蔗糖衍生物的合成及催化反应工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为开辟新的蔗糖市场,系统地开展了可再生资源蔗糖的化学利用。在各种催化体系中对蔗糖及其衍生物三氯蔗糖和果糖深加工制备系列化合物,研究了产品性能及催化反应工艺。
     NH2S03H-SiO2催化糖类全乙酰化反应,产率高于90.0%。全乙酰化产物具有α-型选择性,催化剂重复利用七次,五乙酰葡萄糖产率仍高达93.8%。
     应用2-噻唑硫酮、苯并三唑和N-羟基苯并三唑为离去基团的活性酰化试剂合成了三氯蔗糖的关键中间体蔗糖-6-乙酸酯和蔗糖-6-丙酸酯,最高产率分别为73.1%和62.9%。CoCl2催化蔗糖与酸酐反应,以60.0%左右的产率选择性地制得天然产物3’-O-(4-甲氧苯甲酰基)蔗糖及其类似物。
     考察微波辐射下质子酸、配合物和金属盐催化葡萄糖脱水转化为5-羟甲基糠醛(HMF)的产率,筛选出高效催化剂ZnCl2。300 W微波辐射8 mmin,葡萄糖、果糖和蔗糖为原料HMF产率分别为54.6%、55.1%和80.6%,在油浴加热条件0.11 g/mL糖溶液,ZnCl2/糖质量比1/4,189℃反应60 min,以葡萄糖、果糖和蔗糖为原料HMF产率分别为37.7%、42.7%和57.7%。微波辐射对催化糖降解合成HMF有明显促进作用,以蔗糖为原料HMF产率高于使用葡萄糖和果糖。比较了三种大批量制备HMF的方法,其中MgCl2·6H2O催化蔗糖首先降解为5-氯甲基糠醛、再水解羟基制备HMF的路线,操作简单、产物分离方便。
     三氯蔗糖经两条路线分别制得新化合物1,6-二氯-1,6-二脱氧-2,3-O-异丙叉-β-D-呋喃果糖,产率为88.1%。以其为原料,经氯磺酰化、氨解合成含卤素原子的呋喃环构型氨基磺酸酯化合物,总产率47.4%。发现1,6-二氯-1,6-脱氧-2,3-O-异丙叉-β-D-呋喃果糖中基团离去活性由高到低为:Cl-6>OMs-4,C1-1。合成了两种未见报道的化合物6-0-苯甲酰基和6-叠氮-6-脱氧衍生物。以果糖为原料合成了托吡酯,三步反应总产率为42.3%,对托吡酯选择性水解异丙叉保护基、烷基化制备了N,N,O,O-四-乙基、N,N,O,O-四-丁基两种新的化学修饰物。
     以2,3:45-二-O-异丙叉-β-D-吡喃果糖为原料,经对甲苯磺酰化、选择性水解、分子内醚化、氧化,合成了桥环手性酮1,5-脱水-2,3-O-异丙叉-β-D-吡喃果糖-4-酮,总产率23.5%。它催化(E)-肉桂醇的不对称环氧化,产率和ee值分别为58.5%和17.7%,它催化1-O叔丁基二甲基硅基-(E)-肉桂醇的不对称环氧化,产率和ee值分别为4.9%和95.7%。
The chemical untilization of renewable resource sucrose was improved in order to develop its new market. With sucrose and its derivatives suralose and fructose as raw materials, a series of compounds were synthesized in various catalytic systems. Technology of the catalytic process and properties of the products were studied.
     Using supported catalyst NH2SO3H-SiO2, peracetylated saccharides were manufactured in the yields of more than 90.0%. The structure of products was focused onα- isomer. Even after the catalyst was recovered seven times, the yield of penta-O-acetylglucose was 93.8%.
     The active reagents with 2-thiazolidinethione, benzotriazole and N-hydroxyl-benzotriazole as leaving groups reacted with sucrose, and then sucrose-6-actate and sucrose-6-propanoate were obtained in the highest yield of 73.1% and 62.9% respectively. Under the cocatalyst CoCl2, sucrose reacted with anhydride regioselectively giving the natural product 3'-O-(4-methoxybenzoyl)sucrose and its analogues in approximate 60.0% yield.
     The catalytic effects of protonic acid, metal complex and salt were reviewed separately for the conversion of glucose into 5-hydroxymethylfurfural (HMF) assisted by microwave irradiation. Use of ZnCl2 gave the highest yield than all other catalytic systems. Under the conditions of microwave irradiation (300 W,8 min), HMF yields were 54.6%,55.1% and 80.6% from glucose, fructose and sucrose. Whereas upon conventional oil bath heating (0.11 g/mL sugar solution, weight ratio of ZnCl2 to substrate 1/4,189℃,60 min), HMF yields from glucose, fructose and sucrose were only up to 37.7%,42.7% and 57.7% respectively. Three large scale methods to manufacture FMF were studied. One method of them was that sucrose was converted to 5-chloromethylfurfural (CMF) firstly with MgCl2·6H2O as catalyst, then CMF was hydrolyzed to HMF. This method had the advantages of simple operation and convenient separation.
     In the system of H2SO4/acetone, 1,6-dichloro-1,6-dideoxy-2,3-O-isopropylidene-β-D-fructofuranose was synthesized conveniently from sucralose in the yield of 88.1% for the first time. After chlorosulfonation and aminolysis, the furan sulfamate containg chlorine atoms was produced with a total yield 47.4%. It was indicated that the leaving activity of several groups was Cl-6>OMs-4,Cl-1. The new compounds of 6-O-benzoyl and 6-azido-6-deoxy were also synthesized. From fructose topiramate was manufactured via three steps in the total yield of 42.3%. After regioselective hydrolysis of the isopropylidene groups in topiramate and alkylation. two new compounds N,N,O,O-tetra-ethyl and N,N,O,O-tetra-butyl derivatives were obtained.
     1,5-Anhydro-2,3-O-isopropylidene-β-D-fructopyranose-4-ketone was sythesized from 2,3:4,5-di-O-isopropylidene-(3-D-fructopyranose through tosylation, selective hydrolysis, intramolecular etherification and oxidation sequentially. The total yield was 23.5%. With this chiral ketone as catalyst of asymmetric epoxidation, the yield and ee value were 58.5% and 17.7% using (E)-cinnamyl alcohol as substrate. The yield and ee value were 4.9% and 95.7% using 1-O-TBS-(E)-cinnamyl alcohol as substrate.
引文
[1]徐欣,赵丹丹,何志良.2009/10榨季国内外食糖市场回顾与2010/11榨季展望.农业展望,2010.9:12~17
    [2]Lichtenthaler F W. Carbohydrates as organic raw materials. Weinheim:VCH-Wiley, 1991
    [3]陈树功,高大维,闵亚光.蔗糖化学制品的过去、现在和未来.福建糖业,1992,3:1~4
    [4]Brown G M, Levy H A. Sucrose:Precise determination of crystal and molecular structure by neutron diffraction. Science,1963,141:921~923
    [5]Hough L, Phadnis S P, Tarelli E. The application of 13C-n.m.r. spectroscopy to products derived from sucrose. Carbohydrate Research,1976,47(1):151~154
    [6]Bolton C H, Hough L, Khan R. Sucrochemistry:Part I. New derivatives of sucrose prepared from the 6,6'-di-O-tosyl and the octa-O-mesyl derivatives. Carbohydrate Research.1972,21(1):133~143
    [7]Khan R. Sucrochemistry:Part Ⅲ. 1',6,6'-Tri-O-tosylsucrose and its conversion into 1',4':3,6:3',6'-trianhydrosucrose. Carbohydrate Research.1972,22(2):441~445
    [8]Hough L. Mufti K S. Sucrochemistry:Part Ⅵ. Further reactions of 6,6'-di-O-tosylsucrose and a comparison of the reactivity at the 6 and 6'positions. Carbohydrate Research,1972,25(2):497~503
    [9]Ballard J M. Hough L, Phadnis S P, et al. Selective tetratosylation of sucrose:Isolation of the 2,6,1',6'-tetrasulphonate. Carbohydrate Research,1980,83(1):138~141
    [10]Khan R. Sucrochemistry:Part V. Synthesis of 4-sulphonate derivatives of sucrose and their conversion into a-D-galactopyranosyl β-D-fructofuranoside. Carbohydrate Research.1972,25(1):232~236
    [11]Hough L. Mufti K S. Sucrochemistry:Part IX. Mono-, di-, tri-, and tetra-substituted derivatives prepared from sucrose octamethanesulphonate. Carbohydrate Research. 1973,27(1):47~54
    [12]Hough L, Mufti K S. Sucrochemistry:Part X. 1',4.6'-Tri-O-mesylsucrose penta-acetate: A comparison of the reactivity at the 4 and 1' positions. Carbohydrate Research.1973, 29(2):291~296
    [13]Ballard J M, Hough L, Richardson A C. Sucrochemistry:Part IV. A direct preparation of sucrose 2,3,4,6,1',3',4'-hepta-acetate. Carbohydrate Research.1972,24(1):152~153
    [14]Ballard J M, Hough L, Richardson A C. Sucrochemistry:Part ⅪV1. Further studies of the partial O-deacetylation of sucrose octa-acetate. Carbohydrate Research,1974,34(1): 184~188
    [15]Khan R, Jenner M R, Lindseth H. Synthesis of sucrose epoxides, partial de-esterification of 1',2:4,6-di-O-isopropylidenesucrose tetra-acetate, and selective tosylation of 3,6'-di-O-acetyl-1',2:4,6-di-O-isopropylidenesucrose. Carbohydrate Research,1978, 65(1):99~108
    [16]Khan R. Sucrochemistry:Part Ⅶ. Preparation and reactions of penta-O-benzoylsucrose 1',6,6'-tris(chlorosulphate) and hexa-O-benzoylsucrose 6,6'-bis(chlorosulphate). Carbohydrate Research,1972,25(2):504~510
    [17]Chowdhary M S, Hough L, Richardson A C. Sucrochemistry. Part 33. The selective pivaloylation of sucrose. Journal of the Chemical Society, Perkin Transactions 1,1984, 419~427
    [18]Hough L, Mufti K S, Khan R. Sucrochemistry:Part Ⅱ.6.6'-Di-O-tritylsucrose. Carbohydrate Research,1972,21(1):144~147
    [19]Lindley M G, Birch G G, Khan R. Synthesis of methyl ether derivatives of sucrose. Carbohydrate Research,1975,43(2):360~365
    [20]Chiu A K B, Hough L, Richardson A C, et al. Synthesis of 4-C-methyl and 4-C-allyl derivatives of sucrose. Carbohydrate Research,1987,162(2):316~322
    [21]Karl H, Lee C K, Khan R. Synthesis and reactions of tert-butyldiphenylsilyl ethers of sucrose. Carbohydrate Research,1982,101(1):31~38
    [22]Khan R. Sucrochemistry Part ⅫⅠ. Synthesis of 4,6-O-benzylidenesucrose. Carbohydrate Research,1974,32(2):375~379
    [23]Khan R, Jenner M R, Jones H F. Synthesis and reactions of cyclic acetal derivatives of 6,6'-dichloro-6,6'-dideoxysucrose. Carbohydrate Research,1976,49:259~265
    [24]Khana R, Mufti K S, Jenner M R. Synthesis and reactions of 4,6-acetals of sucrose. Carbohydrate Research,1978,65(1):109~113
    [25]Khan R. Lindseth H. Selective de-acetalation of 1',2:4,6-di-O-isopropylidenesucrose tetra-acetate. Carbohydrate Research,1979,71(1):327~330
    [26]Khan R, Patel G. Cyclic acetals of 4. 1',6'-trichloro-4,1',6'-trideoxy-galacto-sucrose and their conversion into methyl ether derivatives. Carbohydrate Research,1990,198(2): 275~283
    [27]Hough L, Kabir A K M S. Richardson A C. The synthesis of some fluoro derivatives of sucrose. Carbohydrate Research.1984.125(2):247~252
    [28]Hough L, Kabir A K M S, Richardson A C. The synthesis of some 4-deoxy-4-fluoro and 4,6-dideoxy-4,6-difluoro derivatives of sucrose. Carbohydrate Research,1984,131(2): 335~340
    [291 Ballard J M, Hough L, Richardson A C, et al. Sucrochemistry. Part Ⅻ. Reaction of sucrose with sulphuryl chloride. Journal of the Chemical Society, Perkin Transactions 1, 1973,1524~1528
    [30]Khan R, Jenner M R, Mufti K S. Reaction of methanesulphonyl chloride-N,N-dimethyl-formamide with partially esterified derivatives of sucrose. Carbohydrate Research. 1975,39(2):253~262
    [31]Hough L, Phadnis S P, Tarelli E. The preparation of 4,6-diehloro-4,6-dideoxy-a-D-galactopyranosyl 6-chloro-6-deoxy-,(3-D-fructofuranoside and the conversion of chlorinated derivatives into anhydrides. Carbohydrate Research,1975,44(1):37~44
    [32]Khan R, Patel G. Branched-chain sucrose:Synthesis of 4,1',6'-trichloro-4,1',4',6'-tetradeoxy-4'-C-methyl-galacto-sucrose. Carbohydrate Research,1987,162(2): 298~302
    [33]Khan R, Patel G, Mufti K S. Synthesis and ring-opening reactions of 4-chloro-4-deoxy-a-d-galactopyranosyl 3,4-anhydro-1,6-dichloro-1,6-dideoxy-β-d-lyxo-hexulo-furanoside. Carbohydrate Research,1990,200:189~199
    [34]Khan R, Bhardwaj C L, Mufti K S, et al. Synthesis of 6,6'-dideoxy-6,6'-dihalosucroses and conversion of 6,6'-dichloro-6.6'-dideoxysucrose hexa-acetate into 6.6'-diamino-6,6'-dideoxysucrose. Carbohydrate Research,1980,78(1):185~189
    [35]Khan R, Patel G. Halogenation reactions of derivatives of d-glucose and sucrose. Carbohydrate Research.1990,205:211~223
    [36]Descotes G, Mentech J, Veesler S. Identification of anhydrosucrose derivatives formed by Mitsunobu chlorination of sucrose. Carbohydrate Research,1989,190(2):309~312
    [37]Hough L, Phadnis S P. Tarelli E. The direct preparation of 1',6,6'-trideoxysucrose from sucrose via 6-O-mesitylenesulphonyl-a-D-glucopyranosyl 1,6-di-O-mesitylenesulphonyl-β-D-fructofuranoside. Carbohydrate Research.1975.44(2): C12~C13
    [38]Chiu A K B. Gurjar M K, Hough L, et al. The synthesis of 2,1'-anhydro-2.1':3,6-dianhvdro-, and 2,1':3,6:3',6"-trianhydro-sucrose. Carbohydrate Research.1982. 100(1):247~261
    [39]Chowdhary M S. Hough L, Richardson A C. The use of pivalic esters of sucrose for the synthesis of chloro. azido, and anhydro derivatives. Carbohydrate Research.1986. 147(1):49~58
    [40]Khan R, Mufti K S, Jenner M R. Sucrochemistry:Part Ⅺ. Synthesis of 1',6,6'-triamino-1'6,6'-trideoxy derivatives of sucrose. Carbohydrate Research,1973, 30(1):183~186
    [41]Fairclough P H, Hough L, Richardson A C. Derivatives of β-D-fructofuranosyl a-D-galactopyranoside. Carbohydrate Research,1975,40(2):285~298
    [42]Khan R, Jenner M R. Synthesis and reactions of sucrose-5- and 5'-enes. Carbohydrate Research,1976,48(2):306~311
    [43]Khan R, Jenner M R, Lindseth H. The first replacement of a chlorosulphonyloxy group by chlorine at C-2 in methyl α-D-glucopyranoside and sucrose derivatives. Carbohydrate Research,1980,78(1):173~183
    [44]Hough L, O'Brien E. α-D-allopyranosyl β-D-fructofuranoside (allo-sucrose) and its derivatives. Carbohydrate Research,1980,84(1):95~102
    [45]Hough L, O'Brien E. β-D-Fructofuranosyl a-D-arabino-hexopyranosid-2-ulose (2-ketosucrose). Carbohydrate Research,1981,92(2):314~317
    [46]Gurjar M K, Hough L, Richardson A C, et al. Preparation and ring-opening reactions of a 2,3-anhydride derived from sucrose. Carbohydrate Research,1986,150(1):53~61
    [47]Khan R, Jenner M R, Lindseth H, et al. Ring-opening reactions of sucrose epoxides: Synthesis of 4'-derivatives of sucrose. Carbohydrate Research,1987,162(2):199~207
    [48]Khan R, Patel G. Branched-chain sucroses:Synthesis and Wittig reaction of the 1'-aldehydo derivative of sucrose. Carbohydrate Research,1987,162(2):209~215
    [49]Hough L, Sinchareonkul L V, Richardson A C, et al. Bridged derivatives of sucrose:The synthesis of 6,6'-dithiosucrose,6,6'-epidithiosucrose, and 6,6'-epithiosucrose. Carbohydrate Research,1988,174(15):145~160
    [50]De Raadt A, Stutz A E. A simple convergent synthesis of the mannoside inhibitor 1-deoxymannonojirimycin from sucrose. Tetrahedron Letters,1992,33:189~192
    [51]Gradnig G, Legler G, Stutz A E. A novel approach to the 1-deoxynojirimycin system: Synthesis from sucrose of 2-acetamido-1,2-dideoxynojirimycin, as well as some 2-N-modified derivatives. Carbohydrate Research,1996,287:49~57
    [52]Purves C B. Hudson C S. The analysis of gamma-methylfructoside mixtures by means of invertase. IV. Behaviour of sucrose in methyl alcohol containing hydrogen chloride. Journal of the American Chemical Society.1934.56:1973~977
    [53]Gupta R K. James K. Smith F J. Sucrose esters and sucrose ester/glyceride blends as emulsifiers. Journal of the American Oil Chemists' Society.1983.60(4):862~869
    [54]Vlahov I H, Vlahova P I. Linhardt R J. Regioselective synthesis of sucrose monoesters as surfactants. Journal of Carbohydrate Chemistry,1997,16(1):1~10
    [55]Kuneida H, Ogawa E, Kihara K, et al. Formation of highly concentrated emulsions in water/sucrose dodecanoate oil systems. Progress in Colloid and Polymer Science,1997, 105:239~243
    [56]Garti N. Clement V, Leser M, et al. Sucrose ester microemulsions. Journal of Molecular Liquids,1999,80(2-3):253~296
    [57]Chauvin C, Plusquellec D. A new chemoenzymatic synthesis of 6'-Oacylsucroses. Tetrahedron Letters,1991,32:3495~3498
    [58]Chauvin C, Baczko K, Plusquellec D. New highly regioselective reactions of unprotected sucrose. Synthesis of 2-O-acylsucroses and 2-O-(N-alkylcarbamoyl)sucrose. The Journal of Organic Chemistry,1993,58(8):2291~2295
    [59]Baczko K, Nugier-Chauvin C, Plusquellec D, et al. A new synthesis of 6-O-acylsucrose and of mixed 6,6'-di-Oacylsucrose. Carbohydrate Research,1995,269(1):79~88
    [60]邹英昭,于江虹.蔗糖酯和蔗糖脂肪酸多酯的合成与发展.食品科技,2006,31(7):167~172
    [61]阚志强,赵美法.甜味剂工业现状与发展.化工中间体,2005,5(5):10~14
    [62]何英姿,姚评佳,魏远安.蔗糖基聚合物的研究进展.高分子材料科学工程,2005,21(2):61~64
    [63]Mufti K S, Khan R. Process for the preparation of 4,1',6'-trichloro-4,1',6'-trideoxygalacto sucrose. US 4380476.1983-04-19
    [64]郑建仙,高宪枫,袁尔东.单基团保护法制备三氯蔗糖的研究.食品与发酵工业,2001,27(9):1~6
    [65]Navia J L. Process for synthesizing sucrose derivatives by regioselective reaction. US 4950746.1990-08-21
    [66]Neiditch D S, Vernon N M. Wingard R E. Sucrose-6-ester production process. US 5023329.1991-01-11
    [67]Walkup R E, Vernon N M, Wingard R E. Selective 6-acylation of sucrose mediated by cyclic adducts of dialkyltin oxides and diols. US 5089608.1992-02-18
    [68]Sankey G H. Vernon N M. Wingard R E. Catalyzed sucrose-6-ester process. US 5470969.1995-11-28
    [69]Macindoe W M. Williams A. Khan R. Tin(Ⅳ)-functionalised polymer supports: non-toxic and practical reagents for regioselective acetylation of sucrose. Carbohydrate Research.1996,283(1):17~25
    [70]Wang Q H, Zhang S f, Yang J Z. Regioselective formation of 6-O-acylsucroses and 6,3-di-O-acylsucroses via the stannylene acetal method. Carbohydrate Research,2007, 342:2657~2663
    [71]Yu K E, Liu H M, Liu Z Z. Synthesize of 2,6-Di-O-acetyl sucrose by regioselective acetylation with dibutyltin oxide.Chinese Chemical Letters,2004,15(3):273~274
    [72]Vlahov I R, Vlahova P I, Linhardt R J. Regioselective synthesis of sucrose monoesters as surfactants. Journal of Carbohydrate Chemistry,1997,16(1):1 ~10
    [73]Tomoya O, Masanao M. Regioselective stannylation acylation of carbohydrates: coordination control. Tetrahedron,1981,37(13):2363~2369
    [74]Simpson P J. Sucrose alkyl 4,6-orthoacylates. US 4889928.1989-12-26
    [75]马志铃,王延平,彭志英.单酯化法合成高甜度甜味剂-三氯蔗糖的研究.食品科学,2002,23(5):51~54
    [76]陆正清,沈彬,张满.原酸酯法制备蔗糖-6-乙酸酯的研究.食品研究与开发,2006,27(1):20~22
    [77]何乐三,万正豪.固体超强酸催化剂催化酯化反应合成蔗糖-6-酯的工艺.CN101558076.2009-10-14
    [78]李松伦.蔗糖-6-乙酸酯的合成方法.CN 101693729.2010-04-14
    [79]Khan R. Chemistry and new uses of sucrose:How important? Pure and Applied Chemistry,1984,56(7):833~844
    [80]段文贵,任云,张晓丽,等.歧化松香蔗糖酯的合成.化学通报,2006,2:109~113
    [81]任云,段文贵,陈春红,等.氢化松香蔗糖酯的合成与表征.林产化学与工业.2007,27(1):29~32
    [82]Plou F J. Ferrer M, Ballesteros A, et al. Improved synthesis of sucrose fatty acid monoesters. Journal of the American Oil Chemists'Society,2001,78(5):541~546
    [83]Teranishi K. Direct regioselective 2-O-(p-toluenesulfonylation) of sucrose. Carbohydrate Research,2002,337(7):613~619
    [84]Carrea G, Riva S, Seundo F, et al. Enzymatic-synthesis of various 1'-O-sucrose and 1-O-fructose esters. Journal of the Chemical Society, Perkin Transactions 1.1989.5: 1057~1061
    [85]Patil D R., Rethwisch D G, Dordick J S. Enzymatic-synthesis of a sucrose containing linear polyester in nearly anhydrous organic media. Biotechnology & Bioengineering, 1991,37(3):639~646
    [86]Chen X M. Johanson A, Dordick J S, et al. Chemoenzymatic synthesis linear polymerization conditions. Macromolecular Chemistry and Physics,1994.195: 3568-3578
    [87]Pierre P, Alain B, Juliette G, et al. Proteinase N-catalysed regioselective esterification of sucrose and other mono- and disaccharides. Tetrahedron:Asymmetry,2001,12: 2409~2419
    [88]罗旭,钱俊青.叔丁醇体系中脂肪酶催化合成蔗糖乙酸酯.高校化学工程学报,2010,24(3):451~455
    [89]郑璞,孙志浩,王勃. 一种酶法制备蔗糖-6-乙酸酯的方法.CN 101886100.2010-11-17
    [90]钱俊青,刘敏,罗旭. 一种脂肪酶催化合成蔗糖-6-乙酸酯的方法.CN 101928738.2010-12-29
    [91]Rathbone E B, Hacking A J, Cheetham P S J, et al. Novel fructosyltransferase, process for the preparation of frucotsyl disaccharides, and a novel halosucrose. EP 0130054. 1990-03-07
    [92]赵锡武,何玉莲.果糖的特性及应用.饮料工业,2006,9(4):4~9
    [93]Kanters J A, Roelofsen G, Alblas B P, et al. The crystal and molecular structure of-D-fructose, with emphasis on anomeric effect and hydrogen-bond interactions. Acta Crystallographica Section B,1977,33:665~672
    [94]Angyal S J. The composition of reducing sugars in solution. Advances in Carbohydrate Chemistry and Biochemistry,1984,42:15~68
    [95]Schneider B, Lichtenthaler F W. Steinle G, et al. Studies on ketoses,1 Distribution of furanoid and pyranoid tautomers of D-fructose in water, dimethyl sulfoxide, and pyridine via 1H NMR intensities of anomeric hydroxy groups in [D6]DMSO. Liebigs Annalen der Chemie,1985.2443~2453
    [96]Miyase T, Noguchi H, Chen X M. Sucrose esters and xanthone C-glycosides from the roots of Polygala sibirica. Journal of Natural Products,1999,62:993~996
    [97]Harrison L J, Sia G L, Sim K Y. et al. A ferulic acid ester of sucrose and other constituents of Bhesa paniculala. Phytochemistry,1995,38(6):1497~1500
    [98]Wang K J, Zhang Y J. Yang C R. Antioxidant phenolic constituents from Fagopyrum dibotrys. Journal of Ethnopharmacology,2005,99:259~264
    [99]Tchinda A T, Tane P, Ayafor J F, et al. Stigmastane derivatives and isovaleryl sucrose esters from Vernonia guineensis (Asteraceae). Phytochemistry.2003.63:841~846
    [100]Wang N L. Yao X S, Ishii R. et al. Bioactive sucrose esters from Bidens purviflora. Phytochemistry,2003,62:741~746
    [101]Iqbal C M, Afshan B, Ahmed A. et al. Cinnamate derivatives of fructo-oligosaccharides from Lindelofia stylosa. Carbohydrate Research,2006,341:2398~2405
    [102]Cheng M C, Li C Y, Ko H C, et al. Antidepressant principles of the roots of Poly gala tenuifolia. Journal of Natural Products,2006,69:1305~1309
    [103]Chortyk O T. Syntheses and characterizations of insecticidal sucrose esters. Journal of Agricultural and Food Chemistry,1996,44:1551~1557
    [104]Chortyk O T. Characterization of insecticidal sugar esters of Petunia. Journal of Agricultural and Food Chemistry,1997,45:270~275
    [105]宋子娟,李淑君,袁海舰.辛酸蔗糖酯的合成与杀虫活性研究.北京林业大学学报,2007,29(2):116~121
    [106]Sallay P, Farkas L, Rusznak I, et al. Nonionic fatty acid based surfactants. Production of sugar esters. Olaj, Szappan, Kozmetika,2000,49(3):122~125
    [107]Cruces M A, Plou F J, Ferrer M, et al. Improved synthesis of sucrose fatty acid monoesters. Journal of the American Oil Chemists'Society,2001,78(5):541~546
    [108]Osipow L, Rosenblatt W, Snell F D. Micro-emulsion process for the preparation of sucrose esters. Journal of the American Oil Chemists'Society,1967,44(5):307~309
    [109]LeCoent A L, Fayolle M T, Couenne F, et al. Kinetic parameter estimation and modeling of sucrose esters synthesis without solvent. Chemical Engineering Science, 2003,58:367~376
    [110]Fitremann J, Queneau Y, Maitre J P, et al. Co-melting of solid sucrose and multivalent cation soaps for solvent-free synthesis of sucrose esters. Tetrahedron Letters,2007,48: 4111~4114
    [111]Lewkowski J. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc,2001,2:17~54
    [112]Bicker M, Kaiser D, Ott L, et al. Dehydration of D-fructose to hydroxymethylfurfural in sub-and supercritical fluids. The Journal of Supercritical Fluids,2005,36:118~126
    [113]贾天柱,陈焕亮,解世全,等.狗脊升华物中5-羟甲基糠醛的分析.中成药,2002,24(10):768~771
    [114]丁霞,王明艳,余宗亮,等.山茱萸中5-羟甲基糠醛的分离鉴定及生物活性研究.中国中药杂志,2008,33(4):392~396
    [115]Lichtenthaler F W. Towards improving the utility of ketoses as organic raw materials. Carbohydrate Research,1998,313:69~89
    [116]Cottier L, Descotes G. 5-(Hydroxymethyl)furfural syntheses and chemical transformations. Trends in Heterocyclic Chemistry,1991.2:233~248
    [117]Kuster B F M.5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch/Starke.1990,42:314~321
    [118]Haworth W N, Jones W G M. The conversion of sucrose into furan compounds. Part I. 5-Hydroxymethylfurfuraldehyde and some derivatives. Journal of the Chemical Society,1944,667~670
    [119]Middendorp J A. Hydroxymethylfurfural. Recueil des Travaux Chimiques des Pays-Bas,1919,38:1~71
    [120]Garber J D, Jones R E. Production of 5-hydroxymethylfurfural. US 2929823. 1960-03-22
    [121]Van Dam H E, Kieboom A P G, Van Bekkum H. The conversion of fructose and glucose in acidic media:Formation of hydroxymethylfurfural. Starch/Starke,1986,38: 95~101
    [122]Kuster B F M, Temmink H M G. The influence of pH and weak-acid anions on the dehydration of D-fructose. Carbohydrate Research,1977,54:185~191
    [123]Bicker M, Hirth J, Vogel H. Dehydration of fructose to 5-hydroxymethylfurfural in sub-and supercritical acetone. Green Chemistry,2003,5:280~284
    [124]Chheda J N, Roman-Leshkov Y, Dumesic J A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chemistry,2007,9:342~350
    [125]Moye C J, Krzerninski Z S. The formation of 5-hydroxymethylfurfural from hexoses. Australian Journal of Chemistry,1963,16:258~269
    [126]Bonner W A, Roth M. The conversion of D-Xylose-1-C14 into 2-Furaldehyde-α-C14. Journal of the American Oil Chemists'Society,1959,81:5454~5456
    [127]Atlas Powder Co. Process for preparing hydroxymethyl furfural. GB 876463. 1961-09-06
    [128]Tyrlik S K, Szerszen D, Olejnik M, et al. Selective dehydration of glucose to hydroxymethylfurfural and a one-pot synthesis of a 4-acetylbutyrolactone from glucose and trioxane in solutions of aluminium salts. Carbohydrate Research,1999, 315:268~272
    [129]Szmant H H, Chundury D D. The preparation of 5-hydroxymethylfurfuraldehyde from high fructose corn syrup and other carbohydrates. Journal of Chemical Technology & Biotechnology,1981.31:135~145
    [130]Smith N H. Preparation of hydroxymethylfurfural. US 3118912.1964-01-21
    [131]Mednick M L. The acid-base-catalyzed conversion of aldohexose into 5-(hydroxymethyl)-2-furfural. The Journal of Organic Chemistry.1962.27:398~403
    [132]Nakamura, Y. Synthesis of hydroxymethylfural and 2,5-furandicarboxaldehydes. Noguchi Kenkyusho Jiho,1980,23:25~33
    [133]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science,2007,316:1597~1600
    [134]Krupenskii V I. Method of producing 5-oxymethylfurfural. SU 1351932.1987-11-15
    [135]Potapoc G P, Krupenskii V I, Alieca M I. Metalloporphyrins anchored to polymeric supports as new catalysts for aldose dehydration. Reaction Kinetics and Catalysis. Letters,1985,28:331~337
    [136]Qi X H, Watanabe M, Aida T M, et al. Selective conversion of D-fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures. Industrial & Engineering Chemistry Research,2008,47:9234~9239
    [137]Jow J, Rorrer G L, Hawley M C. Dehydration of D-fructose to levulinic acid over LZY zeolite catalyst. Biomass,1987,14:185~194
    [138]Qi X H, Watanabe M. Aida T M, et al. Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating. Catalysis Communications,2008,9:2244~2249
    [139]Qi X H, Watanabe M, Aida T M, et al. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating. Green Chemistry,2008,10:799~805
    [140]Bicker M, Kaiser D, Ott L, et al. Dehydration of D-fructose to hydroxymethylfurfural in sub- and supercritical fluids. The Journal of Supercritical Fluids,2005,36:118~126
    [141]Bicker M, Hirth J, Vogel H. Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chemistry,2003,5:280~284
    [142]Asghari F S, Yoshida H. Dehydration of fructose to 5-hydroxymethylfurfural in sub-critical water over heterogeneous zirconium phosphate catalysts. Carbohydrate Research,2006.341:2379~2387
    [143]庞斐,吕惠生,张敏华.亚临界水/二氰化碳中纤维素降解制备5-羟甲基糠醛的机理及动力学.化学反应工程与工艺,2007,23:55~60
    [144]Lansalot-Matras C, Moreau C. Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catalysis Communications,2003,4:517~520
    [145]Moreau C, Finiels A. Vanoye L. Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. Journal of Molecular Catalysis A:Chemical.2006.253: 165~169
    [146]Yong G, Zhang Y, Ying J. Efficient catalytic system for the selective production of 5-hydroxymethyl furfural from glucose and fructose. Angewandte Chemie International Edition,2008,47:9345~9348
    [147]Bao Q X, Qiao K, Tomida D, et al. Preparation of 5-hydroymethylfurfural by dehydration of fructose in the presence of acidic ionic liquid. Catalysis Communications,2008,9:1383~1388
    [148]Hu S Q, Zhang Z F, Zhou Y X, et al. Conversion of fructose to 5-hydroxymethyl furfural using ionic liquids prepared from renewable materials. Green Chemistry,2008,10:1280~1283
    [149]Sievers C, Valenzuela-Olarte M B, Marzialetti T, et al. Ionic-liquid-phase hydrolysis of pine wood. Industrial & Engineering Chemistry Research,2009,48:1277~1286
    [150]Tyrlik S K, Szerszen D, Olejnik M, et al. Concentrated water solutions of salts as solvents for reaction of carbohydrates. Part 2. Influence of some magnesium salts and some ruthenium species on catalysis of dehydration of glucose. Journal of Molecular Catalysis A:Chemical,1996,106:223~233
    [151]Roman-Leshkov Y, Barrett C J, Liu Z Y, et al. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature,2007,447:982~985
    [152]Rigal L, Gaset A, Gorrichon J P. Selective conversion of D-fructose to 5-hydroxymethyl-2-furancarboxaldehyde using a water-solvent-ion-exchange resin triphasic system. Industrial & Engineering Chemistry Product Research and Development,1981,20:719~721
    [153]莫英杰. 三氯蔗糖价格下降三分之二.中国食品学报,2010,10(2):246
    [154]Liu F W, Liu H M, Ke Y, et al. A facile approach to anhydrogalactosucrose derivatives from chlorinated sucrose. Carbohydrate Research.2004,339:2651~2656
    [155]Liu F W. Zhang Y B, Liu H M, Song X P. Preparation of α and β anomers of 1,2,3,6-tetra-O-acetyl-4-chloro-4-deoxy-D-galactopyranose based upon anomerization and kinetic acetylation. Carbohydrate Research,2005,340:489~495
    [156]Liu H M, Liu F W, Zou D P, et al. Asymmetric synthesis of novel tetrahydroquinoline derivatives with a sugar building block and their bioactivities. Bioorganic & Medicinal Chemistry Letters,2005,15:1821~1824
    [157]Yan L, Liu F W, Dai G F, et al. An efficient synthesis of quinoxaline derivatives from 4-chloro-4-deoxy-a-D-galactose and their cytotoxic activities. Bioorganic & Medicinal Chemistry Letters,2007,17:609~612
    [158]Yan L, Dai G F, Yang J L, et al. Synthesis of furanosyl α-C-glycosides derived from 4-chloro-4-deoxy-α-D-galactose and their cytotoxic activities. Bioorganic & Medicinal Chemistry Letters,2007,17:3454~3457
    [159]陶建琦,方志杰.三氯蔗糖基化氨基酸的合成.应用化学,2009,26(1):119~121
    [160]Jones A R, Morin C. Inhibition of glycolysis in boar spermatozoa by 1,6-dichloro-1,6-dideoxy-D-fructose. Biochimica et Biophysics Acta,1995,1244: 141~146
    [161]陈树功.蔗糖工业化学.第1版.广东:华南理工大学出版社,1994
    [162]王箴.化工辞典.第2版.北京:化学工业版社,1992
    [163]张铸勇,祁国珍,庄甫.精细有机合成单元反应.上海:华东化工学院出版版社,1990
    [164]焦岩,方志杰,江荣英.八苄基蔗糖及其水解反应产物的制备.化学试剂,2007,29(8):503~504
    [165]Albinson F D, Mackinnon J M, Crookes D L, et al. Preparation of indole derivatives. EP 462837.1991-12-27
    [166]Yu B, Xie J, Deng S, et al. First synthesis of a bidesmosidic triterpene saponin by a highly efficient procedure. Journal of the American Chemical Society,1999,121(51): 12196~12197
    [167]Hofle G, Steglich W, Vorbruggen H.4-Dialkylaminopyridines as highly active acylation catalysts. [New synthetic method (25)]. Angewandte Chemie International Edition,1978,17(8):569~583
    [168]Wolfrom M L, Thompson A. Acetylation. Methods in Carbohydrate Chemistry,1963, 2:211~215
    [169]Free P. Hurley C A, Kageyama T, et al. Mannose-pepstatin conjugates as targeted inhibitors of antigen processing. Organic & Biomolecular Chemistry,2006,4: 1817~1830
    [170]Nicolaou K C, Pfefferkorn J A, Roecker A J, et al. Natural product-like combinatorial libraries based on privileged structures.1. General principles and solid-phase synthesis of benzopyrans. Journal of the American Chemical Society,2000,122(41):9939~9953
    [171]Tiwari P, Kumar R, Maulik P R, et al. Efficient acetylation of carbohydrates promoted by imidazole. European Journal of Organic Chemistry,2005,4265~4270
    [172]廖洪梅,戴玲,魏晓匕.等.单糖乙酰化条件的优化.理化检验-化学分册,2008,44(5):441~443
    [173]黄雪松.单糖与糖胺的水相乙酰化及其气相色谱测定,色谱.2003,21(5):527
    [174]Bittner A S. Harris I. E. Campbell W F. Rapid N-methylimidazole-catalyzed acetylation of plant cell wall sugars. Journal of Agricultural and Food Chemistry,1980, 28(6):1242~1245
    [175]Chen L, Zhang J. Shi C, et al. Vinyl acetate and sodium carbonate as a fast and efficient catalyst for per-O-acetylation of monosaccharides. Journal of Chemical Research-S,2008,7:380~382
    [176]Shi C J, Zhang J, Fu J, et al. Convenient per-O-acetylation of monosaccharides with vinyl acetate/Na3PO4-H2O. Letters in Organic Chemistry,2006,3(12):932~935
    [177]Hyatt J A, Tindall G W. The intermediacy of sulfate esters in sulfuric acid catalyzed acetylation of carbohydrates. Heterocycles,1993,35(1):227~234
    [178]Binch H, Katja S, Thiem J. Chemical synthesis of GDP-1-galactose and analogues. Carbohydrate Research,1998,306(3):409~419
    [179]于琰,尹静梅.贾颖萍,等.糖苷中间体全乙酰D-木糖的合成研究.化工中间体,2009,9(4):19~21
    [180]Wu H, Shen Y, Fan L Y, et al. Solid silica sulfuric acid (SSA) as a novel and efficient catalyst for acetylation of aldehydes and sugars. Tetrahedron,2006,62(34): 7995~7998
    [181]Mukhopadhyay B. Sulfuric acid immobilized on silica:an efficient promoter for one-pot acetalation-acetylation of sugar derivatives. Tetrahedron Letters,2006,47(26): 4337~4341
    [182]Mukhopadhyay B, Russella D A, Field R A. One-pot acetalation-acetylation of sugar derivatives employing perchloric acid immobilised on silica. Carbohydrate Research, 2005.340(6):1075~1080
    [183]姜宇华,方志杰,焦岩,等.糖类乙酰基和苄基保护新方法的探索.化学试剂.2008,30(9):691-692
    [184]Misra A K, Tiwari P, Madhusudan S K. HClO4-SiO2 catalyzed per-O-acetylation of carbohydrates. Carbohydrate Research.2005,340(2):325~329
    [185]Chakraborti A K, Gulhane R. Perchloric acid adsorbed on silica gel as a new, highly efficient, and versatile catalyst for acetylation of phenols, thiols. alcohols, and amines. Chemical Communications,2003,1896~1897
    [186]郭启勇,辛军.18F标记正电子放射性示踪剂前体的合成工艺.CN 1911947.2007-02-14
    [187]Christensen G M. Catalysis of acetylation reactions of sugars with an ion exchange resin. The Journal of Organic Chemistry,1962.27(4):1442~1443
    [188]Chao C S. Chen M C. Lin S C. et al. Versatile acetylation of carbohydrate substrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylated thioglycosides. Carbohydrate Research,2008,343(5):957~964
    [189]Dasgupta F, Singh P P, Srivastava H C. Acetylation of carbohydrates using ferric chloride in acetic anhydride. Carbohydrate Research,1980,80(2):346~349
    [190]Cleophax J, Liagre M, Loupy A, et al. Application of focused microwaves to the scale-up of solvent-free organic reactions. Organic Process Research & Development, 2000,4(6):498~504
    [191]Abbott A P, Bell T J, Handa S, et al. O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chemistry,2005,7:705~707
    [192]Ahmad S, Iqbal J. A new acylation catalyst. Chemical Communications,1987, 114~115
    [193]Iqbal J, Srivastava R R. Cobalt(Ⅱ) chloride catalyzed acylation of alcohols with acetic anhydride:Scope and mechanism. The Journal of Organic Chemistry,1992,57(7): 2001~2007
    [194]Dalpozzo R. De Nino A, Maiuolo L, et al. Erbium(Ⅲ) chloride:A very active acylation catalyst. Australian Journal of Chemistry,2007,60:75~79
    [195]Das S K, Reddy K A, Krovvidia V L N R, et al. InCl3 as a powerful catalyst for the acetylation of carbohydrate alcohols under microwave irradiation. Carbohydrate Research,2005,340(7):1387~1392
    [196]Bhattacharya A K, Diallo M A, Ganesh K N. SbCl3 as a highly efficient catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Synthetic Communications,2008,38(10):1518~1526
    [197]Dalpozzo R, De Nino A, Maiuolo L, et al. Highly efficient and versatile acetylation of alcohols catalyzed by Cerium(Ⅲ) triflate. Tetrahedron Letters,2003,44(30): 5621~5624
    [198]Bartoli G, Dalpozzo R, De Nino A, et al. Per-O-acetylation of sugars catalyzed by Ce(OTf)3.Green Chemistry,2004,6:191~192
    [199]Tai C A, Kulkarni S S, Hung S C. Facile Cu(OTf)2-catalyzed preparation of per-O-acetylated hexopyranoses with stoichiometric acetic anhydride and sequential one-pot anomeric substitution to thioglycosides under solvent-free conditions. The Journal of Organic Chemistry.2003,68(22):8719~8722
    [200]Procopio A. Dalpozzo R. De Nino A, et al. Erbium(Ⅲ) triflate as an extremely active acylation catalyst. Advanced Synthesis & Catalysis,2004.346:1465~1470
    [201]Bizier N P. Atkins S R. Helland L C, et al. Indium triflate catalyzed peracetylation of carbohydrates. Carbohydrate Research.2008,343(10-11):1814~1818
    [202]Giri S K, Verma M, Kartha K P R. Indium(Ⅲ) triflate:A highly efficient catalyst for reactions of sugars. Journal of Carbohydrate Chemistry,2008,27(8):464~478
    [203]Dasgupta S, Rajput V K, Roy B, et al. Lanthanum trifluoromethanesulfonate-catalyzed facile synthesis of per-O-acetylated sugars and their one-pot conversion to S-aryl and O-alkyl/aryl glycosides. Journal of Carbohydrate Chemistry,2007,26(2):91~106
    [204]Lee J C, Tai C. A,. Hung S C. Sc(OTf)3-catalyzed acetolysis of 1,6-anhydro-β-hexopyranoses and solvent-free per-acetylation of hexoses. Tetrahedron Letters,2002, 43(5):851~855
    [205]Roy B, Dasgupta S, Rajputa V K, et al. Samarium trifluoromethanesulfonate:An efficient moisture tolerant acylation catalyst under solvent-free condition. Journal of Carbohydrate Chemistry,2008,27(1):1~9
    [206]Orita A, Tanahashi C, Kakuda A, et al. Highly efficient and versatile acetylation of alcohols with Bi(OTf). as catalyst. Angewandte Chemie International Edition,2000, 39(16):2877~2879
    [207]Chen C T, Kuo J H, Li C H, et al. Catalytic nucleophilic acyl substitution of anhydrides by amphoteric vanadyl triflate. Organic Letters,2001,3(23):3729~3732
    [208]Togo H, Iida S. Synthetic use of molecular iodine for organic synthesis. Synlett,2006, (14):2159~2175
    [209]王宏社,苗建英,赵立芳.碘作为催化剂在有机合成中的应用.有机化学,2005,25(6):615~618
    [210]Kartha K P R, Field R A. Iodine:A versatile reagent in carbohydrate chemistry Ⅳ. Per-O-acetylation, regioseleetive acylation and acetolysis. Tetrahedron.1997,53(34): 11753~11766
    [211]Mukhopadhyay B, Kartha K P R, Russell D A., et al. Streamlined synthesis of per-O-acetylated sugars, glycosyl iodides, or thioglycosides from unprotected reducing sugars. The Journal of Organic Chemistry,2004,69(22):7758~7760
    [212]Mukherjee D, Shah B A, Gupta P. et al. Tandem acetalation-acetylation of sugars and related derivatives with enolacetates under solvent-free conditions. The Journal of Organic Chemistry.2007,72(23):8965~8968
    [213]Bhaskar P M. Loganathan D. Per-O-acetylation of sugars catalysed by montmorillonite K-10. Tetrahedron Letters.1998.39(15):2215~2218
    [214]Tiwari P. Misra A K. Acylation of carbohydrates over Al2O3: Preparation of partially and fully acylated carbohydrate derivatives and acetylated glycosyl chlorides. Carbohydrate Research,2006,341(3):339~350
    [215]Agnihotri G, Tiwari P, Misra A K. One-pot synthesis of per-O-acetylated thioglycosides from unprotected reducing sugars. Carbohydrate Research,2005, 340(7):1393~1396
    [216]Shi L, Zhang G S, Pan F. Fe2(SO4)3·xH2O-catalyzed per-O-acetylation of sugars compatible with acid-labile protecting groups adopted in carbohydrate chemistry. Tetrahedron,2008,64(11):2572~2575
    [217]Lu K C, Hsieh S Y, Patkar L N, et al. Simple and efficient per-O-acetylation of carbohydrates by lithium perchlorate catalyst. Tetrahedron,2004,60(40):8967~8973
    [218]Lin C C, Huang L C, Liang P H, et al. Large-scale synthesis of per-O-acetylated saccharides and their sequential transformation to glycosyl bromides and thioglycosides. Journal of Carbohydrate Chemistry,2006,25(4):303~313
    [219]Kumareswaran R, Gupta A, Vankar Y D. Chlorotrimethylsilane catalysed acylation of alcohols. Synthetic Communications,1997,27(2):277~282
    [220]Curini M, Epifano F, Marcotullio M C, et al. Heterogeneous catalysis in acetylation of alcohols and phenols promoted by zirconium sulfophenyl phosphonate. Synthetic Communications,2000,30(7):1319~1329
    [221]Gholap A R, Venkatesan K, Daniel T, et al. Ultrasound promoted acetylation of alcohols in room temperature ionic liquid under ambient conditions. Green Chemistry, 2003,5:693~696
    [222]Forsyth S A, MacFarlane D R, Thomson R J, et al. Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chemical Communications,2002,714~715
    [223]Murugesan S, Karst N, Islam T, et al. Dialkyl imidazolium benzoates-room temperature ionic liquids useful in the peracetylation and perbenzoylation of simple and sulfated saccharides. Synlett,2003, (9):1283~1286
    [224]Jin T S, Ma Y R, Zhang Z H, et al. Sulfamic acid catalysed acetylation of alcohols and phenols with acetic anhydride. Synthetic Communications,1998,28(17):3173~3177
    [225]刘文奇.俞善信,张鲁西.氨基磺酸催化合成丁二酸丁酯.合成化学,2004,12:381-382
    [226]张竟清.氨基磺酸催化合成顺丁烯二酸二丁酯.合成化学,1997.5:87~88
    [227]易兵.郭文辉,龙有前,等.氨基磺酸催化合成乙酸异戊酯.化学世界,2001.42:148-149
    [228]张竞清.氨基磺酸催化合成氯乙酸异丙酯.化学世界,1996,37:423~425
    [229]俞善信,方正法,文瑞明.氨基磺酸催化合成对羟基苯甲酸正丁酯.湖南文理学院学报(自然科学版),2005,17(2):22~23
    [230]毛立新,陈献桃,廖德仲,等.氨基磺酸均相催化合成柠檬酸三丁酯.湖南理工学院学报(自然科学版),2005,18(2):36~38
    [231]俞善信,文瑞明,张鲁西.氨基磺酸催化、光异构化合成富马酸二甲酯.化工科技,2005,13(3):17~19
    [232]管仕斌,俞善信,文瑞明.氨基磺酸催化合成1-萘乙酸甲酯.广州化学,2005,30(4):30~33
    [233]董镜华,刘平平.氨基磺酸催化合成甲酸环己酯.湖北师范学院学报(自然科学版),2005,25(4):78~80
    [234]刘艳辉,刘素琴,毛卿.氨基磺酸催化合成苯甲酸乙酯.湖南理工学院学报(自然科学版),2005,18(4):56~58
    [235]马荣萱,王俏.氨基磺酸催化合成乙酸-β-萘酯.河南工业大学学报(自然科学版),2006,27(2):86~88
    [236]陈红.氨基磺酸催化合成棕榈酸异辛酯.化学工业与工程技术,2006,27(4):15~17
    [237]高宏宙,孙丽慧.氨基磺酸催化合成苯甲酸苄酯.许昌学院学报,2008,27(5):1]7~118
    [238]章爱华,邓斌,刘志雄,等.氨基磺酸催化合成草酸二丁酯.应用化工,2009,38(6):792~794
    [239]章爱华,邓斌,陈小原,等.氨基磺酸催化合成草酸二异戊酯.应用化工,2010,39(9):1300~1302
    [240]Durette P L, Horton D. Conformational studies on pyranoid sugar derivatives. Conformational equilib-riums of the D-aldopentopyranose tetraacetates and tetrabenzoates. The Journal of Organic Chemistry.1971,36(18):2658~2669
    [241]Satam J R, Jayaram R V. Acetylation of alcohols, phenols and amines using ammonium salt of 12-tungstophosphoric acid:Environmentally benign method. Catalysis Communications,2008.9(14):2365~2370
    [242]Wahler D, Boujard O, Lefevre F. et al. Adrenaline profiling of lipases and esterases with 1,2-diol and carbohydrate acetates. Tetrahedron,2004,60(3):703~710
    [243]Moore R E. Barchi J J Jr. Bartolini G. Use of borate complexation in assigning relative stereochemistry of acyclic polyhydroxylated compounds. The Journal of Organic Chemistry.1985,50(3):374~379
    [244]Nishida T, Enzell C R. Morris G A. Concerted use of homo- and hetero-nuclear 2D NMR:13C and H assignment of sucrose octaacetate. Magnetic Resonance in Chemistry,1986,24:179~182
    [245]Harbison G S, Kye Y S, Penner G H, et al. 14N quadrupolar,14N and 15N chemical shift, and 14N-1H dipolar tensors of sulfamic acid. The Journal of Physical Chemistry B,2002,106(40):10285~10291
    [246]Owen T C. Amino-alkanethiols from amino-alcohols via aminoalkyl sulphates and thiazolidinethiones. Journal of the Chemical Society C:Organic,1967,1373~1376
    [247]程敬丽,沈德隆,陈利民.2-噻唑硫酮的合成.农药,1999,38(2):12~13
    [248]Crawhall J C, Elliott D F. Cyclisation, ring-fission, and acyl-migration reactions in the thiazoline field. Journal of the Chemical Society,1952,3094~3102
    [249]姜红梅.噻唑烷-2-硫酮的合成.浙江化工,2003,2:56
    [250]Park C H, Choi S H, Koo J W, et al. Novel cognitive improving and neuroprotective activities of Poly gala tenuifolia willdenow extract, BT-11. Journal of Neuroscience Research,2002,70:484~492
    [251]Jia H, Jiang Y, Ruan Y, et al. Tenuigenin treatment decreases secretion of the Alzheimer's disease amyloid β-protein in cultured cells. Neuroscience Letters,2004, 367:123~128
    [252]Lee H J, Ban J Y, Koh S B, et al. Polygalae radix extract protects cultured rat granule cells against damage induced by NMDA. The American Journal of Chinese Medicine, 2004,32(4):599~610
    [253]Chen Y L, Hsieh C L, Wu P H B, et al. Effect of Polygala tenuifolia root on behavioral disorders by lesioning nucleus basalis magnocellularis in rat. Journal of Ethnopharmacology,2004,95:47~55
    [254]Sato K I, Sakai K, Tsushima K, et al. The first total synthesis of telephiose A. Tetrahedron Letters,2007,48:3745~3748
    [255]Kakinuma H, Yuasa H, Hashimoto H. Glycosyltransfer mechanism of a-glucosyl-transferase from Protaminobacter rubrum. Carbohydrate Research,1998,312: 103~115
    [256]Navia J L, Roberts R A, Wingard R E Jr. Study on the selectivity of benzoylation of metal chelates of sucrose. Journal of Carbohydrate Chemistry,1995,14(4-5):465~480
    [257]Bragg P D, Jones J K N, Turner J C. The reaction of sulphuryl chloride with glycosides and sugar alcohols. Part 1. Canadian Journal of Chemistry,1959.37: 1412~1416
    [258]Lichtenthaler F W. Carbohydrate-based product lines. Weinheim:VCH-Wiley,2006
    [259]王娜妮.陈栓虎.出蔗糖转化为5-羟甲基糠醛的最佳工艺条件.西北大学学报(自 然科学网络版),2008,6(1):1~4
    [260]Tong X L, Ma Y, Li Y D. An efficient catalytic dehydration of fructose and sucrose to 5-hydroxymethylfurfural with protic ionic liquids. Carbohydrate Research,2010,345: 1698~1701
    [261]仝新利,李梦然.酸性离r液体催化蔗糖转化合成5-羟甲基糠醛.工业催化,2011,19(1):68~71
    [262]Lima S, Neves P, Antunes M M, et al. Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Applied Catalysis A:General,2009,363:93~99
    [263]Qi X H, Watanabe M, Aida T M. et al. Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catalysis Communications,2009, 10:1771~1775
    [264]Qi X H, Watanabe M, Aida T M, et al. Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chemistry,2009,11:1327~1331
    [265]Hansen T S, Woodley J M, Riisager A. Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose. Carbohydrate Research, 2009,344:2568~2572
    [266]Zhang Z H, Zhao Z B K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresource Technology,2010,101:1111~1114
    [267]王军,张春鹏.微波辅助蔗糖制备5-羟甲基糠醛.精细石油化工.2008,25(5):19~22
    [268]许元明.蔗糖微波合成5-羟甲基糠醛的探讨.广西民族师范学院学报.2010,27(5):23~24
    [269]吴树昌,王春雷,高勇军,等.离子液体中微波辅助的Lewis酸催化纤维素制备5-羟甲基糠醛.催化学报,2010,31(9):1157~1161
    [270]辛淮生,夏国华,付海珍,等.盐酸吡啶的制备.广东化工,2003,30(4):17~18
    [271]Cook A P, MacLeod T M, Appletont J D, et al. HPLC studies on the degration profiles of glucose 5% solution subjected to heat sterilization in a microprocessor-controlled autoclave. Journal of Clinical Pharmacy and Therapeutics,1989,14:189~195
    [272]Williams P T. Horne P A. The role of metal salts in the pyrolysis of biomass. Renewable Energy.1994.4:1~13
    [273]Amarasekara A S. Ebede C C. Zinc chloride mediated degradation of cellulose at 200℃ and identification of the products. Bioresource Technology,2009.100: 5301~5304
    [274]Chun J A, Lee J W, Yi Y B, et al. Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid. Korean Journal of Chemical Engineering,2010,27(3):930~935
    [275]Rinkes I J.5-Methylfurfural. Organic Synthesis,1943, Coll.2:393
    [276]Hamada K, Yoshihara H, Suzukamo G. An improved method for the conversion of saccharides into furfural derivatives. Chemistry Letters,1982,617~618
    [277]Spillane W J, Ryder C A,Walsh M R, et al. Sulfamate sweeteners. Food Chemistry, 1996,56(3):255~261
    [278]Winum J Y, Scozzafava A, Montero J L, et al. Sulfamates and their therapeutic potential. Medicinal Research Reviews,2005,25(2):186~228
    [279]张凯,刘广益.托吡酯在癫痫治疗中的研究进展.西南军医,2010,12(2):302~303
    [280]尤启东,彭司勋.药物化学.北京:化学工业出版社,2008
    [281]Nortey S O, Wu W N, Maryanoff B E. Synthesis of hydroxylated derivatives of topiramate, a novel antiepileptic drug based on D-fructose:Investigation of oxidative metabolites. Carbohydrate Research,1997,304:29~38
    [282]Batchu C, Pillai B K G, Bhirud S B. Process for the preparation of sulfamate derivatives. US 0203287.2005-09-15
    [283]Pramod A N, Prakashchandra A J, Dillipbhai A J. Novel derivatives of acylcyano-pyrrolidines. WO 116067.2009-09-24
    [284]Ouyang A, Arabshahi L L. Topiramate analogs. US 2006008886.2006-04-27
    [285]Maryanoff B E, Costanzo M J, Norty M O, et al. Structure-activity studies on anticonvulsant sugar sulfamates related to topiramate. Enhanced potency with cyclic sulfate derivatives. Journal of Medicinal Chemistry,1998,41:1315~1343
    [286]Maryanoff B E, Nortey S O, Gardocki J F, et al. Anticonvulsant O-alkyl sulfamates. 2,3:4,5-bis-O-(1-methylethylidene)-6-β-D-fructopyranos seulfamate and related compounds. Journal of Medicinal Chemistry,1987,30:880~887
    [287]Maryanoff B E, Hope N. Gardocki J F. et al. Anticonvulsant sulfamate derivatives. US 4513006.1985-04-23
    [288]Maryanoff B E, Hope N, Gardocki J F. et al. Chlorosulfate and azidosulfate esters of tetrahydro-2H-pyran-2-yl-methanol. US 4582916.1986-04-15
    [289]Ngh C H P, Shankar C A, Mafatlal P S. et al. An improved process for the manufacture of topiramate. WO 2007099388.2007-09-07
    [290]Maryanoff B E, Gardocki J F. Anticonvulsant sulfamate derivatives. EP 0138441. 1985-04-24
    [2911 Maryanoff C A, Scott L. Process for the preparation of chlorosulfate and sulamate derivatives of 2,3:4,5-bis-O-(1-methylethylidene)-beta-D-fructopyranose and (1-methylcyclohexyl)methanol. EP 0533483.1993-03-24
    [292]Maryanoff B E, Hope N, Scott L, etal. Process for the preparation of chlorosulfate and sulfamate derivatives of 2,3:4,5-bis-O-(1-methylethylidene)-β-D-fructopyranose and (1-methylcyclohexyl)methanol. US 5387700.1995-02-07
    [293]Batchu C, Pillai B K G, Bhitrud S B. Process for the preparation of sulfamate derivatives. US 0203287.2005-09-15
    [294]Chandrakant B M, Srinivasu K, Rajamannar T. Process for the preparation of 2,3:4,5-bis-O-(1-methylethylidene)-β-D-fructopyranose sulfamate. WO 2004108732. 2004-12-16
    [295]Adkins T W, Cicco C F, Feibush P, etal. Contituous process for the preparation of fructopyranose sulfamate derivatives. WO 2004041836.2004-05-21
    [296]卓超,程固候.托吡酯的合成.中国医药工业杂志,1999,30(11):486~487
    [297]唐朝军,何君.一种托吡酯的制备方法.CN 101045740.2007-10-03
    [298]Ernst B J. Process for the preparation of anticonvulsant derivatives of topiramate. WO 2004078769.2004-09-16
    [299]Chakilam N, Gudipati S. An improved process for the preparation of topiramate. IN 190899.2003-08-30
    [300]Shank R P. Anticonvulsant derivatives useful in treating obesity. US 6071537. 2000-06-06
    [301]Geza A. Process for the preparation of topiramate. EP 1627881.2006-02-22
    [302]McGeary R P, Wright K, Toth I. Conversion of glucosamine to galactosamine and allosamine derivatives:Control of inversions of stereochemistry at C-3 and C-4. The Journal of Organic Chemistry,2001,66:5102~5105
    [303]温辉梁.蔗糖卤化物的合成及其甜味机理的研究[D].南京:南京理工大学,2006
    [304]林国强,陈耀全,陈新滋,等.手性合成---不对称反应及其应用.第2版.北京:科学出版社,2001
    [305]Taunton J, Collins J L, Schreiber S L. Synthesis of natural and modified trapoxins, useful reagents for exploring histone deacetylase function. Journal of the American Chemical Society.1996,118(43):10412-10422
    [306]Han C K. Ahn S K. ChoiN S. et al. Design and synthesis of highly potent fumagillin analogues from homology modeling for a human MetAP-2. Bioorganic & Medicinal Chemistry Letters.2000.10(1):39~43
    [307]Xia Q H, Ge H Q, Ye C P, et al. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chemical Reviews,2005,105(5):1603~1662
    [308]Tu Y, Wang Z X, Shi Y. An efficient asymmetric epoxidation method for trans-olefins mediated by a fructose-derived ketone. Journal of the American Chemical Society, 1996,118:9806~9807
    [309]Yong T, Wang Z X, Frohn M, et al. Structural probing of ketone catalysts for asymmetric epoxidation. The Journal of Organic Chemistry,1998,63:8475~8485
    [310]Wu X Y, She X G, Shi Y A. Highly enantioselective epoxidation of α,β-unsaturated esters by chiral dioxirane. Journal of the American Chemical Society,2002,124: 8792~8793
    [311]Wang Z X, Tu Y, Frohn M, et al. An efficient catalytic asymmetric epoxidation method. Journal of the American Chemical Society,1997,119:11224~11235
    [312]Tian H Q, She X G, Xu J X, et al. Enantioselective epoxidation of terminal olefins by chiral dioxirane. Organic Letters,2001,3:1929~1931
    [313]Tian H Q, She X G, Yu H W, et al. Designing new chiral ketone catalysts. Asymmetric epoxidation of cis-olefins and terminal olefins. The Journal of Organic Chemistry,2002,67:2435~2446
    [314]Shing T K M, Leung G Y C. Asymmetric epoxidation catalyzed by D-glucose-derived uloses. Tetrahedron,2002.58:7545~7552
    [315]Shing T K M, Leung Y C, Yeung K W. Catalytic asymmetric epoxidation of alkenes with arabinose-derived uloses. Tetrahedron,2003,59:2159~2168
    [316]Wang B, Wu X Y, Wong O A, et al. A diacetate ketone-catalyzed asymmetric epoxidation of olefins. The Journal of Organic Chemistry,2009,74(10):3986~3989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700