钛电化学抛光及其阳极氧化膜的腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛及其合金以其优异的性能,在医用植入领域获得广泛应用。但医用钛材料作为种植体目前仍存在一些急待解决的问题,如在人体十分苛刻应用环境中的耐蚀性需进一步提高。这些问题与钛材料的表面性能密切相关,而电化学抛光和阳极氧化是两种重要的钛表面处理技术,是提高钛表面耐蚀性能的有效途径。另外,钛不仅用于医学,在航空航天、军事领域、石油化工和海洋环境中的应用也日益广泛。
     本文研制出一种新型无毒环保的电化学抛光液,以钛材表面的光亮度、粗糙度及表面形貌为主要评价指标,用电化学极化曲线测试方法、粗糙度测试仪、扫描电镜等测试技术,考察了电压、时间、温度及阴阳极间距对抛光效果的影响规律,经与传统的机械抛光、化学抛光方法对比表明:所得到的电化学抛光液优于其它两种方法,经该抛光液处理后的试样表面平整、光亮如镜,表面粗糙度约为0.09gm,自腐蚀电流密度最小耐蚀性能显著提高。其最佳工艺参数为槽压30V,时间180s,温度50℃,阴阳极距离2cm。
     采用极化曲线、交流阻抗和Mott-Schottky曲线等电化学测试技术,分别研究了硫酸、磷酸电解液中钛阳极氧化膜在生理盐水中的腐蚀行为,以及硫酸铵、硫酸和磷酸电解液中钛阳极氧化膜在高温含溴醋酸中的腐蚀行为。研究结果表明:阳极氧化后的试样自腐蚀电位上升,自腐蚀电流密度下降,耐蚀性能显著提高。磷酸介质中钛阳极氧化膜与硫酸介质中相比,在低频区阻抗较大,载流子密度较大,平带点位更负,耐蚀性能好;未经阳极氧化试样在高温含溴醋酸中出现点蚀破裂电位。氧化膜颜色和膜厚随着阳极氧化电压的升高而变化,但耐蚀性受电压变化的影响较小。
     将阳极氧化后的钛与碳钢以8:1的面积比偶接,采用CS300电偶电流测试技术连续记录了该电偶对在模拟海水中8小时的电偶电流值,经与未氧化处理的电偶对相比结果表明:钛经阳极氧化后可使电偶对的电偶腐蚀电流密度减小。纯钛与碳钢的电偶电流密度为175μA左右;磷酸工艺电压为40V时电偶对的电偶电流密度接近40μA,硫酸工艺电压为40V时电偶对的电偶电流密度接近80μA;钛阳极氧化膜在整个电偶反应的体系中相当于额外的电阻极化。
Titanium and titanium alloy are widely used in biomedical materials due to their biocompatibility, excellent corrosion resistance, good mechanical properties and lightness. However, there are some problems need to be solved right now. Such as the corrosion resistance of titanium should be improved. The surface property of titanium is related to these problems. Electropolishing and anodizing are both important surface technologies for titanium, which are good ways to improve the corrosion resistence of titanium. In addition, titanium has a good prospect of application in aviation, military, chemical industry and oceamcs.
     In this paper, a new environmental friendly and non-toxic electropolishing technology was proposed. Surface brightness, roughness and surface modality were main standard used for study the condition. We used potentiodynamic polarization curve, roughness reader and SEM to study the influence of voltage, time, temperature and distance between electrodes. What's more, we compared electropolishing technology with the traditional mechanical polishing and chemical polishing. The results showed that titanium after electropolishing got more smooth surface and was mirror like. The roughness of surface was about 0.09μm, which also had lower icorr, thus showed better corrosion resistance. The optimal condition was 30V, 180s,50℃and 2cm.
     The corrosion behavior of titanium and after anodizing in H2SO4 and H3PO4 was studied by potentiodynamic polarization curve, EIS and Mott-Schottky plots in physiological saline solution. And the corrosion behavior of titanium after anodizing in (NH4)2SO4, H2SO4 and H3PO4 was investigated by potentiodynamic polarization curve, EIS in Br- containing acetic acid solution. The results indicated that titanium after anodizing showed higher self-corrosion potential, lower icorr. Compared with the blank sample, the corrosion resistance were improved largely when titanium after anodizing. EIS exhibited higher impedence values in the low frequency range for films anodized in phosphoric acid. Meanwhile the Mott-Schottky plots showed lower donor density and lower flat band potential for titanium anodized in H3PO4, which reflected better corrosion resistance than titanium anodized in H2SO4. The breakdown potential of the pitting is observed for blank sample in Br- containing acetic acid solution. But it was not found when titanium after anodizing in (NH4)2SO4, H2SO4 and H3PO4. It was also found that the color and thickness of the film were changed with the voltage except the corrosion behavior.
     The galvanic corrosion generated between titanium after anodizing and carbon steel pair in area ratio at 8:1 for 8 hours in simulate seawater was studied by CS300. Compared with the blank sample, the results showed that galvanic current densities were reduced largely after titanium anodizing. Galvanic current densities was 175μA for blank sample galvanic pair. Galvanic current densities was 40μA for titanium anodizing in H3PO4 for 40V and 80μA for titanium anodizing in H2SO4 for 40V. The anodic oxide films lead to an IR drop in the system.
引文
[1]王桂生,田荣璋.钛的应用技术[M].湖南:中南大学出版社,2007.
    [2]中国有色金属工业协会钛锆铪分会.中国钛:业发展回顾[J].钛工业进展,2003,26(4):1.
    [3]屠振密,李宁,朱永明.钛及钛合金表面处理技术和应用[M].北京:国防工业出版社,2010.
    [4]李鑫庆,陈迪勤,余静琴.化学转化膜技术与应用[M].北京:机械工业出版社,2005.
    [5]徐增华.金属耐蚀材料第十二讲钛合金[J].腐蚀与防护,2002,23(1):42-44.
    [6]沈祥惠.2010年世界海绵钛市场回顾及未来展望[J].钛工业进展,2011,28(1):1-3.
    [7]Flamini D 0, Saidman S B. Characterization of polypyrrole films electrosynthesized onto titanium in the presence of sodiumbis(2-ethylhexyl) sulfosuccinate (AOT) [J]. Electrochimica Acta,2010,55:3727-3733.
    [8]Lu Xiong, Yang Leng. Electrochemical micromachining of titanium surfaces for biomedical applications[J]. Journal of Materials Processing Technology,2005, 169:173-178.
    [9]Sahu S, Palaniappa M, Paul S N, et al. Potentiodynamic behaviour of Ti alloys in physiological solution containing lubricant[J]. Materials Letters,2010,64: 12-14.
    [10]Satendra Kumar, Sankara Narayanan, Saravana Kumar. Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application[J]. Corrosion Science,2010,52:1721-1727
    [11]Budzynski P, Youssef A A, Sielanko J. Surface modification of Ti-6A1-4V alloy by nitrogen ion implantation[J]. Wear,2006,261(11-12):1271-276.
    [12]王爱萍.滨海电厂钛管凝汽器阴极保护电位场分布数学模型的研究[D].青岛:中国海洋大学,2005.
    [13]汪德良.凝汽器钛管在我国发电厂中的应用见状[J].钛工业进展,1999(5):6-10.
    [14]余存烨.石化钛设备腐蚀实例[J].腐蚀与防护,2008,29(4):232-235.
    [15]李淑英,王云翔,钟军实.不锈钢填料在醋酸介质中的电化学行为研究[J].全面腐蚀控制,2004,18(6):13-15.
    [16]刘国强,朱自勇,柯伟,等.不锈钢在含有溴离子的醋酸溶液中的腐蚀[J].中国腐蚀与防护学报,2001,21(3):167-170.
    [17]李明,李晓刚,杜翠薇,等.PTA氧化设备腐蚀失效分析[J].腐蚀科学与防护技术,2005,17(4):282-285.
    [18]高兴国.我国钛制PTA生产装置的研制与应用现状[J].稀有金属快报,2008,27(3):6-9.
    [19]王鑫根.国内外PTA市场分析[D].上海:中国石化上海石化股份有限公司,2003.
    [20]杨爱民.近期PTA行情的走协[J].聚酯工业,2011,24(1):7-9.
    [21]段娜,王会海.采取措施降低PTA装置的能耗和物耗[J].石油和化工节能,2009(6):35-37.
    [22]李爱国.认制换热器内表面的阳极化处理[J].宁波化工,2006(1):22-24.
    [23]马颖利.国内外舰船用钛及其合金的现状及前景[J].中国金属通报,2006(41):10-11.
    [24]Robin A, Sandim H R, Rosa J L. Corrosion behavior of the Ti-4%Al-4%V alloy in boiling nitric acid solutions[J]. Corrosion Science,1999,41:1333-1346.
    [25]黄承武,武雪芹.钛、铜和不锈钢在醋酸中的腐蚀行为[J].腐蚀与防护,1996.18(4):147-149.
    [26]Popa M V, Vasilescu E, Drob P, et al. Anodic passivity of some titanium base alloys in aggressive environments[J]. Materials and Corrosion,2002,53:51-55.
    [27]Vasilescu E, Drob P, Popa M V, et al. Characterisation of anodic oxide films formed on titanium and two ternary titanium alloys in hydrochloric acid solutions[J]. Materials and Corrosion,2000,51:413-417.
    [28]Anne Neville, Xu jie. An assessment of the instability of Ti and its alloys in acidic environments at elevated temperature[J]. Journal of light metals,2001, 1:119-126.
    [29]Henry P, Takadoum J, Bercot P. Tribocorrosion of 316L stainless steel and TA6V4 alloy in H2SO4 media[J]. Corrosion Science,2009,51:1308-1314.
    [30]范文娟.金属钛在碱性溶液中的腐蚀电化学研究[D].曲阜:曲阜师范大学,2009.
    [31]Bao Yusheng, Wang Wei, He Benlin, et al. EIS analysis of hydrophobic and hydrophilicTi02 film[J]. Electrochimica Acta,2008,.54:611-615.
    [32]Burstein G T, Souto R M. Obsrevations of localised instability of passive titanium in chloride solution[J]. Electrochimica Acta,1995,40(12):1881-1888.
    [33]龚敏,蒋伟,邹振,等.两碱法对钛在盐卤中腐蚀行为的影响[J].中国腐蚀与防护学报,2009,29(3):191-197.
    [34]张新革,火时中.钛在卤化物水溶液中钝化膜的破裂行为[J].腐蚀科学与防护技术,1995,7(4):315-320.
    [35]余存烨.锆与钛耐蚀性比较及应用互补性[J].腐蚀与防护,2007,28(5):223-226.
    [36]袁正君,郭文彬.钛制化工设备腐蚀及其防止[J].广东化工,2009,36(5):193-194.
    [37]Tamarit E Blasco, Munoz A Igual, Anton J Garcia, et al. Galvanic corrosion of titanium coupled to welded t i tanium in LiBr solutions at different temperatures[J] Corrosion Science 2009,52:1095-1102.
    [38]Rao T S, Aruna Jyothi Kora, Anupkumar B, et al. Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria(Desulfovibrio vulgaris) [J]. Corrosion Science,2005,47:1071-1084.
    [39]Rajendran N, Nishimura T. Crevice corrosion monitoring of titanium and its alloys using microelectrodes[J]. Materials and Corosion 2007,58(5):334-339.
    [40]He X, Noel J J, Shoesmith D W. Crevice corrosion damage function for grade-2 titanium of iron content 0.078wt%at 95℃[J]. Corrosion Science,2005, (47):1177-1195.
    [41]Peacock D K, Grauman J S. Crevice and under deposit corrosion resistance of titanium alloys in highly aggressive environments[J]. Materials and Corrosion,1998, 49:61-68.
    [42]王健云,周清木,秦平刚.工业纯钛的缝隙腐蚀探讨[J].化工机械,2000,27(3):135-138.
    [43]易中军.氯碱生产中钛的缝隙腐蚀与防护措施[J].中国氯碱,2000(2):32-33.
    [44]王健云,周清木,秦平刚.工业纯钛和0OCr25Ni22Mo2不锈钢的缝隙腐浊[J].北京化工大学学报,1999,26(2):86-88.
    [45]郭敏.[业纯钛在海水中阴极极化条件下的氢脆研究[D].大连:大连理工大学,2001.
    [46]杨长江,梁成浩,王华.钛及其合金氢脆研究现状与应用[J].腐蚀科学与防护技术,2006,18(2):122-124.
    [47]师红旗,周灿旭,丁毅,等.钛剖换热器氢腐蚀破裂失效分析[J].腐蚀科学与防护技术,2009,21(2):137-139.
    [48]Tamarit E Blasco, Munoz A Igual, Anton J Garcia, et al. Corrosion behaviour and galvanic coupling of titanium and welded titanium in LiBr solutions[J]. Corrosion Science,2007,49:1000-1026.
    [49]杜敏,郭庆锟,周传静.碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究[J].中国腐蚀与防护学报.2006,26(5):263265.
    [50]郭庆锟,杜敏.钛/碳钢在海水中电偶腐蚀的研究[J].海洋湖沼学报,2005(4):23-29.
    [51]Heidarbeigy M, Karimzadeh F, Saatchi A. Corrosion and galvanic coupling of heat treated Ti-6Al-4V alloy weldment[J]. Materials Letters,2008,62:1575-1578.
    [52]刘建华,吴吴,李松梅.高强合金与钛合金的电偶腐蚀行为[J].北京航空航天大学学报,2003,29(2):124-127.
    [53]王日义.钛及其合金在流动海水中的腐蚀及对其他金属材料的电偶腐蚀作用[J].金属学报,2002,38:623-625.
    [54]余存烨.“铁”对钛制化工设备使用影响的讨论[J].腐蚀与防护,2005,26(9):407-410.
    [55]王百宁.钛设备铁污染的危害与防护措施[J].钛工业进展,2004,21(3):32-34.
    [56]Cheng Xiaoliang, Sharon G Roscoe. Influence of Surface Polishing on the Electrochemical Behavior of Titanium[J]. Electrochemical and Solid-State Letters, 2005,8(9):38-41.
    [57]张连云,杨贤金,李长义,等.纯钛铸件化学抛光的实验研究[J].华西口腔医学杂志,2002,20(6):401.
    [58]李哲,肖茂春.铸造纯钛抛光方法的研究[J].华西口腔医学杂志,2006,24(3):214.
    [59]孙志华,刘佑厚,张晓云,等.钛及钛合金电镀工艺述评[J].腐蚀与防护,2005,26(11):493.
    [60]Ma Di, Li Shuying, Liang Chenghao. Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions[J]. Corrosion Science,2009,51:713-718.
    [61]孙俊,辛森,毕红.高纯铝的电化学抛光工艺研究[J].中国科技论文在线,2008,3(6):447-451.
    [62]朱虎生.铝合金电化学抛光工艺现状[J].涂装与电镀,2009(4):44-45.
    [63]Hryniewicz T, K Rokosz a, Rokick R. Electrochemical and XPS studies of AISI 316L stainless steel after electropolishing in a magnetic field[J]. Corrosion Science, 2008,50:2676-2681.
    [64]Stephen E Ziemniak, Michael Hanson, Sander Paul C. Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corrosion Science,2008,50:2465-2477.
    [65]Lin ChiCheng, Hu ChiChang, Lee TaiChou. Electropolishing of 304 stainless steel: Interactive effects of glycerol content, bath temperature, and current density on surface roughness and morphology[J]. Surface & Coatings Technology 2009, 204:448-454.
    [66]Lin ChiCheng, Hua ChiChang. Electropolishing of 304 stainless steel:Surface roughness control using experimental design strategies and a summarized electropolishing model[J]. Electrochimica Acta,2008,53:3356-3363.
    [67]Nebojsa I Potkonjak, Tanja N Potkonjak, Stevan N Blagojevica, et al. Current oscillations during the anodic dissolution of copper in trifluoroacetic acid[J]. Corrosion Science,2010,52:1618-1624.
    [68]刘霞,梁成浩.银电化学抛光工艺研究[J].电镀与精饰,2008,30(10):16-18.
    [69]Yang Xiyun, Michael S Moats, Jan D Millerb. Gold dissolution in acidic thiourea and thiocyanate solutions[J]. Electrochimica Acta,2010,55:3643-3649.
    [70]Huang An Ching, Yu Chen Chen. The effect of water content on the electropolishing behavior of Inconel 718 alloy in perchloric-acetic acid mixtures[J]. Corrosion Science,2009,51:1901-1906.
    [71]Piotrowski O, Madore C, Landolt D. The Mechanism of Electropolishing of Titanium in Methanol-Sulfuric Acid Electrolytes[J]. Journal of Electrochemical Society, 1998,145(7):2362-2369.
    [72]Wojciech Simkaa, Marcin Kaczmarek, Aleksandra Baron-Wiechec, et al. Electropolishing and passivation of NiTi shape memory alloy[J]. Electrochimica Acta,2010,55:2437-2141.
    [73]Ching An Huang, Hsu Fu Yung, Yu Chung Han. Electropolishing behavior of pure titanium in sulfuric acid-ethanol electrolytes with an addition of water[J]. Cortosion Science,2011,53:589-596.
    [74]于美,徐永振,李松梅.钛合金的环保电化学抛光工艺[J].北京科技大学学报,2009,31(1):68-73.
    [75]Koji Fushimi, Hiroki Habazaki. Anodic dissolution of titanium in NaCl-containing ethylene glycol[J]. Electrochimica Acta,2008,53:3371-3376.
    [76]Koji Fushimi, Hirofumi Kondo, Hidetaka Konno. Anodic dissolution of titanium in chloride-containing ethylene glycol solution[J]. Electrochimica Acta,2009, 55:258-264.
    [77]Jan M Macak, Hiroaki Tsuchiya, Patrik Schmuki. High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium[J]. Angewandte Chemie International Edition,2005, 44:2100-2102.
    [78]Jan M Macak, Cordt Zol lfrank, Brian J Rodriguez, et al. Ordered Ferroelectric Lead Titanate Nanocellular Structure by Conversion of Anodic TiO2 Nanotubes[J]. Advanced materials,2009,21:3121-3125.
    [79]Yang Bangcheng, Masaiki Uchida, Kim Hyun Min. Preparation of bioactive titanium metal via anodic oxidation treatment[J]. Biomaterials.2004,25:1003-1010.
    [80]蔡健平,刘明辉,张晓云.钛合金脉冲阳极氧化膜抗电偶腐蚀性能及机理[J].材料保护,2009,42(3):15-17.
    [81]Neide K Kuromoto, Renata A Simao, Gloria A Soares. Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages[J]. Materials Characterization,2007,58:114-121.
    [82]Kazuhisa Azumi, Miho Nakajima, Kosuke Okamoto, et al. Dissolution of Ti wires in sulphuric acid and hydrochloric acid solutions[J]. Corrosion Science, 2007:469-480.
    [83]Diamanti M V, Pedeferri M P. Effect of anodic oxidation parameters on the titanium oxides formation[J]. Corrosion Science,2007,49:939-948.
    [84]Xia Z, Nanjo H, Aizawa T. Growth process of atomically flat anodic films on titanium under potentiostatical electrochemical treatment in H2SO4 solution[J]. Surface Science,2007,601:5133-5141.
    [85]Magdy A Ibrahim, Dujreutai Pongkao, Masahiro Yoshimura. The electrochemical behavior and characterization of the anodic oxide film formed on titanium in NaOH solutions[J]. Journal Solid State Electrochem,2002,6:341-350.
    [86]朱永明,胡会利,屠振密.钛阳极氧化处理工艺[J].电镀与精饰,2009,31(6):35-38.
    [87]师秀萍,朱永明,屠振密.钛的磷酸阳极氧化工艺[J].电镀与环保,2009,29(2):25-28.
    [88]李爱国.钛制涣热器内表面的阳极化处理[J].宁波化工,2006(1):22-25.
    [89]表面处理工艺手册编审委员会.表面处理工艺手册[M].上海:上海科学技术出版社,1992.
    [90]武朋飞,李谋成,沈嘉年.阳极氧化法制备光电化学防腐蚀二氧化钛薄膜[J].电化学,2004,10(3):353-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700