四种除草剂对蚯蚓生理生态的影响及其降解特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
除草剂使用范围非常广泛,然而过量和不合理使用,引起了一系列的生态和环境问题。上世纪80年代后世界主要发展高效、低毒、广谱、低用量的除草剂,一般认为比较低毒的阿特拉津、绿麦隆、乙草胺和丁草胺近年来被广泛使用的除草剂,其产量和用量非常大,但是它们在环境中的行为以及对土壤生态系统的影响尚缺乏比较系统的研究。
     本文在调查昆明市农业生产中除草剂使用状况的基础上,以赤子爱胜蚓为材料,模拟常规除草剂使用剂量,在室外模拟培养环境下研究了蚯蚓SOD、CAT等氧化酶及热激蛋白HSP27和HSP40对各类除草剂的时间一效应和剂量—效应关系,分析了它们对土壤脲酶活性的影响,探讨了除草剂在土壤中的降解动态,为这些除草剂的合理使用和生态安全性评估提供数据支持。主要结果如下,
     (1)除草剂对蚯蚓生物量的影响的结果表明,除草剂浓度对蚯蚓鲜重的影响总体表现为暴:露剂量越小,体重降低程度越小,暴露剂量越高,体重降低越大。各种浓度除草剂处理的蚯蚓鲜重呈降低趋势。随着处理时间的延长,蚯蚓鲜重随着处理浓度的提高而降低,不同处理浓度引起蚯蚓鲜重降低开始的时间不同,不同剂量最后引起的降低程度不同。
     (2)各种处理条件下除草剂对蚯蚓SOD活性的影响均表现为先升高后降低,只是SOD最高活性出现的时间早晚有差异。小于126mg/kg低浓度阿特拉津处理中蚯蚓SOD活性在第7d最高,大于316mg/kg的高浓度阿特拉津处理在第10d蚯蚓SOD活性最高;绿麦隆在低于1OOmg/kg时显著促进SOD活性,高于158mg/kg时SOD活性显著受到抑制;乙草胺在小于33mg/kg范围内促进SOD活性,SOD活性在第7d最高,之后SOD活性降低,低浓度13 g/kg处理被诱导程度最大,而大于83mg/kg时对SOD活性有极显著抑制作用;丁草胺浓度在小于50mg/kg内促进SOD活性,SOD活性在第7d最高,之后SOD活性降低,低浓度32mg/kg处理被诱导程度最大,而大于126mg/kg时对SOD活性有极显著抑制作用。根据双因素方差分析结果表明,阿特拉津、乙草胺和丁草胺处理浓度与时间及浓度与时间的交互作用均对土壤中蚯蚓体组织SOD活性具有极显著的影响(P<0.001)。绿麦隆处理时间、时间与浓度的交互作用均对土壤中蚯蚓体组织SOD活性具有极显著的影响(P<0.001)。
     (3)随着除草剂暴露时间的延长,CAT活性对乙草胺处理变化范围为284.8-335.5U/g蛋白,平均为309.68 U/g蛋白,而各处理蚯蚓CAT活性表现为先升高后降低。阿特拉津在低于126mg/kg时显著促进CAT活性,达到316mg/kg以上时对CAT活性有显著抑制作用;绿麦隆在低于1OOmg/kg时,显著促进CAT活性;高于158mg/kg对CAT活性有极显著抑制作用。双因素方差分析结果表明,阿特拉津、乙草胺和丁草胺处理浓度与时间及浓度与时间的交互作用均对蚯蚓体CAT活性具有极显著的影响(P<0.001);绿麦隆处理浓度对蚯蚓CAT活性具有极显著的影响(P<0.001),而与时间、浓度与时间的交互作用对土壤中蚯蚓体组织CAT活性的影响不显著(P=0.78,>0.05)。
     (4)暴露于四种除草剂的处理条件下,蚯蚓体内的热激蛋白(HSP)有新的表达,经Western Blotting免疫印迹检测,确定27kDa为HSP27,40kDa为HSP40。相对于对照而言,随着处理时间的延长,HSP27和HSP40的表达强度先升高后降低。HSP27和HSP40对阿特拉津暴露最为敏感,然后依次为乙草胺、丁草胺和绿麦隆。蚯蚓体组织HSP27和HSP40对除草剂的表达曲线都呈现出倒U型剂量—效应特征。双因素方差分析结果表明,阿特拉津、乙草胺及丁草胺处理浓度与时间及浓度与时间的交互作用均对蚯蚓HSP27和HSP40具有极显著的影响(P<0.001);绿麦隆处理浓度、时间均对蚯蚓HSP27具有极显著的影响(P<0.001)。
     (5)对同一处理浓度而言,随着处理时间的延长,除草剂对土壤脲酶活性的影响表现是先呈升高趋势,随着作用时间的延长脲酶活性下降。除草剂对土壤脲酶活性的影响呈现出抛物线型。双因素方差分析结果表明,阿特拉津、乙草胺和丁草胺处理浓度、时间及浓度与时间的交互作用均对土壤中蚯蚓脲酶活性具有极显著的影响(P<0.001)。而绿麦隆处理浓度、时间均对土壤中蚯蚓脲酶活性具有极显著的影响(P<0.001)。
     (6)四种除草剂在土壤中的降解动力学过程符合一级动力学方程,低浓度降解曲线呈平滑下降,而高浓度快速下降;在供试浓度范围内,随着除草剂处理浓度的增加,降解半衰期缩短,且存在一定线性关系;未接种赤子爱胜蚓时,阿特拉津、绿麦隆、乙草胺和丁草胺的半衰期变化范围分别为26.4~28.3d、51.36~42.03d、11.2~6.50d和14.7~8.60d;接种蚯蚓后,阿特拉津、绿麦隆、乙草胺和丁草胺的半衰期分别为24.2~25.6d、41.24~48.56 d、5.2~10.1d和6.30~12.50d之间。方差分析表明,处理浓度与处理时间显著影响四种除草剂在土壤中的降解率。虽然接种蚯蚓能降低土壤中除草剂的半衰期,加速其降解,但蚯蚓在其中的贡献作用达不到显著水平。
Herbicides have a broad scope of application, but excessive and unreasonable use of herbicides has lead to many environmental and ecological issues. Athough the production of world's herbicide since 1980s has been mainly focused on producing those kinds of high efficiency, low toxicity, broad-spectrum and low dosage such as Atrazine, Chlorotoluron, Acetochlor, and Butachlor, the ecological effects of these four kinds of herbicides in soils have not been well understood. So far herbicides' behavior in the environment and its effect on soil ecological system need further investigation.
     On the basis of the survey of agricultural herbicide usage in Kunming,Yunnan, through the incubation of earthworm (Elsinia foetida) simulated as experimental material in field and lab pot by the regular treatment dosage of herbicides, we studied time-effect and dose-effect relationship of SOD、CAT、HSP27 and HSP 40 in the earthworms under treatment of the four herbicides, and the degradation of the herbicides in soil. In this paper, we reported the effect of the four herbicides on the activities of SOD and CAT, the expression of HSP 40, HSP27 in earthworms, and urease activity in soil, and discussed the degradation dynamics of herbicides. The goal of this work is to provide the theoretical basis for the reasonable usage and ecological safety evaluation of the four herbicides. The results and conclusions come as follows:
     (1) According to the result of herbicides'effect on the biomass of earthworm, the effect on the fresh weight of earthworm indicates that the lower concentration of herbicide exposure dose resulted in less weight loss in earthworm; With the prolongation of treatment time of the four herbicides, the less fresh weight of earthworm declined in accordance with the higher exposure concentration, but different exposure concentration of the four herbicides lead to different starting time of the decline of earthworm's fresh weight to different extents.
     (2) The SOD activity of earthworm increased and then decreased when treatment concentration was set a certain dosage, but it differed in expression time. For example, when the exposure concentration of Atrazine was lower than 126 mg/kg, the highest SOD activity appeared after 7 d treatment, and appeared after 10 d when treatment concentration was higher than 316 mg/kg. As to Chlorotoluron, there was a remarkable increase in SOD activity when the concentration was below 100mg/kg and significant decreased when it was above 158mg/kg. When the treatment concentration of Acetochlor was lower than 33mg/kg, the SOD activity was shown highest in 7 d, then it decreased. When treatment concentration was lower than 13mg/kg, the greatest SOD was induced; when it was above 83mg/kg the activity of SOD decreased dramatically. When the concentration of Butachlor was lower than 50mg/kg, the SOD activity is promoted to the highest in 7 d, then SOD activity decrease. According to two-factor analysis of variance showed that exposure concentration of Atrazine, Acetochlor and Butachlor and treatment time, relationship between concentration and time had significant effects on SOD activity in earthworm (P<0.001). while Chlorotoluron treatment time, relationship between time and concentration applied also had remarkable effects on the SOD activity in earthworm (P<0.001).
     (3) With the prolongation of Acetochlor treatment, CAT activity in earthworm ranged from 284.8U/g to 335.5U/g protein, averaged at 309.68U/g protein, while the CAT activity in earthworms increased at first and then declined. Atrazine below 126mg/kg could significantly increase the CAT activity, but it would be remarkablely inhibited when Atrazine treatment was above 316mg/kg; when Chlorotoluron was applied at the concentration less than 100mg/kg, it could significantly enhance the CAT activity; if treatment concentration was higher than 158mg/kg CAT activity was significantly restrained. Two-factor analysis of variance showed that exposure concentration of Atrazine, Acetochlor and Butachlor. and its treatment time, relationship between concentration and time had significant effects on CAT activity in earthworm (P<0.001), while Chlorotoluron treatment time, relationship between treatment time and concentration applied did not show significant effects on the CAT activity in earthworm (P=0.78,>0.05).
     (4) Being exposed with four herbicides, earthworm had new expression in heat shock protein (HSP). By Western Blotting Assay, it was been proved that the molecule with 27kDa was HSP27 and 40kDa was HSP40. Compared to the control test, with the extension of treatment time the expression level of HSP27 and HSP40 first rose and then decreased. The expression of HSP27 and HSP40 in earthworm was the most sensitive to Atrazine exposure, and then followed by Acetochlor, Butachlor and Chlorotoluron, which was consistent with the more lipophilic herbicides demonstrated greater toxicity. The expression curve of the HSP27 and HSP40 in earthworm tissues exposed to herbicide represented inverted U-shaped curves featuring dose-effect. Two-factor analysis of variance showed that exposure concentration of Atrazine, Acetochlor and Butachlor, and its treatment time, relationship between concentration and time had significant effects on the expression of HSP27 and HSP40 in earthworms (P<0.001), while Chlorotoluron treatment time, treatment concentration applied showed significant effects only on the HSP27 expression in earthworm (P<0.001).
     (5) With the extension of treated time, the effect of herbicides at the same treatment concentration on the activity of soil urease showed increase, then decreased. Herbicides'effects on the soil urease activity represented parabola-shaped curves. Two-factor analysis of variance showed that exposure concentration of Atrazine, Acetochlor and Butachlor, and its treatment time, relationship between concentration and time had significant effects on soil urease activity of earthworm (P<0.001), while only Chlorotoluron treatment time, treatment concentration applied showed significant effects on the urease activity of earthworm (P<0.001).
     (6) The kinetics of the degradation of these four herbicides showed linear kinetic equation, the degradation curve at lower treatment concentrations smoothly went down, while it revealed a rapid decline at higher concentrations. Ranged within the tested concentration, with the increasing concentrations of herbicide treatment, the half-life of degradation became shorter. When earthworm Elsinia foetida was not vaccinated into soils, the half-life of Atrazine, Chlorotoluron, Acetochlor and Butachlor differed in the range of 26.4-28.3d,51.36-42.03d,11.2-6.50d and 14.7-8.60d. After inoculation of earthworms, the half-life of Atrazine, Chlorotoluron, Acetochlor and Butachlor decreased as 24.2-25.6d,41.24-48.56 d.5.2-10.1d and 6.30-12.50d.Analysis of variance showed that treatment concentration and treatment time significantly affected the degradation rate of the four kinds of herbicides in the soil. Although the inoculation of earthworms could reduce the half-life of herbicide degradation in soil or might accelerate degradation, but the role that earthworms played in this process needed further studied.
引文
Anastas P, Eghbali N. Green Chemistry:Principles and Practice[J]. Chemical Society Reviews,2010.39:301-312
    B.施特尔马赫著,钱嘉渊译.酶的测定方法[M].中国轻工业出版社,1992:81-152
    Bhadauria S. Response of arsenic-induced oxidative stress, DNA damage, and metal imbalance to combined administration of DMSA and monoisoamyl-DMSA during chronic arsenic poisoning in rats [J]. Cell Biology and Toxicology,2007,23(2): 91-104
    Bierkens J, Maes J, Vander P F. Dose-dependent induction of heat-shock protein 70 synthesis in Raphidocelis Subcapitata following exposure to different classes of environmental pollutants [J]. Environment Pollution,1998,101:91-97
    Boatman N D, Brickle N W, Hart J D, Milsom T P, Morris A J, Murray A W A. Evidence for the indirect effects of pesticides on farmland birds[J]. IBIS,2004, 146(S2):131-143
    Burnette W N. "Weatern Blotting" electrophoretic transfer of proteins from sodium dodecy sulfate-polyacryamide gels to unmodified antibody and radio and inated protein[J]. Analytical Biochemistry,1981,112:195-203
    Cowing D W, Bardwell J C A, Craig E A, Woolford C, Hendrix R W, Gross C A. Consensus sequence for Eschcrichia coli heat shock gene promoters[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985,82(9):2679-2683
    Ellen L A, Brenda S, Perkovich, T A, Anderson J R. Degradation of an atrazine and metolachlor herbicide mixture in pesticide-contaminated soils from two agrochemical dealerships in IOWA[J]. Water Air & Soil Pollution,2000,119:75-90
    Frapmton G, Jansch S, Scott-Fordsmand J J. Effects of pesticides on soil invertebrates in laboratory studies:a review and analysis using species sensitivity distributions [J]. Environmental Toxicology and Chemistry,2006,25(9):2480-2489
    Gonzalez P, Baudrimont M, Boudou A, Bourdineaud J P. Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio) [J]. Biometals,2006,19(3):225-235
    Gregoire C, Elsaesser D, Huguenot D, Lange J, Lebeau T, Merli A, Mose R, Passeport E, Payraudeau S, Schuetz T. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems[J]. Environmental Chemistry Letters, 2009,2:293-338
    Gupta S K, Saxena P N. Carbaryl-induced behavioural and reproductive abnormalities in the earthworm Metaphire posthuma:a sensitive model[J]. Alternatives to Laboratory Animals,2003,31(6):587-593
    Helling B, Reinecke S A, Reinecke A J. Effects of the fungicide copper oxychloride on the growth and reproduction of Eisenia fetida (Oligochaeta) [J]. Ecotoxicology and Environmental Safety,2000,46(1):108-116
    Hendriksen N B. Leaf litter selection by detritivore and geophagous earthworm[J]. Biology and Fertility of Soils,1990,10:17-21
    Hiramisu M, Edanasur Moria. Free radicals, lipid peroxidation, SOD activity, neurofransmiffers and choline acetyl transferase activity in the aged rat brain[J]. EXS,1992,62:213-218.
    Homa J, Olchawa E, Sturzenbaum S R, Morgan A J, Plytycz B. Early-phase immunodetection of metallothionein and heat shock proteins in extruded earthworm coelomo-ctytes after dermal exposure to metal ions[J]. Environmental Pollution, 2005,135(2):275-280
    Ireland M P. Heavy metals uptake in earthworms; earthworm ecology[M]. Chapman & Hall, London,1983:145-156
    J.姆布鲁克,D.W拉塞尔著,黄培堂等译,分子克隆实验指南(第三版),科学出版社,2002:15-43
    Jin F, Wang J, Shao H, Jin M J. Pesticide use and residue control in China[J]. Journal of Pesticide Science,2010,35(2):138-142
    Kalam A, Tah J, Mukherjee A K. Pesticide effects on microbial population and soil enzyme activities during vermicomposting of agricultural waste[J]. Journal of Environmental Biology,2004,25(2):201-208
    Katharine C. Parsons, Pierre Mineau. Rosalind B. Effects of Pesticide use in Rice Fields on Birds[J]. Waterbirds,2010,33:193-218
    Kohler H-R, Eckwert E. The induction of stress protein(hsp) in Oniscus asellus as a molecular marker of multiple heavey-meatal exposure Ⅱ:Joint toxicity and transfer to field situations. Ecotoxicology,1997,6:263-274.
    Lichtfouse E, Navarrete M, Debaeke P, Souchere V, Alberola C, J Menassieu. Agronomy for sustainable agriculture. A review[J]. Agronomy for Sustainable Development,2009,29:1-6
    Luepmmcbai E, Singer A C, Yang C H. Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria[J]. FEMS Microbiology Ecology,2002, 41(3):191-197
    Mandelbaum R T, Allan D L, Wackell L P. Isolation and characterization of a Peseudomonas sp. That mineralizes the striazine herbicide astrazine[J]. Applied and Environmental Microbiology,1995,61:1451-1457
    Mandelbaum R T, Wackett L P, Allan D L. Rapid hydrolysis of atrazine to hydroxy-atrazine by soil bacteria[J]. Envionment Science & Technolgy,1993, 27:1943-1946
    McNaughton S J; Zuniga G; McNaughton M M, Banyikwa F F. Ecosystem Catalysis:Soil Urease Activity and Grazing in the Serengeti Ecosystem [J]. Oikos, 1997,80 (3):467-469
    Miler J L, Wollum A G, Weber J B. Degradation of Capon-14-atrazine and Carbon-14-Metolachlor in Soil from Four Depth[J]. Journal of Environmental Quality,1997, 26(3):633-638
    Miller G T. Sustaining the Earth, Thompson Learning, Inc. Pacific Grove, California. 2004,Chapter9:211-216
    Mills N E, Semlitsch R D. Competition and predation mediate the indirect effects of an insecticide on southern leopard frogs[J]. Ecological Applications,2004, 14(4):1041-1054
    Mineau P. Direct losses of birds to pesticides:beginnings of a quantification[J]. USDA Forest Service General Technical Report,2005,1065-1070
    Mishra P C, Dash M C. Digestive enzymes of some earthworms[J]. Cellular and Molecular Life Sciences,1980,36:1156-1157
    Nadeau D, Comeau S, Plante I, Morrow G, Tanguay R M. Evaluation for Hsp70 as a biomarker of effect of pollutants on the earthworm Lumbricus terrestris[J]. Cell Stress & Chaperones,2001,1(2):153-163
    Nemeth-Konda C L, Fuleky G y, Morovjan G y, Csokan P. Sorption behaviour of acetochlor, atrazine, carbendazin, diazinon imidacloprid and isoproturon on Hungarian agricultural soil[J]. Chemosphere,2002,48:545-552
    Omar S A, Abdel-Sater M A. Microbial populations and enzyme activities in Soil Treated with Pesticides[J]. Water Air & Soil Pollution,2001,127(1-4):49-63
    Phillips T M, Dickson L, Seech A G. Bioremediation in field box plots of a soil contaminated with wood-preservatives:a comparison of treatment conditions using toxicity testing as a monitoring technique[J]. Water, Air & Soil pollution,2000, 121:173-187
    Reinecke S A, Helling B, Reinecke A J. Lysosomal response of earthworm (Eisenia fetida) coelomocytes to the fungicide copper oxychloride and relation to life-cycle parameter [J]. Environmental Toxicology and Chemistry,2002,21,1026-1031
    Reynolds J D. International pesticide trade:Is there any hope for the effective regulation of controlled substances? Florida State University Journal of Land Use & Environmental Law,1997:5-15
    Ribeiro S, Sousa J P, Nogueira A J A. Effect of endosulfan and parathion on energy reserves and physiological parameters of the terrestrial isopod Porcellio dilatatus[J]. Ecotoxicology and Environmental Safety,2001,49:131-138
    Robert L. Kellogg, Richard F. Nehring, Arthur Grube, Donald W. Goss and Steven Plotkin, Environmental indicators of pesticide leaching and runoff from farm fields [J]. United States Department of Agriculture Natural Resources Conservation Service, 2000,2:213-256
    Roberts M H, Sved D W, and Felton S P. Temporal Changes in AHH and SOD Activities in Feral Spot Fron the Elizabeth River, a Polluted Sub-estuary[J]. Marine environmental research,1991,23:89-101
    Schickler H, Caspi H. Response of antioxidant enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum[J]. Plant Physiology,1999. 105:887-898
    Schickler H, Caspi H. Response of antioxidant enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum[J], Plant Physiology, 1999,105:887-898
    Sinha R K, Herat S, Agarwal S, Asadi R, Carretero E. Vermiculture and waste management:study of action of earthworm Elsinia foetida, Eudrilus euginae and Perionyx excavatus on biodegradation of some community wastes in India and Australia[J]. The Environmentalist,2002,22:261-268
    Soldalov A, Gostyukhina O, Golovina I. Antioxidant enzyme complex of tissues of the bivalve Mytilus galloprovincialis Lam. under normal and oxidative-stress conditions:A review[J]. Applied Biochemistry and Microbiology,2007, 43(5):556-562
    Stamper D M, Tuovinen O H. Biodegradation of the acetanilide herbicides alachlor, metolachlor and propachlor [J]. Critical Reviews in Microbiology, 1998.24(1):1-22
    Stebbing A R D, Hormesis the Stimulation of Growth by Low Levles of Inhibition[J]. Science of the Total Environment,1982,22(1):213-234
    Stork P R. Field leaching and degradation of Atrazine in a Gradationally Textured Alkaline Soil [J]. Australian Journal of Agricultural Research,1997,48(3):371-376
    Vale G. A, Grant I F, Dewhurst C F, Aigreau D. Biological and chemical assays of pyrethroids in cattle dung[J]. Bulletin of Entomological Research,2004, 94(3):273-282
    Van der Oost R, Beyer J, Vermeulen N P E. Fish Bioaccumulation and Biomarker in Environmental Risk Assessment a Review[J]. Environmental Toxicology and Pharmacology,2003,13:57-149
    Wang Y, Xiong L, Yang K J. Effect of beta-cypennetlu-in or GPT GOT activities of crucian serum[J]. Agricultural Science and Technology (Scientific Paper),2005, 13(3):20-23
    White P M, Wolf D C, Thoma G J, Reynolds C M. Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil[J]. Water Air & Soil Pollution,2006,169:207-220
    Wu L H, Luo Y M, Lu X H. Organo-control for the phytoremediation of Copper polluted soil Ⅱ.Organo- mobility of copperin rhizosphere soil[J]. Soils,2000, 32(20):67-70.
    Yasmin S, D'Souza D. Effects of Pesticides on the Growth and Reproduction of Earthworm:A Review [J]. Applied and Environmental Soil Science,2010:1-9
    Yassir A, Lagacherie B, Houots H. Microbial aspects of atrazine biodegradation in relation to history of soil treatment[J]. Pesticide Science,1999,55:799-809.
    Yu Y, Zhou Q X. Adsorption characteristics of pesticides methamidophos and glyphosate by two soils[J]. Chemosphere,2005,58:811-816
    卜春红,高大文.蚯蚓回避反应在生态毒理研究中的应用进展[J].农业环境科学学报,2006,25:799-804
    陈愚,任久长,蔡晓明.镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响[J].环境科学学报,1998,18(3):313-317
    陈玉成.土壤污染的生物修复[J].环境科学动态,1999,2:7-11
    戴家银,王建设.生态毒理基因组学和生态毒理蛋白质组学研究进展[J].生态学报,2006,26(3):930-934
    段昌群,王焕校,姜汉侨.污染条件下生物多样性丧失的生态遗传学机制[J].生态科学进展(第一卷),2005,267-290
    傅丽君,赵士熙,王海,等.四种农药对土壤微生物呼吸及过氧化氢酶活性的影响[J].福建农林大学学报(自然科学版),2005,34(4):441-445.
    高敏苓,戴树桂,张平等.绿麦隆、阿特拉津单一与复合污染对蚯蚓的毒性效应研究[J].生态环境,2006,15(3):525-528
    高岩,骆永明.蚯蚓对土壤污染的指示作用及其强化修复的潜力[J].土壤学报,2005,42(1):140-148
    耿宝荣,姚丹,薛清清.除草剂敌敌畏和除草剂丁草胺对斑腿树蛙蝌蚪的遗传毒性[J].动物学报,2005,51(3):447-454
    管仪庆,张丹蓉.土壤中阿特拉津降解实验研究[J].河海大学学报(自然科学版).2005,33(4):357-360
    郭华,杨红.乙草胺及其它酞胺类除草剂在环境中的降解与迁移[J].农药,2006.45(2):87-91
    郭明,闫志顺,段金荣,等.土壤农药残留的化学修复探索[J].农业环境科学学报,2003,22(3):368-370
    郭彦威,王立新,林瑞华.污染土壤的植物修复技术研究进展[J].安全与环境工程,2007,,14(3):25-28
    何光好.我国农药污染的现状与对策[J].现代农业科技,2005,6:57-58
    和文祥,蒋新,余贵芬.杀虫双对土壤脲酶活性特征的影响[J].土壤学报,2003,40(5):750-755
    和文祥,朱铭茂,童江云,等.有机肥对土壤脲酶活性特征的影响[J].西北农业大学学报,1997,6(2):73-75.
    胡庚东,陈家长,吴伟,等.除草剂丁草胺对黄鳝的遗传毒性[J].湛江海洋大学学报,2005,25(1):43-46
    胡继业,吴宪,张文吉,等.2—烯丙基苯酚的土壤微生物生态效应[J].环境化学,2005,24(3):284-287
    胡玲,林玉锁.呋哺丹对赤子爱胜蚓体内蛋白含量、SOD和TChE活性的影响[J].安徽农业科学,2006,34(13):3165-3167
    胡笑行.我国农药工业的现状与发展方向[J].农药,1998,37(6):7-10.
    黄福珍,张与真,杨夫瑞.蚯蚓改土及综合利用[M],重庆:重庆出版社,1984
    金亚波,韦建玉,屈冉.蚯蚓与微生物、土壤重金属及植物的关系[J].土壤通报,2009,40(2):439-445
    孔繁翔.环境生物学[M].北京:高等教育出版社,2002
    李华,陈英旭,梁新强,等.土壤脲酶活性对稻田田面水氮素转化的影响[J].水土保持学报,2006,20(1):55-58
    李培军,熊先哲,杨桂芬,等.动物生物标记物在土壤污染生态学研究中的应用[J].应用生态学报,2003,14(12):2347-2350
    李颖等.聚乙烯醇固定化的微球菌AD3对除草剂阿特拉津的生物降解[J].离子交换与吸附,2006,22(5):416-422
    梁继东,周启星.甲胺磷、乙草胺和铜单一与复合污染对蚯蚓的毒性效应研究[J]. 应用生态学报,2003,14(4):593-596
    梁继东,周启星.甲胺磷和铜对黑土中乙草胺的蚯蚓生态解毒过程的影响[J].应用生态学报,2006,17(10):1958-1962
    梁继东,周启星.乙草胺、Cu污染共存对土壤甲胺磷蚯蚓降解过程的影响研究[J].环境科学学报,2006,26(2):306-311
    刘嫦娥,段昌群,刘飞,等.赤子爱胜蚓对土壤中阿特拉津残留和消解动态的影响研究[J].现代农药,2008,,7(4):40-44
    刘慧君,赵媛,胡玲玲,等.农药生态毒理学的研究和应用[J].植物保护,2009,35(1):22-26
    罗屿,臧宇,钟远,等.新型杀虫剂对蚯蚓的生化毒理学研究[J].南京大学学报(自然科学版),2000,36(2):213-218
    孟紫强,张波.二氧化硫吸入对大鼠脑组织细胞的氧化损伤作用[J].中国环境科学,2001,21(5):464-467
    孟紫强.环境毒理学[M].北京:中国环境科学出版社,2000:12-56
    米长虹,黄士忠,王继军,等.农药对农田土壤的污染及防治技术[J].农业环境与发展,2000,1(24):23-25
    宁春燕,赵建夫.农药污染土壤的生物修复技术介绍[J].农业环境保护,2001,20(6):473-474
    农业部农药检定所主编,新编农药手册(续集).北京:中国农业出版社,1998
    钱博.毒死蜱高效降解细菌的筛选及其降解特性研究[D].山东农业大学硕士学位论文,2007
    乔玉辉,曹志平,吴文良.华北高产农田生态系统中蚯蚓种群次生演替规律[J].生态学报,2004,24(10):2307-2311
    邱江平.蚯蚓及其在环境保护上的应用Ⅱ.蚯蚓生态毒理学[J].上海农学院学报,1999,17(4):301-308
    邱江平.蚯蚓与环境保护[J].贵州科学,2000,18(1-2):116-133
    沈盎绿,沈新强.柴油对斑马鱼超氧化物歧化酶和过氧化氢酶的影响[J].海洋渔业,2005,27(4):314-318
    沈骅,王晓蓉,张景飞.应用应激蛋白HSP70作为生物标记物生物标记物研究 锌、铜及其联合毒性对鲫鱼肝脏的影响[J1.环境科学学报,2004,24(5):895-899
    宋玉芳,宋雪英,张薇,等.污染土壤生物修复中存在问题的探讨[J].环境科学,2004,25(2):129-133
    孙翰昌,丁诗华,陈大庆,等.Cu2+对中华倒刺鲃抗氧化功能的毒理效应[J].农业环境科学学报,2006,25(1):69-72
    孙铁珩,区自清,李培军.城市污水土地处理系统研究[M].北京:科学出版社,1997
    孙学成,谭启玲,胡承孝,等.低温胁迫下钼对冬小麦抗氧化酶活性的影响[J].中国农业科学,2006,39(5):952-951
    田芹,周志强,江树人.丁草胺在环境中降解行为的研究进展[J].农药,2004,43(5):205-208
    万年升,顾继东,段舜山.阿特拉津生态毒性与生物降解的研究[J].环境科学学报,2006,26(4):552-560
    汪小勇,张超兰,姜文.被农药污染的土壤植物修复研究进展[J].中国农学通报,2005,21(7):382-384
    王聪颖,和文祥,何敏超,等.酶在土壤农药污染修复中的研究进展[J].农业环境科学学报,2005,24:371-374
    王海黎,陶澍.生物标记物生物标记物在水环境研究中的应用[J].中国环境科学,1999,19(5):421-426.
    王涵,王果,林清强,等Cu, Cd、Pb、Zn对酸性耕作土壤3种酶活性的影响[J].农业环境科学学报,2009,28(7):1427-1433
    王焕校主编.污染生态学[M].高等教育出版社,施普林格出版社,2000:20-146
    王金花,朱鲁生,孙瑞莲,等.阿特拉津对两种不同施肥条件土壤脲酶的影响[J].农业环境科学学报,2004,23(1):162-164.
    王晓蓉,罗义,施华宏,等.分子生物标记物生物标记物在污染环境早期诊断和生态风险评价中的应用[J].环境化学,2006,25(3):320-325
    王振中,张友梅,李忠武,等.机磷农药对土壤动物毒性的影响研究[J].应用生态学报,2002,13(12):1663-1666
    夏世钧,吴中亮.分子毒理学基础理论[M].武汉:湖北科学技术出版社,2001
    肖能文,刘向辉,李薇,等.用蚯蚓溶酶体作为检测土壤污染的生物标记物[J].应用生态学报,2006,17(3):516-519
    熊治廷,2000,环境生物学[M].武汉:湖北科学技术出版社。
    徐建,张平,穆洪,等.两种除草剂复合污染对蚯蚓的毒性效应[J].农业环境科学学报,2006,25(5):1188-1192
    徐镜波,田尚衣,崔秀君.2,6-二硝基甲苯对鲤鱼的毒性[J].东北师大学报(自然科学版),1998,(4):81-84.
    闫雷,李晓亮,秦智伟,等.农药对土壤酶活性影响的研究进展[J].农机化研究,2009,11:223-226
    杨春璐,孙铁珩,和文祥,等.农药对土壤脲酶活性的影响[J].应用生态学报,2006,17(7):1354-1356
    杨志清.农药污染对农业劳动者健康的危害[J].中国农学通报,2006,22(1):331-334
    姚斌,徐建民,张超兰.除草剂丁草胺的环境行为综述[J].生态环境,2003,12(1):66-70.
    姚建仁,郑永权,董丰收.浅谈农药残留、中毒与控制策略[J].植物保护,2001,27(3):31-35.
    叶常明,雷志芳,王杏君.丁草胺在土壤中的吸附及环境物质的影响[J].环境化学,2003,22(1):14-18
    叶常明,王杏君;弓爱君,等.阿特拉津在土壤中的生物降解研究[J].环境化学,2000,19(4):300-305
    依艳丽,栗杰,张大庚,等.磁场对棕壤脲酶活性的影响[J].土壤通报,2005,36(4):588-590
    尹文英.土壤动物学研究的回顾与展望[J].生物学通报,2001,36(8):1-3
    张宝贵,李贵桐,申天寿.威廉环毛蚯蚓堆土壤微生物量及活性的影响[J].生态学报,2000,20(1):168-172
    张红霞,潘鲁青,刘静.重金属离子对日本蟳血淋巴抗氧化酶(SOD, CAT, GPx)活力的影响[J].中国海洋大学学报(自然科学版),2006,36(增刊):49-53
    张惠文,周启星,张倩茹,等.乙草胺、甲胺磷及组合对农田黑土细菌种群生长及 多样性的毒性效应[J].环境科学,2004,25(4):143-148
    张薇,宋玉芳,孙铁珩,等.菲和芘对蚯蚓(Eisenia fetida)细胞色素P450和抗氧化酶系的影响[J].环境化学,2007,26(2):202-206
    张一宾.2007年世界农药市场概述[J].农药,2009,48(1):1-6
    张于光,李迪强,王慧敏,等.用于分子生态学研究的土壤微生物DNA提取方法[J].应用生态学报,2005,16(5):956-960
    郑和辉,叶常明.环境样品中乙草胺和丁草胺的残留分析[J].中国环境科学,2001,21(3):217-220
    郑和辉,叶常明.乙草胺和丁草胺在土壤中的移动性[J].环境科学,2001,22(5):117-121
    郑丽萍,冯艳红,赵欣,等.氯丹和灭蚁灵污染场地土壤对蚯蚓的毒性效应研究[J].农业环境科学学报,2010,29(10):1924-1929
    周启星,程云,张倩茹,等.复合污染生态毒理效应的的定量关系分析[J].中国科学,2004,33(6):566-573
    周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004
    周启星,孙福红,郭观林,等.乙草胺对东北黑土铅形态及生物有效性的影响[J].应用生态学报,2004,15(10):1883-1886
    周启星,王美娥.土壤生态毒理学研究进展与展望[J].生态毒理学报,2006,1(1):1-11
    周启星.健康土壤学·土壤健康质量与农产品安全[M].北京:科学出版社,2005
    周世萍,于泽芬,段昌群,等.蚯蚓分子标记物在环境监测中的应用研究进展[J].环境科学导刊,2008,27(1):85-88
    朱九生,乔雄梧,王静,等.乙草胺在土壤环境中的降解及其影响因子的研究[J].农业环境科学学报,2004,23(5):1025-1029
    朱荫湄,周启星.土壤污染与我国农业环境保护的现状、理论和展望[J].土壤通报,1999,30(3):132-135
    左海根,林玉锁,龚瑞忠.农药污染对蚯蚓毒性毒理研究进展[J].农村生态环境,2004,20(4):1-5
    左海根,林玉锁,龚瑞忠.土壤中呋哺丹杀虫双p'p-DDT对蚯蚓的单一及复合毒 性的研究[J].农业环境科学学报,2005,24(5):861-864

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700