降解毒死蜱的副球菌TRP菌株基因组测序、cpd基因的克隆及功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
筛选分离毒死蜱(chlorpyrifos,CP)降解微生物解决毒死蜱农药残留给水体和土壤环境带来的污染问题是一个可行的生物修复技术,对于研究农药残留的生物降解具有重要意义。副球菌(Paracoccus sp.)TRP是一株对毒死蜱具有很强降解能力的菌株。本论文以其为研究对象,研究了菌株的基本特性,经多种基因克隆方法相结合获得一个新的毒死蜱降解酶基因,并研究了毒死蜱降解酶结构与功能的关系,研究内容如下:
     对本实验室筛选的TRP菌株进行复壮,菌株在第2天到第4天对CP的降解最快,到第7天对50mg/L CP的降解率可达83.3%。菌株对5~100μg/mL Amp具有抗性;对5~100μg/mL Tc及Gm不具有抗性。菌株不能够产生糖脂类阴离子生物表面活性剂。菌株组成型表达毒死蜱降解酶。
     采用Solexa测序技术测定了副球菌TRP的基因组序列(GenBank登录号AEPN00000000)。基因组大小约为3.9Mb,GC含量62.89%。预测所得CDS数为3961个。共得到155个代谢图,其中25个与异源物质代谢有关,包括除草剂阿特拉津代谢图和脱氮代谢图。在基因组序列上找到96个串联重复区域,200个转座子,147个IS,45个tRNA和5套rRNA。副球菌TRP与Paracoccusdenitrificans Pd1222在进化上关系较近,大部分基因的同源性较高。在副球菌TRP菌株中鉴定了与P. denitrificans Pd1222中类似的脱氮作用所需的所有四个氧化还原酶类基因。TRP菌株基因组的分析有助于鉴定多种不同的降解基因,进一步阐明微生物降解毒死蜱代谢途径。这是迄今为止关于毒死蜱降解副球菌菌株的基因组测序的首次报道。
     从副球菌TRP中克隆得到了毒死蜱降解基因cpd,基因全长927bp,GC含量60.73%。cpd基因与目前已发表的有机磷降解酶基因的同源性较低,是一个新的有机磷降解酶基因。CPD蛋白由308个氨基酸残基构成,分子量为33.8kDa。带电量为-7.0。等电点为4.8305。CPD蛋白是酯酶_脂酶超家族的成员之一,不仅具有Ser155-Asp251-His281催化三联体和模序GDSAG,还具有酯酶保守的底物结合口袋ILYIHGGGWSFCSA。在E.coli BL21(DE3)中表达的CPD融合蛋白大小约为53.9KDa,具有酯酶活性。CPD蛋白在行使酯酶功能时,不需要金属离子;1mmol/L PMSF、1mmol/L DEPC和0.025%SDS显著抑制其酯酶活力,0.025%Tween-20显著增强其酯酶活力;CPD蛋白行使酯酶功能时需要Ser和His。在15min内CPD酶液对50mg/L CP的降解率为63.5%±2.14。酶活力为59.62U/mg。将四环素Tc盒插入TRP菌株cpd基因中成功构建cpd基因敲除的TRP△cpd菌株。5天内,菌株TRP△cpd和TRP对50mg/L CP的降解率分别为27.3%和78.5%。TRP△cpd菌株对CP的降解率显著降低,说明cpd基因在菌株TRP对毒死蜱的降解中起到主要作用。
     CPD蛋白的三级结构是由α螺旋、β折叠及无规卷曲高度折叠形成的紧密的球状结构。活性位点Ser155,Asp251和His281均位于β折叠链和α螺旋之间柔韧性较强的loop区域。CPD与CP分子对接表明: Ser155的侧链羟基O原子与CP结构中P原子的空间距离较近,易于发生亲核攻击,将CP降解为TCP和DETP。通过PCR技术将Ser155突变为Ala(S155A)。15min内,CPD-S155A酶液对50mg/L CP的降解率为5.15%±1.03,酶活力为7.85U/mg。Ser155突变为Ala后,CPD蛋白对CP的降解率下降10余倍,说明Ser155在CPD对CP的降解中起到关键作用。
A feasible way to remediate chlorpyrifos (CP) contaminated water and soil environments is toscreen chlorpyrifos degrading microorganisms because of its important significance in thebiodegradation of pesticide residues. Paracoccus sp. TRP is a strain capable of efficiently degradingchlorpyrifos. Paracoccus sp. TRP was selected as the research object in this study. The basiccharacteristics of the strain, the cloning of a new chlorpyrifos degrading gene, and the relationshipsbetween the structure and function of the chlorpyrifos degrading enzyme were investigated in this study.The contents are as follows:
     Strain TRP isolated in our lab was renovated.The strain can rapidly degrade chlorpyrifos from the2ndday to the4thday, and the degradation rate of50mg/L CP reached to83.3%at the7thday. The strainis resistant to5~100μg/mL Amp and not resistant to5~100μg/mL Tc and Gm. The strain can't producesugar lipid biosurfactants.The chlorpyrifos degrading enzyme of the strain TRP was constitutive.
     Solexa sequencing technology was used to determine the genome sequence of Paracoccus sp. TRP(GenBank accession number AEPN00000000). Genome size is about3.9Mb with GC content of62.89%. The number of predicted CDS is3961.155metabolic maps were produced, of which25xenobiotic related metabolic maps were found, including metabolic maps for herbicide atrazine anddenitrification.96tandem repeats,200transposons,147IS,45tRNA and5sets of rRNA were alsofound in the genome sequence. Paracoccus sp. TRP and Paracoccus denitrificans Pd1222are closelyrelated in evolutionary distance. Most of the genes are highly homologous. All the four genes of redoxenzymes for denitrification similar to those of P. denitrificans Pd1222were identified in Paracoccus sp.TRP. The analysis of the genome of strain TRP can help us identify more different degrading genes andfurther clarify microbial degradation pathways for chlorpyrifos. This is so far the first report about thegenome sequencing of Paracoccus sp. capable of biodegrading chlorpyrifos.
     Chlorpyrifos degrading gene cpd was cloned from Paracoccus sp.TRP. Gene size is927bp withGC content of60.73%. The homology between cpd gene and other organophosphorus degrading genesalready published is low, indicating that it is a new organophosphorus degrading gene. CPD proteinconsists of308amino acid residues. Molecular weight is33.8kDa. Charge is-7.0. Isoelectric point is4.8305. CPD protein, a member of the esterase_lipase superfamily, not only has Ser155-Asp251-His281catalytic triad and motif GDSAG but also has the conserved substrate pocket ILYIHGGGWSFCSA.Thesize of CPD fusion protein expressed in the E.coli BL21(DE3) is about53.9KDa.CPD protein hasesterase activity. CPD protein esterase activity needs no metal ions. CPD protein esterase activity wassignificantly inhibited by1mmol/L PMSF,1mmol/L DEPC and0.025%SDS. CPD protein esteraseactivity was significantly enhanced by0.025%Tween-20. CPD esterase activity needs His and Ser.Within15min, the degradation rate of50mg/L CP by CPD enzyme is63.5%±2.14. The enzymeactivity is59.62U/mg. Strain TRP△cpd, in which cpd gene was knocked out, was successfullyconstructed by inserting tetracycline box into the cpd gene of strain TRP. Within5days, the degradationrate of50mg/L CP by strain TRP△cpd and strain TRP were27.3%and78.5%, respectively.The degradation rate of CP by strain TRP△cpd significantly reduced, indicating that cpd gene plays animportant role in chlorpyrifos degradation of strain TRP.
     The3D structure of CPD protein is a tightly folded globular structure consisting of the alphahelixes, beta strands and coils. The active site Ser155, Asp251and His281in catalytic triad located atthe flexible loops between β strand and α helix. Molecular docking between CPD and CP showed thatspace distance between O atom from hydroxyl group of active site Ser155and P atom from CP is near,which facilitates to produce nucleophilic attack to degrade CP to form TCP and DETP. The mutation ofactive site Ser155to Ala was performed by PCR mediated site-directed mutagenesis technology, namelyS155A. Within15min, the degradation rate of50mg/L CP by CPD-S155A enzyme is5.15%±1.03,enzyme activity is7.85U/mg. Ser155mutation for Ala of the CPD protein reduced the degradation rateof CP by more than10times, indicating that Ser155plays a key role in the degradation of CP by CPDenzyme.
引文
1.陈茹玉.有机磷农药化学[M].上海:上海科学技术出版社,1995.
    2.陈亚丽,张先恩,刘虹,王银善,夏祥明.甲基对硫磷降解菌假单胞菌WBC-3的筛选及其降解性能的研究[J].微生物学报,2002,42(4):490-497.
    3.初晓宇.有机磷降解酶OPHC2在毕赤酵母中高效表达及酶活性功能与结构关系的研究[D].北京:中国农业科学院研究生院,2007.
    4.楚晓娜,张先恩,陈亚丽,刘虹,宋冬林.假单胞菌WBC-3甲基对硫磷水解酶性质的初步研究[J].微生物学报,2003,43(4):453-459.
    5.邓敏捷,伍宁丰,梁果义,初晓宇,姚斌,范云六.一种新的有机磷降解酶基因ophc2的克隆与表达[J].科学通报,2004,49(11):1068-1072.
    6.高燕.毒死蜱高效降解酶的纯化及其基因的克隆与表达[D].广州:华南农业大学,2008.
    7.刘新,尤民生,廖金英,魏英智.土壤中毒死蜱和微生物相互作用的研究[J].应用生态学报,2004,15(7):1174-1176.
    8.刘新,尤民生,魏英智,廖金英,叶绿绿,陈金.降解毒死蜱曲霉Y的分离和降解效能测定[J].应用与环境生物学报,2003,9(1):78-80.
    9.史延华.毒死蜱降解菌的分离、鉴定及其降解特性[D].北京:中国农业科学院研究生院,2011.
    10.史延华,曲杰,李康,王圣惠,闫艳春. CP1菌株的分离、筛选及其对毒死蜱的降解[J].微生物学通报,2011,(9):1331-1338.
    11.孙中涛,闫艳春,姚良同,田林茂. R-工程菌表达产物酯酶B1的纯化及其特性[J].安全与环境学报,2003,3(6):31-35.
    12.闫艳春,姚良同,宋晓妍,贾乐,周波,李风华.工程菌及其固定化细胞对有机磷农药的降解[J].中国环境科学,2001,21(5):412-416.
    13.杨瑞馥.高通量测序技术及其在微生物学研究中的应用[J].2010年第三届全国微生物基因组学学术研讨会论文摘要集,2010.
    14.杨丽,赵宇华,张炳欣,张昕.一株毒死蜱降解细菌的分离鉴定及其在土壤修复中的应用[J].微生物学报,2005,45(6):905-909.
    15.燕永亮.斯氏假单胞菌(Pseudomonas stutzeri)A1501的基因组学研究[D].北京:中国农业大学,2005.
    16.王圣惠.毒死蜱降解菌Klebsiella sp. CPK魔斑合成酶基因的鉴定及功能分析[D].北京:中国农业科学院研究生院,2011.
    17.王金花,朱鲁生,王军,秦坤.3株真菌对毒死蜱的降解特性[J].应用与环境生物学报,2005,11(2):211-214.
    18.王智.磷代谢关键基因的克隆及高效聚磷工程菌构建的研究[D].北京:中国农业科学院研究生院,2008.
    19.王翠翠.多粘类芽孢杆菌SC2的全基因组测序[D].山东泰安:山东农业大学,2011.
    20.王晓,楚小强,虞云龙,方华,陈洁,宋凤鸣.毒死蜱降解菌株Bacillus latersprorus DSP的降解特性及其功能定位[J].土壤学报,2006,43(4):648-654.
    21.薛庆节,闫艳春,姜红霞,刘萍萍,解秀萍,张洁.工程菌酯酶B1的纯化及性质研究[J].生物技术通报,2005,(1):39-43.
    22.伍宁丰,邓敏捷,史秀云,梁果义,姚斌,范云六.一种新的有机磷降解酶的分离纯化及酶学性质研究[J].科学通报,2003,48(23):2446-2450.
    23.吴祥为,花日茂,操海群,汤锋,李学德,岳永德.毒死蜱降解菌的分离鉴定与降解效能测定[J].环境科学学报,2006,26(9):1433-1439.
    24.徐刚明.有机磷农药残留高效降解微生物的筛选、鉴定及降解机理研究[D].山东.泰安:山东农业大学,2007.
    25.许玮.拟除虫菊酯类农药降解基因estA的表达、纯化及活性分析[D].北京:中国农业科学院研究生院,2011.
    26.谢慧,朱鲁生,王军,王秀国,刘伟,钱博,王倩.真菌WZ-I对有机磷杀虫剂毒死蜱的酶促降解[J].环境科学,2005,26(6):164-168.
    27.赵国屏.中国微生物基因组研究:回顾与展望[J].2010年第四届全国微生物遗传学学术研讨会论文摘要集,2010.
    28. Aiken B.S., Logan B.E. Degradation of pentachlorophenol by the white rot fungusPhanerochaete chrysosporium grown in ammonium lignosulphonate media[J]. Biodegradation,1996,7(3):175-182.
    29. Armenante P.M., Pal N., Lewandowski G. Role of mycelium and extracellular protein in thebiodegradation of2,4,6-trichlorophenol by Phanerochaete chrysosporium[J]. Appl EnvironMicrobiol,1994,60(6):1711-1718.
    30. Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL workspace: a web-basedenvironment for protein structure homology modelling[J]. Bioinformatics,2006,22(2):195-201.
    31. Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. Shortprotocols in molecular biology[M].5th. New York: John Wiley and Sons Inc.,2002.
    32. Baker S.C., Ferguson S.J., Ludwig B., Page M.D., Richter O.M., van Spanning R.J. Moleculargenetics of the genus Paracoccus: metabolically versatile bacteria with bioenergeticflexibility[J]. Microbiol Mol Biol Rev,1998,62(4):1046-1078.
    33. Bao Q., Tian Y., Li W., Xu Z., Xuan Z., Hu S., Dong W., Yang J., Chen Y., Xue Y., Xu Y., LaiX., Huang L., Dong X., Ma Y., Ling L., Tan H., Chen R., Wang J., Yu J.,Yang H. A completesequence of the T. tengcongensis genome[J]. Genome Res,2002,12(5):689-700.
    34. Benkert P., Biasini M., Schwede T. Toward the estimation of the absolute quality of individualprotein structure models[J]. Bioinformatics,2011,27(3):343-350.
    35. Bentley S.D., Chater K.F., Cerdeno-Tarraga A.M., Challis G.L., Thomson N.R., James K.D.,Harris D.E., Quail M.A., Kieser H., Harper D., Bateman A., Brown S., Chandra G., Chen C.W.,108Collins M., Cronin A., Fraser A., Goble A., Hidalgo J., Hornsby T., Howarth S., Huang C.H.,Kieser T., Larke L., Murphy L., Oliver K., O'Neil S., Rabbinowitsch E., Rajandream M.A.,Rutherford K., Rutter S., Seeger K., Saunders D., Sharp S., Squares R., Squares S., Taylor K.,Warren T., Wietzorrek A., Woodward J., Barrell B.G., Parkhill J.,Hopwood D.A. Completegenome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J]. Nature,2002,417(6885):141-147.
    36. Benning M.M., Kuo J.M., Raushel F.M., Holden H.M. Three-dimensional structure ofphosphotriesterase: an enzyme capable of detoxifying organophosphate nerve agents[J].Biochemistry,1994,33(50):15001-15007.
    37. Benning M.M., Kuo J.M., Raushel F.M., Holden H.M. Three-dimensional structure of thebinuclear metal center of phosphotriesterase[J]. Biochemistry,1995,34(25):7973-7978.
    38. Benning M.M., Shim H., Raushel F.M., Holden H.M. High resolution X-ray structures ofdifferent metal-substituted forms of phosphotriesterase from Pseudomonas diminuta[J].Biochemistry,2001,40(9):2712-2722.
    39. Blattner F.R., Plunkett G.,3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J.,Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A.,Rose D.J., Mau B.,Shao Y. The complete genome sequence of Escherichia coli K-12[J].Science,1997,277(5331):1453-1462.
    40. Brown K.A. Phosphotriesterases of Flavobacterium sp.[J]. Soil. Biol. Biochem.,1980,12:105-112.
    41. Bumpus J.A., Kakar S.N., Coleman R.D. Fungal degradation of organophosphorusinsecticides[J]. Appl Biochem Biotechnol,1993,39-40:715-726.
    42. Cain R.B., Houghton C., Wright K.A. Microbial metabolism of the pyridine ring. Metabolismof2-and3-hydroxypyridines by the maleamate pathway in Achromobacter sp.[J]. Biochem J,1974,140(2):293-300.
    43. Cecchine G., Beatrice A. Golomb, Lee H. Hilborne, Dalia M. Spektor and C. Ross Anthony. Areview of the scientific literature as it pertains to Gulf War illnesses. Santa Monica, CA: RANDCorporation,2000.
    44. Cheng T., Liu L., Wang B., Wu J., DeFrank J.J., Anderson D.M., Rastogi V.K., Hamilton A.B.Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzymefrom Alteromonas haloplanktis[J]. J Ind Microbiol Biotechnol,1997,18(1):49-55.
    45. Cheng T.C., Harvey S.P., Chen G.L. Cloning and expression of a gene encoding a bacterialenzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of theenzyme[J]. Appl Environ Microbiol,1996,62(5):1636-1641.
    46. Cheng T.C., Harvey S.P., Stroup A.N. Purification and properties of a highly activeorganophosphorus acid anhydrolase from Alteromonas undina[J]. Appl Environ Microbiol,1993,59(9):3138-3140.
    47. Cho C.M., Mulchandani A., Chen W. Altering the substrate specificity of organophosphorushydrolase for enhanced hydrolysis of chlorpyrifos[J]. Appl Environ Microbiol,2004,70(8):4681-4685.
    48. Combet C., Blanchet C., Geourjon C., Deleage G. NPS@: network protein sequence analysis[J].Trends Biochem Sci,2000,25(3):147-150.
    49. Cui F., Qu H., Cong J., Liu X.L., Qiao C.L. Do mosquitoes acquire organophosphate resistanceby functional changes in carboxylesterases?[J]. FASEB J,2007,21(13):3584-3591.
    50. Dave K.I., Phillips L., Luckow V.A., Wild J.R. Expression and post-translational processing ofa broad-spectrum organophosphorus-neurotoxin-degrading enzyme in insect tissue culture[J].Biotechnol Appl Biochem,1994,19(Pt3):271-284.
    51. Dong Y.J., Bartlam M., Sun L., Zhou Y.F., Zhang Z.P., Zhang C.G., Rao Z., Zhang X.E. Crystalstructure of methyl parathion hydrolase from Pseudomonas sp. WBC-3[J]. J Mol Biol,2005,353(3):655-663.
    52. Dotson S.B., Smith C.E., Ling C.S., Barry G.F., Kishore G.M. Identification, characterization,and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982[J]. JBiol Chem,1996,271(42):25754-25761.
    53. Dumas D.P., Caldwell S.R., Wild J.R., Raushel F.M. Purification and properties of thephosphotriesterase from Pseudomonas diminuta[J]. J Biol Chem,1989,264(33):19659-19665.
    54. Feng L., Wang W., Cheng J., Ren Y., Zhao G., Gao C., Tang Y., Liu X., Han W., Peng X., LiuR.,Wang L. Genome and proteome of long-chain alkane degrading Geobacillusthermodenitrificans NG80-2isolated from a deep-subsurface oil reservoir[J]. Proc Natl AcadSci U S A,2007,104(13):5602-5607.
    55. Feng Y., Racke D.M., Bollag J. Photolytic and microbial degradation of3,5,6-trichloro-2-pyridinol[J]. Environ Toxicol Chem,1998,17(5):814-819.
    56. Feng Y., Racke K.D., Bollag J. Isolation and characterization of a chlorinated-pyridinol-degrading bacterium[J]. Appl Environ Microbiol,1997,63(10):4096-4098.
    57. Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F., Kerlavage A.R., BultC.J., Tomb J.F., Dougherty B.A., Merrick J.M.,et al. Whole-genome random sequencing andassembly of Haemophilus influenzae Rd[J]. Science,1995,269(5223):496-512.
    58. Grosdidier A., V. Zoete, O. Michielin. EADock: Docking of small molecules into protein activesites with a multiobjective evolutionary optimization[J]. Proteins,2007,(67):1010-1025.
    59. Grosdidier A., Zoete V., Michielin O. Fast docking using the CHARMM force field withEADock DSS[J]. J Comput Chem,2011.
    60. Grosdidier A., Zoete V., Michielin O. SwissDock, a protein-small molecule docking webservice based on EADock DSS[J]. Nucleic Acids Res,2011,39(Web Server issue): W270-277.
    61. Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment forcomparative protein modeling[J]. Electrophoresis,1997,18(15):2714-2723.
    62. Herkenhoff S., Szinicz L., Rastogi V.K., Cheng T.C., DeFrank J.J., Worek F. Effect oforganophosphorus hydrolysing enzymes on obidoxime-induced reactivation of110organophosphate-inhibited human acetylcholinesterase[J]. Arch Toxicol,2004,78(6):338-343.
    63. Horne I., Harcourt R.L., Sutherland T.D., Russell R.J., Oakeshott J.G. Isolation of aPseudomonas monteilli strain with a novel phosphotriesterase[J]. FEMS Microbiol Lett,2002,206(1):51-55.
    64. Horne I., Qiu X., Russell R.J., Oakeshott J.G. The phosphotriesterase gene opdA inAgrobacterium radiobacter P230is transposable[J]. FEMS Microbiol Lett,2003,222(1):1-8.
    65. Horne I., Sutherland T.D., Harcourt R.L., Russell R.J., Oakeshott J.G. Identification of an opd(organophosphate degradation) gene in an Agrobacterium isolate[J]. Appl Environ Microbiol,2002,68(7):3371-3376.
    66. Horne I., Sutherland T.D., Oakeshott J.G., Russell R.J. Cloning and expression of thephosphotriesterase gene hocA from Pseudomonas monteilii C11[J]. Microbiology,2002,148(Pt9):2687-2695.
    67. Kunst F., Ogasawara N., Moszer I., Albertini A.M., Alloni G., Azevedo V., Bertero M.G.,Bessieres P., Bolotin A., Borchert S., Borriss R., Boursier L., Brans A., Braun M., Brignell S.C.,Bron S., Brouillet S., Bruschi C.V., Caldwell B., Capuano V., Carter N.M., Choi S.K., CodaniJ.J., Connerton I.F., Danchin A.,et al. The complete genome sequence of the gram-positivebacterium Bacillus subtilis[J]. Nature,1997,390(6657):249-256.
    68. Hussain A.M., Sultan S.T. Organophosphorus insecticide poisoning: management in surgicalintensive care unit[J]. J Coll Physicians Surg Pak,2005,15(2):100-102.
    69. Imamura R., Yamanaka K., Ogura T., Hiraga S., Fujita N., Ishihama A., Niki H. Identificationof the cpdA gene encoding cyclic3',5'-adenosine monophosphate phosphodiesterase inEscherichia coli[J]. J Biol Chem,1996,271(41):25423-25429.
    70. Irwin J.J., Shoichet B.K. ZINC--a free database of commercially available compounds forvirtual screening[J]. J Chem Inf Model,2005,45(1):177-182.
    71. Islam S.M., Math R.K., Cho K.M., Lim W.J., Hong S.Y., Kim J.M., Yun M.G., Cho J.J., YunH.D. Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902from kimchi isable to degrade organophosphorus pesticides[J]. J Agric Food Chem,2010,58(9):5380-5386.
    72. Jackson C., Kim H.K., Carr P.D., Liu J.W., Ollis D.L. The structure of an enzyme-productcomplex reveals the critical role of a terminal hydroxide nucleophile in the bacterialphosphotriesterase mechanism[J]. Biochim Biophys Acta,2005,1752(1):56-64.
    73. Kaiser J.P., Feng Y., Bollag J.M. Microbial metabolism of pyridine, quinoline, acridine, andtheir derivatives under aerobic and anaerobic conditions[J]. Microbiol Rev,1996,60(3):483-498.
    74. Kim J., Tsai P.C., Chen S.L., Himo F., Almo S.C., Raushel F.M. Structure of diethyl phosphatebound to the binuclear metal center of phosphotriesterase[J]. Biochemistry,2008,47(36):9497-9504.
    75. Kumar S., Tamura K., Nei M. MEGA3: Integrated software for molecular evolutionary geneticsanalysis and sequence alignment[J]. Brief Bioinform,2004,5(2):150-163.
    76. Lakshmi C.V., Kumar M., Khanna S. Biodegradation of chlorpyrifos in soil by enrichedcultures[J]. Curr Microbiol,2009,58(1):35-38.
    77. Li J., Liu J., Shen W., Zhao X., Hou Y., Cao H., Cui Z. Isolation and characterization of3,5,6-trichloro-2-pyridinol-degrading Ralstonia sp. strain T6[J]. Bioresour Technol,2010,101(19):7479-7483.
    78. Li K., Wang S., Shi Y., Qu J., Zhai Y., Xu L., Xu Y., Song J., Liu L., Rahman M.A., Yan Y.Genome sequence of Paracoccus sp. strain TRP, a chlorpyrifos biodegrader[J]. J. Bacteriol.,2011,193(7):1786-1787.
    79. Li X., He J., Li S. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strainDsp-2, and cloning of the mpd gene[J]. Res Microbiol,2007,158(2):143-149.
    80. Macfadyen L.P., Ma C., Redfield R.J. A3',5' cyclic AMP (cAMP) phosphodiesterase modulatescAMP levels and optimizes competence in Haemophilus influenzae Rd[J]. J Bacteriol,1998,180(17):4401-4405.
    81. Math R.K., Asraful Islam S.M., Cho K.M., Hong S.J., Kim J.M., Yun M.G., Cho J.J., Heo J.Y.,Lee Y.H., Kim H., Yun H.D. Isolation of a novel gene encoding a3,5,6-trichloro-2-pyridinoldegrading enzyme from a cow rumen metagenomic library[J]. Biodegradation,2010,21(4):565-573.
    82. Mee-Hie Cho C., Mulchandani A., Chen W. Functional analysis of organophosphorus hydrolasevariants with high degradation activity towards organophosphate pesticides[J]. Protein Eng DesSel,2006,19(3):99-105.
    83. Mougin C., Pericaud C., Malosse C., Laugero C., Asther M. Biotransformation of theinsecticide lindane by the white tot basidiomycete Phanerochaete chrysosporium[J]. PesticideScience,1996,47(1):51-59.
    84. Mulbry W. Characterization of a novel organophosphorus hydrolase from Nocardiodes simplexNRRL B-24074[J]. Microbiol Res,2000,154(4):285-288.
    85. Mulbry W.W. The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-1:cloning, sequencing and expression in Escherichia coli[J]. Gene,1992,121(1):149-153.
    86. Mulbry W.W., Kearney P.C., Nelson J.O., Karns J.S. Physical comparison of parathionhydrolase plasmids from Pseudomonas diminuta and Flavobacterium sp.[J]. Plasmid,1987,18(2):173-177.
    87. Neidhardt F., R C.I., JL I., ECC L., KB L., B M., WS R., M R., M S., HE U. Escherichia coliand Salmonella: Cellular and molecular biology[M].2nd Washington, DC: ASM Press,1996.
    88. Newcomb R.D., Campbell P.M., Ollis D.L., Cheah E., Russell R.J., Oakeshott J.G. A singleamino acid substitution converts a carboxylesterase to an organophosphorus hydrolase andconfers insecticide resistance on a blowfly[J]. Proc Natl Acad Sci U S A,1997,94(14):7464-7468.
    89. Ng W.V., Kennedy S.P., Mahairas G.G., Berquist B., Pan M., Shukla H.D., Lasky S.R., BaligaN.S., Thorsson V., Sbrogna J., Swartzell S., Weir D., Hall J., Dahl T.A., Welti R., Goo Y.A.,112Leithauser B., Keller K., Cruz R., Danson M.J., Hough D.W., Maddocks D.G., Jablonski P.E.,Krebs M.P., Angevine C.M., Dale H., Isenbarger T.A., Peck R.F., Pohlschroder M., SpudichJ.L., Jung K.W., Alam M., Freitas T., Hou S., Daniels C.J., Dennis P.P., Omer A.D., EbhardtH., Lowe T.M., Liang P., Riley M., Hood L.,DasSarma S. Genome sequence of Halobacteriumspecies NRC-1[J]. Proc Natl Acad Sci U S A,2000,97(22):12176-12181.
    90. NPIC. Biomarkers of exposure: Organophosphates(Medical case profile).2011, Available from:http://npic.orst.edu/mcapro/.
    91. Omar S.A. Availability of phosphorus and sulfur of insecticide origin by fungi[J].Biodegradation,1998,9(5):327-336.
    92. Palm G.J., Fernandez-Alvaro E., Bogdanovic X., Bartsch S., Sczodrok J., Singh R.K., BottcherD., Atomi H., Bornscheuer U.T., Hinrichs W. The crystal structure of an esterase from thehyperthermophilic microorganism Pyrobaculum calidifontis VA1explains itsenantioselectivity[J]. Appl Microbiol Biotechnol,2011,91(4):1061-1072.
    93. Park Y.J., Yoon S.J., Lee H.B. A novel thermostable arylesterase from the archaeon Sulfolobussolfataricus P1: purification, characterization, and expression[J]. J Bacteriol,2008,190(24):8086-8095.
    94. Petersen T.N., Brunak S., von Heijne G., Nielsen H. SignalP4.0: discriminating signal peptidesfrom transmembrane regions[J]. Nat Methods,2011,8(10):785-786.
    95. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E.UCSF Chimera--a visualization system for exploratory research and analysis[J]. J ComputChem,2004,25(13):1605-1612.
    96. Ragnarsdottir K.V. Environmental fate and toxicology of organophosphate pesticides [J].Journal of the Geological Society,2000,157(4):859-876.
    97. Reddy G.V., Gold M.H. Degradation of pentachlorophenol by Phanerochaete chrysosporium:intermediates and reactions involved[J]. Microbiology,2000,146(Pt2):405-413.
    98. Salvi R.M., Lara D.R., Ghisolfi E.S., Portela L.V., Dias R.D., Souza D.O. Neuropsychiatricevaluation in subjects chronically exposed to organophosphate pesticides[J]. Toxicol Sci,2003,72(2):267-271.
    99. Schwede T., Kopp J., Guex N., Peitsch M.C. SWISS-MODEL: An automated proteinhomology-modeling server[J]. Nucleic Acids Res,2003,31(13):3381-3385.
    100. Serdar C.M., Gibson D.T., Munnecke D.M., Lancaster J.H. Plasmid involvement in parathionhydrolysis by Pseudomonas diminuta[J]. Appl Environ Microbiol,1982,44(1):246-249.
    101. Sethunathan N., Yoshida T. A Flavobacterium sp. that degrades diazinon and parathion[J]. CanJ Microbiol,1973,19(7):873-875.
    102. Shukla O. Microbial transformation of pyridine derivatives[J]. J Sci Ind Res,1984,43:98–116.
    103. Siddavattam D., Khajamohiddin S., Manavathi B., Pakala S.B., Merrick M. Transposon-likeorganization of the plasmid-borne organophosphate degradation (opd) gene cluster found inFlavobacterium sp.[J]. Appl Environ Microbiol,2003,69(5):2533-2539.
    104. Simpson R. Proteins and proteomics: A laboratory manual[M]. New York: Cold Spring HarborLaboratory Press,2003.
    105. Sims G.K., O'Loughlin E.J. Degradation of pyridines in the environment[J]. Crit Rev EnvironControl,1989,19(4):309-340.
    106. Singh B.K., Kuhad R.C. Biodegradation of lindane (gamma-hexachlorocyclohexane) by thewhite-rot fungus Trametes hirsutus[J]. Lett Appl Microbiol,1999,28(3):238-241.
    107. Singh B.K., Kuhad R.C. Degradation of insecticide lindane (r-HCH) by white-rot fungiCyathus bulleri and Phanerochaete sordida[J]. Pest Manag Sci,2000,56(2):142-146.
    108. Singh B.K., Kuhad R.C., Singh A., Lal R., Tripathi K.K. Biochemical and molecular basis ofpesticide degradation by microorganisms[J]. Crit Rev Biotechnol,1999,19(3):197-225.
    109. Singh B.K., Walker A. Microbial degradation of organophosphorus compounds[J]. FEMSMicrobiol Rev,2006,30(3):428-471.
    110. Singh B.K., Walker A., Morgan J.A., Wright D.J. Biodegradation of chlorpyrifos byEnterobacter strain B-14and its use in bioremediation of contaminated soils[J]. Appl EnvironMicrobiol,2004,70(8):4855-4863.
    111. Sun L., Dong Y., Zhou Y., Yang M., Zhang C., Rao Z., Zhang X.E. Crystallization andpreliminary X-ray studies of methyl parathion hydrolase from Pseudomonas sp. WBC-3[J].Acta Crystallogr D Biol Crystallogr,2004,60(Pt5):954-956.
    112. Tang T., Dong J., Ai S., Qiu Y., Han R. Electro-enzymatic degradation of chlorpyrifos byimmobilized hemoglobin[J]. J Hazard Mater,2011,188(1-3):92-97.
    113. Tehara S.K., Keasling J.D. Gene Cloning, purification, and characterization of aphosphodiesterase from Delftia acidovorans[J]. Appl Environ Microbiol,2003,69(1):504-508.
    114. Vanhooke J.L., Benning M.M., Raushel F.M., Holden H.M. Three-dimensional structure of thezinc-containing phosphotriesterase with the bound substrate analog diethyl4-methylbenzylphosphonate[J]. Biochemistry,1996,35(19):6020-6025.
    115. Vidya Lakshmi C., Kumar M., Khanna S. Biotransformation of chlorpyrifos andbioremediation of contaminated soil[J]. International Biodeterioration&Biodegradation,2008,62(2):204-209.
    116. Watson G.K., Houghton C., Cain R.B. Microbial metabolism of the pyridine ring. Themetabolism of pyridine-3,4-diol (3,4-dihydroxypyridine) by Agrobacterium sp.[J]. Biochem J,1974,140(2):277-292.
    117. Wu X.P., Liu W.D., Cao H., Li S.P., Cui Z.L. Determination of the catalytic structures of methylparathion hydrolase[J]. Sheng Wu Gong Cheng Xue Bao,2005,21(6):998-1002.
    118. Xu G., Li Y., Zheng W., Peng X., Li W., Yan Y.C. Mineralization of chlorpyrifos by co-cultureof Serratia and Trichosporon spp[J]. Biotechnol Lett,2007,29(10):1469-1473.
    119. Xu G., Zheng W., Li Y., Wang S., Zhang J., Yan Y.C. Biodegradation of chlorpyrifos and3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. strain TRP[J]. InternationalBiodeterioration&Biodegradation,2008,62(1):51-56.114
    120. Yan Y., Qiao C., Shang H. Expression of the detoxifing gene B1in Escherichia coli andSynechococcus[J]. Entomologia Sinica,2000,7(2):161-168.
    121. Yang C., Liu N., Guo X., Qiao C. Cloning of mpd gene from a chlorpyrifos-degradingbacterium and use of this strain in bioremediation of contaminated soil[J]. FEMS MicrobiolLett,2006,265(1):118-125.
    122. Yang L., Zhao Y.H., Zhang B.X., Yang C.H., Zhang X. Isolation and characterization of achlorpyrifos and3,5,6-trichloro-2-pyridinol degrading bacterium[J]. FEMS Microbiol Lett,2005,251(1):67-73.
    123. Yu Y.L., Fang H., Wang X., Wu X.M., Shan M., Yu J.Q. Characterization of a fungal straincapable of degrading chlorpyrifos and its use in detoxification of the insecticide onvegetables[J]. Biodegradation,2006,17(5):487-494.
    124. Zhongli C., Shunpeng L., Guoping F. Isolation of methyl parathion-degrading strain M6andcloning of the methyl parathion hydrolase gene[J]. Appl Environ Microbiol,2001,67(10):4922-4925.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700