar. Energ Convers Manage 2010; 51: 346-349.
    [195]卢滨,张素平,颜涌捷,等.生物质裂解水相产品中羟基丙酮催化氧化制备丙酮酸盐的研究[J].太阳能学报,2006,27(6):623-627.
    [196]何寿林,杨昌炎,关媛.生物油分离制备化学品和燃油的研究进展[J].现代化共,2008,28(2):79-84.
    [197] Sha?zadeh F, Furneaux RH, Cochran TG, Scholl JP, Sakai Y. Production of levoglucosan and glucose from pyrolysis of cellulosic materials [J]. J Appl Polym Sci 1979; 23: 3525–3539.
    [198] Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles [J]. Atmos Environ 1999; 33: 173–182.
    [199] Simoneit BRT. Biomass burning - a review of organic tracers for smoke from incomplete combustion [J]. Appl Geochem 2002; 17: 129–162.
    [200] Otto A, Gondokusumo R, Simpson MJ. Characterization and quanti?cation of biomarkers from biomass burning at a recent wild?re site in Northern Alberta, Canada [J]. Appl Geochem 2006; 21: 166–183.
    [201] Fabbri D, Marynowski L, Fabianska MJ, Zaton M, Simoneit BRT. Levoglucosan and other cellulose markers in pyrolysates of Miocene lignites-geochemical and environmental implications [J]. Environ Sci Technol 2008a; 42, 2957–2963.
    [202] Fabbri D, Modelli S, Torri C, Cemin A, Ragazzi M, Scaramuzza P. GC–MS determination of levoglucosan in atmospheric particulate matter collected over different ?lter materials [J]. J Environ Monitor 2008b; 10: 1519–1523.
    [203] Kuo LJ, Herbert BE, Louchouarn P. Can levoglucosan be used to characterize and quantify char/charcoal black carbon in environmental media? [J]. Org Geochem 2008a; 39: 1466–1478.
    [204] Kuo LJ, Louchouarn P, Herbert BE. Fate of CuO-derived lignin oxidation products during plant combustion: application to the evaluation of char inputs to soil organic matter [J]. Org Geochem 2008b; 39: 1522–1536.
    [205] Midwest Research Institute. Isolation of levoglucosan from pyrolysis oil from cellulose: US, 5371212[P]. 1994 - 12 - 06.
    [206]熙.方便的一步法合成嘧啶[J].化学通报,1982,1:33.
    [207] Nys L. Seethes of 2,4-dimethyl-2-oxazoline-4-methanol [J]. Bulletin des Societes Chimiques Belges, 1956, 65: 377,383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700