磷酸体系中铜的电化学抛光机制与影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜具有电阻率低,抗电迁移性强的优点,作为IC互连接材料已经得到了越来越广泛的应用。伴随而来的问题是传统的化学机械抛光工艺已经不能满足铜的抛光精度,从而提出了铜的电化学机械抛光工艺。磷酸体系是铜电化学抛光最为常用的抛光溶液,而铜在磷酸体系抛光中的电化学反应历程尚不明确,对于其中的一些粘度调节剂、添加剂等的研究尚需完善。
     为了明确铜在电化学抛光中的电化学行为,采用旋转盘环电极,对铜在磷酸溶液中的阳极溶解的中间产物进行研究。发现在环电极上在-0.26V及-0.04V处出现两个电流峰,分别对应了盘电极在阳极极化过程中活性溶解区的Cu生成Cu~+反应和钝化区的Cu生成Cu_2O的反应。在活化区及钝化区中间产物均受到扩散的影响。铜在阳极极化的不同电位区间的电化学阻抗谱的解析表明了Cu~+离子的产生不仅引起了-0.275V附近的感抗弧的出现,同时还引起了0V附近电位区域的负电阻容抗弧的出现。阻抗-时间(R_s-t)和阻抗-电位(R_s-E)曲线的测试结果表明,R_s-t和R_s-E曲线能够表征铜磷酸界面粘膜层及氧化物层的形成。在R_s-E曲线中可以分为六个区域。其中活性溶解区铜表面不生成铜氧化物、R_s的变化主要由粘膜层变化引起。在活性溶解与钝化过渡区,粘膜层的变化及铜氧化物的生成共同引起R_s的变化,此时生成的铜氧化物为n型半导体特性。在钝化区,电化学反应受配体扩散控制,此时电流密度不变,R_s主要由铜氧化物的增厚引起。电位达到0.6V时铜氧化物开始转呈p型半导体特性,R_s也开始上升。
     磷酸浓度与阳极极化电位的增加,有利于微观整平,对宏观的整平能力也有加强作用;当磷酸的浓度为55wt%,阳极极化电位为0.2V时,铜的抛光表面粗糙度最低,效果最好。磷酸浓度的增加有利于铜的阳极钝化,使得钝化电流下降,抛光过程中的欧姆电阻增加。随着磷酸浓度的升高,形成的氧化膜的载流子密度和平带电位下降;载流子密度下降反应了膜的金属过剩程度下降。
     对铜电极施加了50g/cm~2及200g/cm~2的压力的稳定电位时间曲线及Tafel曲线表明,在压力的作用下,电极的旋转更多地影响了阴极过程,而且铜的腐蚀溶解速度与转速符合Levich关系;在稳定电位下,在磷酸溶液中的腐蚀受阴极扩散控制,力的施加有助于阴极去极化过程,有利于氧在抛光液中的扩散,从而使得腐蚀加快。
     研究表面活性剂SDS、PEG、PVP对铜的电化学抛光的影响发现,SDS的加入对铜在磷酸水溶液中的电化学阳极溶解的全过程起到了有效的抑制作用。在活化区和钝化区,SDS在铜表面的吸附对铜的阳极溶解起到了抑制作用;在氧气析出初始阶段所生成的细小致密气泡层覆盖了铜电极表面,从而抑制了铜在这个电位区间的溶解速率,提高了对铜的溶出抑制率。表明SDS是一种有效的提高其平坦化率的添加剂。PEG及PVP在氧气析出区也出现了对铜的抑制效果。此外还研究了缓蚀剂BTA、TTA对铜的电化学抛光的影响,发现BTA在磷酸体系中稳定电位附近对铜具有非常好的抑制效果,抑制效率一度达80%;在钝化区,BTA的缓蚀作用随电位的增加逐渐下降。BTA对铜的抛光起到良好的效果,而TTA对铜的缓蚀及抛光效果比BTA差。
Copper with the low resistivity and high resistance to electric mobility hasbeen widely used as IC interconnecting material. Recently, theelectrochemical-mechanical polishing technology has been developed because thetraditional chemical-mechanical polishing process can not meet the strictrequirements on polishing quality. Although the solution based on phosphoric acidis generally used in the electropolishing of copper, however the mechanism ofpolishing using such solution is still unclear. Besides, the additives for adjusting theviscosity and other parameters need to be investigated further.
     The intermediate products from the copper/phosphoric acid solution in theanodic and the electrochemical behavior of copper are studied by rotating discelectrodes (RRDE). Two current peaks on the ring electrode at0.26V and0.04Vare detected, which are corresponding to the reaction of Cu/Cu~+in active dissolutionzone and Cu/Cu_2O in passivation, in the anodic polarization process of copper onthe disc electrode, and both of reactions are controlled by the diffusion process.The electrochemical characteristics of copper in different anode polarizationpotential zones are analysized by electrochemical impedance spectrum (EIS). thatthe results illustrate that Cu~+have not only caused the inductance of arc near0.275V, at the same time also caused a capacitive reactance arc consisting a negativeresistance near0V. The results of the ohm impedance-time (R_s-t) and ohmimpedance-potential (R_s-E) curves show that the two curves can characterize theformation of the viscous layer and oxide layer on the interface between copper andphosphate acid. The R_s-E curve can be divided into six regions. In activedissolution region, the changes of R_s is caused by generation of viscous phosphatefilm on the surface of copper not by generation of copper oxide. In transition regionbetween active dissolution and passivation, the change of R_sis caused by the changeof viscous phosphate film and the generation of copper oxide as a n typesemiconductor. In passivation region, the reaction is controlled by the diffusion ofthe ligand, and the current density remains unchanged. Therefore, R_sis mainlycaused by the thickening of copper oxide. When the copper oxide starts turing into ptype semiconductor at0.6V, R_sincreases faster.
     The larger anodic polarization potential and the higher concentration ofphosphoric acid would be advantageous to the leveling of microscopic andmacroscopic structures. The surface roughness of copper after electropolishing hasthe lowest value at0.2V and55wt%H3PO4. The passivation state will be enhanced,the passivation current will decline and the ohmic resistance will increase., Thecarrier density and flat potential of the oxide film of copper declined with theincrease in the concentration of phosphoric acid which indicates that the degree ofexcess of metal in copper oxide film decreases.
     In Tafel curve test, the different pressures of50g/cm~2and200g/cm~2areapplied on the copper electrode. It is found that the rotation of electrode greatlyinfluences the cathode process, and the corrosion rate of copper and the speed ofrotation are in line with Levich relations. These results illustrate that the corrosionin phosphoric acid solution is controlled by the diffusion of cathode process underthe stable potential and the applied force would be benefit to accelerating theprocess of cathode depolarization (the diffusion of oxygen in the solution) and thecorrosion.
     In this paper, the effects of surfactants including SDS, PEG and PVP on copperelectropolishing are investigated. The results show that the anodic dissolution of Cuin phosphoric acid solution at different applied potentials is inhibited when SDS isadded. In both active and passive potential regions, the inhibiting effect due to theadsorption of SDS on Cu is oberved. At high anodic potentials, O2is generated fromCu surface, and tiny O2bubbles aggregate on the whole electrode surface. Thecompact O2layers act as the physical barrier between Cu and electrolyte solutionpreventing Cu from further dissolution, which enhance the inhibiting efficiency.Therefore, SDS can be used as an additive in phosphoric acid electrolyte to achieveexcellent planarization efficiency for Cu electrochemical mechanical planarization.PEG and PVP also show a good inhibiting efficiency on copper in the zone ofoxygen evolution.
     The effects of inhibitors of BTA and TTA on copper electropolishing arestudied too. It is found that the corrosion inhibiting efficiency of BTA is80%nearopen potential and drop with the increase of potentials in the passivation region.BTA shows the better effect on copper electropolishing than that of TTA.
引文
[1]储向峰,白林山,李玉琢. ULSI制造中Cu的电化学机械抛光[J].微纳电子技术,2009,(02):115-118.
    [2]王喆.铜互连层电化学机械抛光试验台及电解液研究[D].大连:大连理工大学,2010.
    [3]王洪雪. IC制造中铜电化学机械抛光电解液的研究[D].大连:大连理工大学,2012.
    [4] Wu Y F, Tsai T H. Effect of organic acids on copper chemical mechanicalpolishing[J]. Microelectronic Engineering,2007,84(12):2790-2798.
    [5] Aksu S. Electrochemical Equilibria of Copper in Aqueous Phosphoric AcidSolutions[J]. Journal of The Electrochemical Society,2009,156(11):C387-C394.
    [6] Wang P. Mechanistic Study of Copper Electropolishing[J]. Industrial&Engineering Chemistry Research,2011,50(3):1605-1609.
    [7] Chengfa J. Thermodynamics of aqueous phosphoric acid solution at25°C[J].Chemical Engineering Science,1996,51(5):689-693.
    [8] Elmore W C. Electrolytic Polishing[J]. J. Appl. Phys.,1939,10:724.
    [9] Mansson A. mechanistic study of copper electropolishing in phosphoric acidsolutions[D]. Rensselaer Polytechnic Institute,2005.
    [10]许旺,张楷亮,杨保和.新型铜互连方法——电化学机械抛光技术研究进展[J].半导体技术,2009,(06):521-524+589.
    [11] Q.Liu F, Chen L, Duboust A,等.化学是ECMP效率的关键[J].集成电路应用,2007,(07):25-26+28.
    [12] Rokicki R, Hryniewicz T. Enhanced oxidation-dissolution theory ofelectropolishing[J]. Transactions of the Institute of Metal Finishing,2012,90(4):188-196.
    [13] Elmore W C. Electrolytic Polishing. II[J]. J. Appl. Phys.,1940,11:797.
    [14] Sridhar N. In Situ Study of Salt Film Stability in Simulated Pits of Nickel byRaman and Electrochemical Impedance Spectroscopies[J]. Journal of TheElectrochemical Society,1997,144(12):4243.
    [15] Grimm R D. AC Impedance Study of Anodically Formed Salt Films on Ironin Chloride Solution[J]. Journal of The Electrochemical Society,1992,139(6):1622.
    [16] Bojinov M. A model of the anodic oxidation of metals in concentratedsolutions: Second-order dynamics at the anodic film vertical bar solutioninterface[J]. Journal of Electroanalytical Chemistry,1996,405(1-2):15-22.
    [17] West A C. Comparison of Modeling Approaches for a Porous Salt Film[J].Journal of The Electrochemical Society,1993,140(2):403.
    [18] West A C, Deligianni H, Andricacos P C. Electrochemical planarization ofinterconnect metallization[J]. Ibm Journal of Research and Development,2005,49(1):37-48.
    [19] Tian H, Reece C E. Evaluation of the diffusion coefficient of fluorine duringthe electropolishing of niobium[J]. Physical Review SpecialTopics-Accelerators and Beams,2010,13(8).
    [20] Bojinov M, Betova I, Fabricius G, et al. Passivation mechanism of iron inconcentrated phosphoric acid[J]. Journal of Electroanalytical Chemistry,1999,475(1):58-65.
    [21] Bojinov M. Modelling the formation and growth of anodic passive films onmetals in concentrated acid solutions[J]. Journal of Solid StateElectrochemistry,1997,1(2):161-171.
    [22] Matlosz M. Impedance Analysis of a Model Mechanism forAcceptor-Limited Electropolishing[J]. Journal of The ElectrochemicalSociety,1994,141(2):410.
    [23] Vidal R, West A C. Copper Electropolishing in ConcentratedPhosphoric-Acid.2. Theoretical Interpretation[J]. Journal of TheElectrochemical Society,1995,142(8):2689-2694.
    [24] Magaino S, Matlosz M, Landolt D. An Impedance Study of Stainless-SteelElectropolishing[J]. Journal of the Electrochemical Society,1993,140(5):1365-1373.
    [25] Kong D S, Chen S H, Wang C, et al. A study of the passive films onchromium by capacitance measurement[J]. Corrosion Science,2003,45(4):747-758.
    [26] Pointu B, Braizaz M, Poncet P, et al. Photoeffects on the Cu/H3PO4interface:Part I. Experimental data[J]. Journal of Electroanalytical Chemistry andInterfacial Electrochemistry,1981,122(0):111-131.
    [27] Millet B, Fiaud C, Hinnen C, et al. A correlation between electrochemicalbehaviour, composition and semiconducting properties of naturally grownoxide films on copper[J]. Corrosion Science,1995,37(12):1903-1918.
    [28] Kim K S, Lee J H, Noh D K, et al. A Study on the Semiconducting Propertiesof Passive Films on Stainless Steels by Photo-Electrochemical Techniques[J].Reviews on Advanced Materials Science,2011,28(1):59-63.
    [29] Hoar T P, Mowat J a S. Mechanism of Electropolishing[J]. Nature,1950,165(4185):64-65.
    [30] Landolt D. Fundamental aspects of electropolishing[J]. Electrochimica Acta,1987,32(1):1-11.
    [31] Glarum S H. The Anodic Dissolution of Copper into Phosphoric Acid.2.Impedance Behavior[J]. Journal of The Electrochemical Society,1985,132(12):2878.
    [32] Barcia O E, Mattos O R, Pebere N, et al. Anodic dissolution of metals undermass transport control[J]. Electrochimica Acta,1996,41(7-8):1385-1391.
    [33]巴德阿J.电化学方法原理与应用[M].北京:化学工业出版社,2005.
    [34] Vidal R. Copper Electropolishing in Concentrated Phosphoric Acid.1.Experimental Findings[J]. Journal of The Electrochemical Society,1995,142(8):2682.
    [35] Suni I I, Du B. Cu planarization for ULSI processing by electrochemicalmethods: A review[J]. Ieee Transactions on Semiconductor Manufacturing,2005,18(3):341-349.
    [36] Du B, Suni I I. Mechanistic Studies of Cu Electropolishing in PhosphoricAcid Electrolytes[J]. Journal of the Electrochemical Society,2004,151(6):C375.
    [37] Hoar T P, Farthing T W. Solid Films on Electropolishing Anodes[J]. Nature,1952,169(4295):324-325.
    [38] Novak M, Reddy A K N, Wroblowa H. An Ellipsometric Study of SurfaceFilms on Copper Electrodes Undergoing Electropolishing[J]. Journal of TheElectrochemical Society,1970,117(6):733.
    [39] Novak M, Szucs A. Photoeffect on a Cu Anode during Electropolishing[J].Journal of Electroanalytical Chemistry,1986,210(2):229-236.
    [40]翟文杰,梁迎春.集成电路芯片制造中电化学机械平整化技术的研究进展[J].中国机械工程,2008,(04):498-503.
    [41] Manens A, Miller P, Kollata E, et al.先进的工艺流程控制拓展电化学机械抛光工艺相容性(英文)[J].电子工业专用设备,2008,(06):24-27+32.
    [42]季仁良.电化学机械抛光技术与应用[J].机械工人,2000,(10):39-40.
    [43] Shattuck K G, West A C. An investigation of phosphate based ECMPelectrolyte performance on feature scale planarization[J]. Journal of AppliedElectrochemistry,2009,39(10):1719-1724.
    [44] Fang J L. Determination of the Composition of Viscous Liquid Film onElectropolishing Copper Surface by XPS and AES[J]. Journal of TheElectrochemical Society,1989,136(12):3800.
    [45]周宪明.环保型铜和铝表面的电化学抛光[D].西安:西安理工大学,2010.
    [46] Shieh J-M, Chang S-C, Wang Y-L, et al. Reduction of Etch Pits ofElectropolished Cu by Additives[J]. Journal of The Electrochemical Society,2004,151(7): C459.
    [47] Tripathi A, Burkhard C, Suni I I, et al. Electrolyte Composition for CuElectrochemical Mechanical Planarization[J]. Journal of TheElectrochemical Society,2008,155(11): H918.
    [48]翟文杰,杨阳展,王景贺,等.苯并三唑对铜/磷酸体系电化学腐蚀抑制作用[J].哈尔滨工业大学学报,2012,(08):67-72.
    [49] Li D, Li N, Xia G, et al. Effect of Sodium Dodecyl Sulfate on Copper AnodicDissolution in Phosphoric Acid Solution[J]. Int. J. Electrochem. Sci,2012,7:9271-9277.
    [50]张述林,罗祎,陈世波.铜及铜合金电化学抛光[J].电镀与涂饰,2008,(09):26-28.
    [51]薛云飞.苯骈三氮唑在铜及其合金电解抛光中的应用[J].电镀与精饰,1984,(05):29-31.
    [52]徐玉松,支海军,李国一,等.阳极极化曲线在CuSn合金接触线电解抛光中的应用[J].材料开发与应用,2009,(05):32-35.
    [53] Kim B S, Beaudoin S P. Electrochemical Analysis of Surface Films onCopper in Phosphoric Acid, with a Focus on Planarization[J]. Journal of TheElectrochemical Society,2009,156(5): H390.
    [54]陈琼.电解抛光技术的应用(之六)——铜与铜合金的电解抛光[J].广州化工,1998,(02):63-64.
    [55]方景礼.电镀配合物-理论与应用[M].北京:化学工业出版社,2008.
    [56] Lin J-Y, West A C. Adsorption–desorption study of benzotriazole in aphosphate-based electrolyte for Cu electrochemical mechanicalplanarization[J]. Electrochimica Acta,2010,55(7):2325-2331.
    [57] Deshpande S, Kuiry S C, Klimov M, et al. Elucidating Cu-glycine and BTAcomplexations in Cu-CMP using SIMS and XPS[J]. Electrochemical andSolid State Letters,2005,8(4): G98-G101.
    [58] Zhai W J, Yang Y Z. Screening Test of Phosphoric Acid-BTA Slurries forCopper ECMP Based on Static Inhibition Efficiency[J]. Advanced Materials,Pts1-4,2011,239-242:920-923.
    [59] Goonetilleke P C, Roy D. Relative roles of acetic acid, dodecyl sulfate andbenzotriazole in chemical mechanical and electrochemical mechanicalplanarization of copper[J]. Applied Surface Science,2008,254(9):2696-2707.
    [60] Burgess I, Jeffrey C, Cai X, et al. Direct visualization of thepotential-controlled transformation of hemimicellar aggregates of dodecylsulfate into a condensed monolayer at the Au (111) electrode surface[J].Langmuir,1999,15(8):2607-2616.
    [61] Burgess I, Zamlynny V, Szymanski G, et al. Electrochemical and neutronreflectivity characterization of dodecyl sulfate adsorption and aggregation atthe gold-water interface[J]. Langmuir,2001,17(11):3355-3367.
    [62] Hong Y, Devarapalli V K, Roy D, et al. Synergistic roles of dodecyl sulfateand benzotriazole in enhancing the efficiency of CMP of copper[J]. Journalof the Electrochemical Society,2007,154(6): H444-H453.
    [63] Cojocaru P, Muscolino F, Magagnin L. Effect of organic additives on copperdissolution for e-CMP[J]. Microelectronic Engineering,2010,87(11):2187-2189.
    [64] Chang S C, Shieh J M, Dai B T, et al. Superpolishing for planarizing copperdamascene interconnects[J]. Electrochemical and Solid State Letters,2003,6(5): G72-G74.
    [65] Tsai T-H, Wu Y-F, Yen S-C. Glycolic acid in hydrogen peroxide-based slurryfor enhancing copper chemical mechanical polishing[J]. MicroelectronicEngineering,2005,77(3-4):193-203.
    [66] Kung T-M, Liu C-P, Chang S-C, et al. Effect of Cu-Ion Concentration inConcentrated H3PO4Electrolyte on Cu Electrochemical MechanicalPlanarization[J]. Journal of the Electrochemical Society,2010,157(7):H763.
    [67] Venkatesh R P, Ramanathan S. Electrochemical characterization of Cudissolution and chemical mechanical polishing in ammoniumhydroxide-hydrogen peroxide based slurries[J]. Journal of AppliedElectrochemistry,2010,40(4):767-776.
    [68] Nagendra Prasad Y, Vinod Kumar V, Ramanathan S. Electrochemicalimpedance spectroscopic studies of copper dissolution in arginine–hydrogenperoxide solutions[J]. Journal of Solid State Electrochemistry,2008,13(9):1351-1359.
    [69] Tsai T-H, Wu Y-F, Yen S-C. A study of copper chemical mechanicalpolishing in urea–hydrogen peroxide slurry by electrochemical impedancespectroscopy[J]. Applied Surface Science,2003,214(1-4):120-135.
    [70]%DE5et o-+u o-u$. A Study of Copper Passivity byElectrochemical Impedance Spectroscopy[J]. Journal of the ElectrochemicalSociety,2001,148(4): B146.
    [71] Huo J, Solanki R, Mcandrew J. Study of anodic layers and their effects onelectropolishing of bulk and electroplated films of copper[J]. Journal ofApplied Electrochemistry,2004,34(3):305-314.
    [72] Pettit C M, Roy D. Role of iodate ions in chemical mechanical andelectrochemical mechanical planarization of Ta investigated usingtime-resolved impedance spectroscopy[J]. Materials Letters,2005,59(29-30):3885-3889.
    [73] Pettit C M, Garland J E, Walters M J, et al. Time resolved study of electrodereactions using Fourier transform impedance spectroscopy: mutuallycorrelated adsorption kinetics of Cu2+and ClO4on gold[J]. ElectrochimicaActa,2004,49(20):3293-3304.
    [74] Garland J E, Pettit C M, Roy D. Analysis of experimental constraints andvariables for time resolved detection of Fourier transform electrochemicalimpedance spectra[J]. Electrochimica Acta,2004,49(16):2623-2635.
    [75]李学良林.铜的电抛光机理探讨[J].应用化学,1994,6:81-84.
    [76] Oh Y-J, Park G-S, Chung C-H. Planarization of Copper Layer for DamasceneInterconnection by Electrochemical Polishing in Alkali-Based Solution[J].Journal of the Electrochemical Society,2006,153(7): G617.
    [77] Hernandez J, Wrschka P, Oehrlein G S. Surface chemistry studies of copperchemical mechanical planarization[J]. Journal of the Electrochemical Society,2001,148(7): G389-G397.
    [78] Pan Y, Lu X, Pan G, et al. Performance of Sodium Dodecyl Sulfate in Slurrywith Glycine and Hydrogen Peroxide for Copper-Chemical MechanicalPolishing[J]. Journal of The Electrochemical Society,2010,157(12): H1082.
    [79] Kulkarni M, Ng D, Baker M, et al. Electropotential-stimulated wear ofcopper during chemical mechanical planarization[J]. Wear,2007,263:1470-1476.
    [80] He H W, Hu Y H, Huang K L. Corrosion electrochemical mechanism ofchemical mechanical polishing of copper in K3Fe(CN)6solution[J].Transactions of Nonferrous Metals Society of China,2002,12(1):178-182.
    [81] He H W, Hu Y H, Huang K L. Electrochemical characteristic ofchemical-mechanical polishing of copper with oxide passive film[J].Transactions of Nonferrous Metals Society of China,2003,(04):977-981.
    [82]何捍卫.铜化学-机械抛光电化学机理与抛光速率的研究[D].长沙:中南大学,2002.
    [83] Du T B, Tamboli D, Luo Y, et al. Electrochemical characterization of copperchemical mechanical planarization in KIO3slurry[J]. Applied SurfaceScience,2004,229(1-4):167-174.
    [84] Du T B, Luo Y, Desai V. The combinatorial effect of complexing agent andinhibitor on chemical-mechanical planarization of copper[J]. MicroelectronicEngineering,2004,71(1):90-97.
    [85] Du T B, Desai V. The pH effect on chemical mechanical planarization ofcopper[J]. Chemical-Mechanical Planarization,2003,767:273-278.
    [86]巴德阿J.电化学方法:原理与应用[M].北京:化学工业出版社,2005.
    [87]胡会利,李宁.电化学测量[M].北京:国防工业出版社,2010.
    [88] Okubo T, Watanabe K, Kondo K. Analytical study of the characteristics of cu(i) species for the via-filling electroplating using a RRDE[J]. Journal of TheElectrochemical Society,2007,154(3): C181-C187.
    [89] Jardy A, Legal Lasalle-Molin A, Keddam M, et al. Copper dissolution inacidic sulphate media studied by QCM and rrde under ac signal[J].Electrochimica Acta,1992,37(12):2195-2201.
    [90]魏治文,程琳,来记桃,等.几种异常值判别准则在安全监测数据处理中的应用[J].大坝与安全,2009,(1):81-84.
    [91]中国国家标准化管理委员会.数据的统计处理和解释:正态样本离群值的判断和处理[M]. GB/T4883-2008.2008.
    [92] Walton H F. The Anode Layer in the Electrolytic Polishing of Copper[J].Journal of The Electrochemical Society,1950,97(7):219.
    [93] Edwards J. The Mechanism of Electropolishing of Copper in PhosphoricAcid Solutions[J]. Journal of The Electrochemical Society,1953,100(8):223C.
    [94] Rizkalla E N. X-ray photoelectron studies of some phosphates[J]. InorganicaChicmica Acta,1982,60:53-57.
    [95] Mansour I a S, El Sherify T. Electropolishing of horizontal copper ring discsin H3PO4solutions[J]. Surface technology,1983,19(4):355-361.
    [96]李学良,束志恒,朱云贵,等.磷酸溶液中铜阳极溶解的电流混沌振荡行为[J].合肥工业大学学报(自然科学版),2001,(04):482-485.
    [97]雷惊雷,罗久里.铜电极阳极溶解过程恒电位电流振荡的动力学模型[J].高等学校化学学报,2000,(03):453-457.
    [98] Albahadily F N, Schell M. An Experimental Investigation of Periodic andChaotic Electrochemical Oscillations in the Anodic-Dissolution of Copper inPhosphoric-Acid[J]. Journal of Chemical Physics,1988,88(7):4312-4319.
    [99]陈金庆.不同添加剂对铜阳极电溶解过程中电化学振荡的影响[D].合肥:合肥工业大学,2004.
    [100] Kiss I Z, Gaspar V, Nyikos L, et al. Controlling electrochemical chaos in thecopper-phosphoric acid system[J]. Journal of Physical Chemistry A,1997,101(46):8668-8674.
    [101]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社,2006.
    [102] Chang S-C, Shieh J-M, Huang C-C, et al. Microleveling mechanisms andapplications of electropolishing on planarization of copper metallization[J].Journal of Vacuum Science&Technology B: Microelectronics andNanometer Structures,2002,20(5):2149.
    [103] Van Gils S, Le Pen C, Hubin A, et al. Electropolishing of Copper inH3PO4[J]. Journal of The Electrochemical Society,2007,154(3): C175.
    [104] Pointu B, Braizaz M, Poncet P, et al. Photoeffects on the Cu/H3PO4interface:Part III. Interpretation of photocurrents at the interface [M]. Journal ofElectroanalytical Chemistry and Interfacial Electrochemistry.1983:79-87.
    [105]李文武.若干信息功能氧化物薄膜材料的光电跃迁研究[D].上海:华东师范大学,2012.
    [106]海阔.金属氧化物一维纳米结构和电子态调控研究[D].长沙:湖南师范大学,2011.
    [107] Wong D K Y, Coller B a W, Macfarlane D R. A kinetic model for thedissolution mechanism of copper in acidic sulfate solutions[J].Electrochimica Acta,1993,38(14):2121-2127.
    [108]曹楚南.电化学阻抗谱导论[M].北京:科学出版社,2002.7.
    [109] Macdonald D D. The history of the Point Defect Model for the passive state:A brief review of film growth aspects[J]. Electrochimica Acta,2011,56(4):1761-1772.
    [110] Macdonald D D. The Point Defect Model for the Passive State[J]. Journal ofthe Electrochemical Society,1992,139(12):3434-3449.
    [111] Glarum S H, Marshall J H. The Anodic-Dissolution of Copper intoPhosphoric-Acid.1. Voltammetric and Oscillatory Behavior[J]. Journal ofThe Electrochemical Society,1985,132(12):2872-2878.
    [112]钟庆东,王超,鲁雄刚,等.304不锈钢钝化膜在不同溶液中的半导体导电行为[J].中国腐蚀与防护学报,2008,(06):341-344.
    [113]徐晨洪,韩优,迟名扬.基于Cu2O的光催化研究[J].化学进展,2010,22(12):2290-2297.
    [114]张春萍. CuO薄膜的制备及其光伏特性研究[D].杭州电子科技大学,2010.
    [115]钱备,李淑英,范洪强,等.钛阳极氧化膜的半导体特性及腐蚀行为[J].材料保护,2011,(10):8-11+6.
    [116]吴红艳,王毅,钟庆东,等.在碱性溶液中Cu-Ni合金镀层钝化膜的半导体性能研究[J].腐蚀科学与防护技术,2012,(05):385-391.
    [117]谷丰.铝合金阳极氧化膜半导体性质及耐蚀性的研究[D].北京:北京化工大学,2008.
    [118] Domínguez-Crespo M, Torres-Huerta A, Brachetti-Sibaja B, et al.Electrochemical performance of Ni–RE (RE=rare earth) as electrodematerial for hydrogen evolution reaction in alkaline medium[J]. InternationalJournal of Hydrogen Energy,2011,36(1):135-151.
    [119] Tripathi A, Suni I I, Li Y, et al. Cu Electrochemical Mechanical PlanarizationSurface Quality[J]. Journal of the Electrochemical Society,2009,156(7):H555.
    [120] Jorcin J-B, Orazem M E, Pébère N, et al. CPE analysis by localelectrochemical impedance spectroscopy[J]. Electrochimica Acta,2006,51(8–9):1473-1479.
    [121]陈长风,姜瑞景,张国安,等.双极性半导体钝化膜空间电荷电容分析[J].物理化学学报,2009,(03):463-469.
    [122]曹楚南.腐蚀电化学原理(第三版)[M].北京:化学工业出版社,2008.
    [123] Hong Y, Roy D, Babu S V. Ammonium Dodecyl Sulfate as a PotentialCorrosion Inhibitor Surfactant for Electrochemical Mechanical Planarizationof Copper[J]. Electrochemical and Solid-State Letters,2005,8(11): G297.
    [124]赵郁,赵新宇,杨宇虹.十二烷基硫酸钠与十二烷基磺酸钠[J].生命的化学,2004,24(3):277.
    [125]刘明婧,焦庆祝.十二烷基磺酸钠和硫脲对锌缓蚀协同作用[J].石油与化工设备,2007,(12):50-51.
    [126]黄传敬,张玉洲.盐酸溶液中十二烷基磺酸钠在铝表面上的吸附及其缓蚀作用[J].淮北煤师院学报,1994,15(2):42-47.
    [127]周飞云.铜及铜合金环保型化学抛光工艺新探[J].安徽工程大学学报,2012,27(2):44-47.
    [128]梁桂兰.黄铜线和紫铜线的化学抛光新工艺[D].广州:华南理工大学,2012.
    [129]李国栋.聚乙烯吡咯烷酮(PVP)的性能、合成及应用[C].2009(第八届)中国造纸化学品开发应用国际技术交流会,中国浙江杭州,2009:4.
    [130]赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003.
    [131]张天胜,张浩,高红.缓蚀剂[M].北京:化学工业出版社,2008.
    [132]张景玲.苯并三氮唑复配体系对铜的协同缓蚀性能的研究[D].长沙:湖南大学,2011.
    [133]徐群杰,周国定. BTA系列缓蚀剂对铜缓蚀作用的光电化学比较[J].太阳能学报,2005,(05):665-670.
    [134]邵华,周国定,杨迈之,等.铜电极在含苯并三唑的硼砂-硼酸缓冲溶液中的光电化学行为研究[J].化学学报,1996,(04):325-330.
    [135]任聚杰,杨迈之,童汝亭,蔡生民.3%NaCl溶液中铜的表面膜及BTA膜的光电化学研究[J].中国腐蚀与防护学报,1995,(03):237-240.
    [136]卢小梅,徐艳萍,晏贡全. BTA及其衍生物在3%Nacl溶液中对铜的缓蚀作用[J].江西电力职业技术学院学报,2004,(03):8-10.
    [137]付占达.苯并三氮唑复合缓蚀剂对海水中黄铜缓蚀性能研究[D].石家庄:河北理工大学,2008.
    [138]文斯雄.苯骈三氮唑在金属抗蚀防护上的作用[J].腐蚀与防护,2004,25(7):318-319.
    [139]郑强,阎利. HEDP-ATMP-TTA缓蚀剂对HSn70-1A铜合金腐蚀行为的影响[J].腐蚀与防护,2009,(04):276-278.
    [140]张子云,罗欣荣.发电机内冷水TTA铜缓蚀剂处理技术初探[J].江西电力,2003,(02):30-31+35.
    [141]杨迈之,郭沁林,蔡生民,等.3%NaCl溶液中铜缓蚀剂TTA的光电化学和表面电子能谱研究[J].高等学校化学学报,1993,(11):1565-1568.
    [142]徐群杰,周国定,陆柱.交流阻抗法对几种铜缓蚀剂比较研究[J].华东理工大学学报,1998,(03):83-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700