用户名: 密码: 验证码:
常见浮游植物磷脂脂肪酸特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷脂脂肪酸(phospholipid fatty acid,PLFA)不仅可用来研究浮游植物群落结构,还可用于浮游植物的稳定同位素分析以研究食物网结构和元素的生物地球化学循环。本文对淡水水体常见浮游植物进行了分离和培养,测定了其磷脂脂肪酸(PLFA);检测了惠州西湖等水体浮游植物磷脂脂肪酸,并结合浮游植物群落组成,分析了浮游植物磷脂脂肪酸特征及其与浮游植物群落结构的关系。结果表明,十八碳三烯酸α-亚麻酸(18:3ω3)、二十碳五烯酸EPA(20:5ω3)的相对百分含量均与裸藻和隐藻的细胞丰度和生物量呈显著正相关;二十碳五烯酸EPA(20:5ω3)的相对百分含量与硅藻的细胞丰度和生物量、二十二碳六烯酸DHA(22:6ω3)的相对百分含量与硅藻和隐藻的细胞丰度和生物量呈正相关;16:3ω3与绿藻的细胞丰度和生物量呈极显著的正相关。其中16:3ω3为绿藻门独有的脂肪酸。这些均与室内实验得到的结果相符合。本研究结果将为利用PLFA作为生物标志物来分析浮游植物组成提供参考,也为结合PLFA和同位素技术研究水生态系统食物网结构提供参考。
Phospholipid fatty acids (PLFA) can be used to study the phytoplankton communitystructure. And it can also be used for the studies of foodweb and element biogeochemical cyclingby analyzing the stable isotope of PLFA which can be converted to the stable isotope ofphytoplankton. In this study, we isolated and cultured some common phytoplankton species fromfresh water and measured PLFA contents. Meanwhile, we measured the PLFA of phytoplanktonfrom lakes and ponds such as Huizhou West Lake which were analyzed in relation tophytoplankton communities. The results showed that18:3ω3and EPA(20:5ω3)were positivelycorrelated with the abundance and biomass of Cryptomonas and Euglena; EPA(20:5ω3)had apositive correlation with the abundance and biomass of diatom; DHA(22:6ω3)had a positivecorrelation with the abundance and biomass of diatom and Cryptomonas.16:3ω3were onlypositively correlated with the abundance and biomass of green algae. Among them,16:3ω3waslikely specific to the green algae. This study suggests that PLFA might be used as biomakers toanalyze the community composition of phytoplankton, and be used to explore the method ofisotope technology for food web in aquatic ecosystems.
引文
[1]蔡文贵,李纯厚,贾晓平等.粤西海域浮游植物群落结构特征的多元分析与评价[J].水生生物学报,2007,31(2):155-161.
    [2]范荣桂,朱东南,邓岚.湖泊富营养化成因及其综合治理技术进展[J].水资源与水工程学报,2010,21(6):26-30.
    [3]郭沛涌,沈焕庭等.应用浮游植物监测与评价长江口水体营养状况[J].海洋科学,2009,33(12):68-72.
    [4]侯传宝,刘雯雯.虾池蓝藻及其发生的原因、危害和防控[J].齐鲁渔业,2010,12(2):43-47.
    [5]胡鸿钧,李尧英.中国淡水藻类[M].上海:上海科学技术出版社,1980.
    [6]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M].北京:中国环境科学出版社,1990.
    [7]金相灿.我国主要湖泊和水库水体的营养特征及其变化[J].环境科学研究,1991,4(1):11-12.
    [8]金相灿.中国湖泊富营养化[M].北京:中国环境科学出版社,1990:3-4.
    [9]况琪军,马沛明,胡征宇等.湖泊富营养化的藻类生物学评价与治理研究进展[J].安全与环境学报,2005,5(2):87-91.
    [10]况琪军,于军,葛建华等.香溪河流域浮游植物调查与水质评价[J].武汉植物学研究,2004,22(6):507-513.
    [11]李荷芳,周汉秋.海洋微藻脂肪酸组成的比较研究[J].海洋与湖沼,1999,30(1):34-39.
    [12]李文权,蔡阿根,王宪等.光和营养盐对三角褐指藻生化组成的影响[J].中国环境科学,1994,14(3):185-189.
    [13]李小琴.太湖水华优势藻的环境特性及藻-菌作用机制[D].南京:东南大学,2010,12-31.
    [14]李志文.雨生红球藻内生蓝藻的发现及其生理生化特性的初步研究[D].天津:河北工业大学,2011,15-24.
    [15]刘波,胡桂萍,郑雪芳等.利用磷脂脂肪酸(PLFAs)生物标记法分析水稻根际土壤微生物多样性[J].中国水稻科学,2010,24(3):278-288.
    [16]刘京,胡章立.藻类快速鉴定研究进展[J].生物技术通讯.2005,16(6):700-702.
    [17]刘梦坛,李超伦,孙松.两种甲藻和两种硅藻脂肪酸组成的比较研究[J].海洋科学,2010,34(10):77-82.
    [18]娄云.富营养化浅水湖泊治理方法初探[J].吉林水利,2005,(9):34-37.
    [19]米铁柱,甄毓,于志刚等.海洋浮游藻类检测技术发展与展望[J].高技术通讯,2003,13(3):96-100.
    [20]彭近新,陈慧君.水质富营养化与防治[M].北京:中国环境科学出版社,1988.
    [21]钱奎梅,王丽萍等.太湖浮游植物群落的有机碳生产及其影响因子分析[J].湖泊科学,2009,21(6):834-838.
    [22]沈韫芬,章宗涉等.微型生物检测新技术[M].北京:中国建设出版社,1990:95-104.
    [23]隋战鹰.浮游藻类与水质污染监测[J].生物学通报,2002,37(8):49.
    [24]王丹.水域富营养化的原因及生物控制措施[J].养殖技术顾问,2010,11:160-164.
    [25]王高鸿,黄家权,李敦海等.水华藻类的分子鉴定研究进展[J].水生生物学报,2004,28(2):207-212.
    [26]王国祥,成小英,濮培民.湖泊藻型富营养化控制——技术、理论及应用[J].湖泊科学,2002,14(3):273-282.
    [27]颜慧.长期施肥对土壤微生物磷脂脂肪酸多样性和酶活性的影响[D].南京:南京师范大学,2007,4-24.
    [28]游江涛,董丽华,韩博平.热带富营养化湖泊中浮游植物的脂肪酸组成与分布[J].湖泊科学,2005,17(1):69-74.
    [29]张乃群,杜敏华,庞振凌等.南水北调中线水源区浮游植物与水质评价[J].植物生态学报,2006,30(4):650-654.
    [30]张秋芳,刘波,林营志等.土壤微生物群落磷脂脂肪酸PLFA生物标记多样性[J].生态学报,2009,29(8):4127-4137.
    [31]张玉君.环境因素对浮游生物脂肪酸影响的研究[D].青岛:中国海洋大学环境科学与工程学院,2010.
    [32]张志明.高原湖泊富营养化发生机制与防治对策初探[J].环境科学导刊,2009,28(3):52-56.
    [33]赵大勇,燕文明,冯景伟等.磷脂脂肪酸分析在湖泊沉积物微生物生态学研究中的应用[J].化学与生物工程,2009,26(12):17-20.
    [34]赵先富,于军,葛建华等.青岛棘洪滩水库浮游藻类状况及水质评价[J].水生生物学报,2005,29(6):639-644.
    [35]钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报,2004,15(5):899-904.
    [36] Ahlgren G, Gustafsson I, Boberg M. Fatty acid content and chemical composition offreshwater microalgae[J]. Journal of Phycology,1992,28:37-50.
    [37] Arhonditsis G, Karydis M, Tsirtsis G. Analysis of phytoplankton community structureusing similarity indices: A new methodology for discriminating among eutrophicationlevels in coastal marine ecosystems[J]. Environmental Management,2003,31(5):619-632.
    [38] Astrid M, Petra C, Claudia O, et al.. Biosynthesis of Docosahexaenoic Acid in Euglenagracilis: Biochemical and Molecular Evidence for the Involvement of a Δ4-Fatty AcylGroup Desaturase[J]. Biochemistry,2003,42(32):9779-9788.
    [39] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification[J].Canadian Journal of Biochemistry and Physiology,1959,37:911-917.
    [40] Boschker H T S, Middelburg J J. Stable isotopes and biomarkers in microbial ecology[J].Microbiology Ecology,2002,40(2):85-95.
    [41] Bossio D A, Scow K M, Gunapala N, et al.. Determinants of soil microbial communities:effects of agricultural management, season, and soil type on phospholipid fatty acidprofiles[J]. Microbiology Ecology,1998,36:1-12.
    [42] Brown M R, Dunstan G A, Norwood S J, et al.. Effects of harvest stage on thebiochemical composition of the diatom Thalassionsira pseudonana [J]. Journal ofPhycology,1996,32:64-73.
    [43] Bulgakov N G, Abakumov V A, Maximov V N, et al.. Technical aspects of using rankdistributions of phytoplankton abundance for the analysis of mass data of freshwaterecological monitoring. Approximate calculations[J]. Biology Bulletin,2005,32(6):597-603.
    [44] Dijkman N A, Boschker H T S, et al.. Composition and heterogeneity of the microbialcommunity in a coastal microbial mat as revealed by the analysis of pigments andphospholipid-derived fatty acids[J]. Journal of Sea Research,2010,63:62-70.
    [45] Dijkman N A, Kromkamp J C. Phospholipid-derived fatty acids as chemotaxonomicmarkers for phytoplankton: application for inferring phytoplankton composition[J].Marine Ecology Progress Series,2006,324(1):113-125.
    [46] Dunstan G A, Volkman J K, Battett S M, et al.. Essential polyunsaturated fatty acids from14species of diatoms[J]. Phytochemistry,1993,35(1):155-161.
    [47] Eric D A, Marty J C, Denant V, et al.. Phytoplanktonic sources of volatile aldehydes inthe River Rhone Estuary[J]. Estuarine, Coastal and Shelf Science,1991,32:463-482.
    [48] Evans E H, Foulds I, Carr N G. Environmental conditions and morphological variation inthe blue-green Chlorogloea fritschii[J]. Journal of General Microbiology,1976,92:147.
    [49] Franzmann P D, Patterson B M, Power T R,et al.. Microbial biomass in a shallow, urbanaquifer contaminated with aromatic hydrocarbons: analysis by phospholipid fatty acidcontent and composition[J]. Journal of Applied Bacteriology,1996,80:617-625.
    [50] Frostegard A, Baath E, Tunlid A. Shifts in the structure of soil microbial communities inlimed forests as revealed by phospholipid fatty acid analysis[J]. Soil Biology andBiochemistry,1993a,25:723-730.
    [51] Frostegard A, Petersen S, Baath E, et al.. Dynamics of a microbial community associatedwith manure hot spots as revealed by phospholipid fatty acid analysis[J]. AppliedEnvironmental Microbiology,1997,63:2224-2231.
    [52] Graeme A D, Malcolm R B, John K V. Cryptophyceae and rhodophyceae:chemotaxonomy, phylogeny, and application[J]. Phytochemistry,2005,66(21):2557-2570.
    [53] Grimalt J O, Wit R, Teixidor P. Lipid biogeochemistry of Phormidium and Microcoleusmats[J]. Organic Geochemistry,1992,19:509-530.
    [54] Henderson R J, Sargent J R. Lipid biosynthesis in rainbow trout, Salmo gairdneri, feddiets of differing lipid content[J]. Comparative Biochemistry and Physiology,1981,69:31-37.
    [55] Hill G T, Mitkowski N A, Aldrich-Wolfe L, et al.. Methods for assessing the compositionand diversity of soil microbial communities[J]. Applied Soil Ecology,2000,15:25-36.
    [56] Izquierdo M S, et al.. Effect of n-3HUFA levels in artemia on growth of larval. Japaneseflounder (Paralichthys olivaceus)[J]. Aquaculture,1992,(1):73-82.
    [57] Jeffrey M R, Scott E B, Milton R S. Changes in fatty acid profiles of thermo-intolerantand thermo-tolerant marine diatoms during temperature stress[J]. Journal of ExperimentalMarine Biology and Ecology,2003,295:145-156.
    [58] Jeffrey S W, Mantoura R F, Wright S W(eds). Phytoplankton pigments in oceanography:guidelines to modern methods[G]. UNESCO Monographs on Ocenographic Methodology,Paris,1997,(10).
    [59] Kato, S. Laboratory culture and morphology of Colacium vesiculosum Ehrb.(Euglenophyceae)[J]. Japanese Journal of Phycology.1982,30:63-67.
    [60] Kayama M, Araki S S. Lipids of marine plants[M]. Florida: CRC Press, Inc.1989,3-48.
    [61] Kenyon C N, Stanier R Y, Rippka R. Fatty-acid composition and physiological propertiesof some filamentous blue-green algae[J]. Archiv fur Mikrobiologie,1972,83:216-236.
    [62] Khotimchenko S V. Fatty acid composition of12species of Chlorophyceae from theSenegalese coast[J]. Phytochemistry,1992,31(8):2739-2741.
    [63] Korn E D. The fatty acids of Euglena gracilis[J]. The Journal of Lipid Research,1964,5:352-362.
    [64] Kris-Etherton P M, Krummel D, Russeell M E, et al.. The effect of diet on plasma lipids,lipoproteins, and coronary heart disease[J]. Journal of the American Dietetic Association,1988,88(11):1373-1400.
    [65] Laura Barsanti, Alessandra Bastiani, et al.. Fatty acid content in wild type and WZSLmutant of Euglena gracilis[J]. Journal of Applied Phycology,2000,12(5):515-520.
    [66] Lavoie I, Campeau S, Fallu M A, et al.. Diatoms and biomonitoring: should cell size beaccounted for?[J]. Hydrobiologia,2006,573:1-16.
    [67] Lechevalier H, Lechevalier M P. Chemotaxonomic use of lipids: an overview[J].Microbial Lipids,2001:869-902.
    [68] Lechevalier M P. Lipids in bacterial taxonomy: a taxonomist’s view[J]. Critial Reviews inMicrobiology,1997,5:109-210.
    [69] Millner H W. The fatty acids of Chlorella[J]. J Biochem,1948,176:813-817.
    [70] Moodley, L.H. T. S. Boschker, J. J. Middelburg, et al. Ecological significance of benthicforaminifera:13C labelling experiments[J]. Marine Ecology Progress Series,2000,202:289-295.
    [71] Muller-Navarra D C, Brett M T, Anne M. A highly unsaturated fatty acid predicts carbontransfer between primary producers and consumers[J]. Nature,2000,403(6):4-77.
    [72] Muriel Gugger, Christina Lyra, et al.. Celluar fatty acids as chemotaxonomic markers ofthe genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix(cyanobacteria)[J]. International Journal of Systematic and Evolutionary Microbiology,2002,52:1007-1015.
    [73] Nichols D S, Nichols P D, Sullivan C W. Fatty acid, sterol and hydrocarbon compositionof Antarctic sea ice diatom communities during spring bloom in McMurdo Sound[J].Antarctic Science,1993,5(3):271-278.
    [74] Oberholster P J, Botha A M, Cloete T E. Using a battery of bioassays, benthicphytoplankton and the AUSRIVAS method to monitor long-term coal tar contaminatedsediment in the Cache la Poudre River, Colorado[J]. Water Research,2005,39(20):4913-4924.
    [75] Paerl H W, Valders L M, Pinckney J L, et al. Phytoplankton photopigments as indicatorsof estuarine and coastal eutrophication[J]. Bioscience,2003,53(10):953-964.
    [76] Reitan K I, Rainuzzo J R, Olsen Y. Effect of nutrientlimitation on fatty acid and lipidcontent of marine microalgae[J]. Journal of Phycology,1994,30:907-979.
    [77] Shah, H.N. The genus Bactericides and related taxa, In: Balow A., Trtiper H.G., DworkinM(eds). The Prokaryotes. New York, Berlin, Heidelberg: Springer,1992,3593-3608.
    [78] Silvie Salomonová, Jarmila Lama ová, Martin Rulík et al.. Determination ofphospholipid fatty acids in sediments[J]. Acta Universitatis Palackianae OlomucensisFacultas Rerum Naturalium,2003,42:39-49.
    [79] Stanier R Y, Kunisaw M M, Cohen-Bazre G. Purification and properties of unicellularblue-green algae (order Chroococcales)[J]. Bacterial Rev,1971,35:171-201.
    [80] Sushchik N N, Gladyshev M I, et al.. Particulate fatty acids in two small Siberianreservoirs dominated by different groups of phytoplankton[J]. Freshwater Biology,2003,48(3):394-403.
    [81] Viso A C, Marty J C. Fatty acids from28marine microalgae[J]. Phytochemistry,1993,34(6):1521-1533.
    [82] Volkman J K, Eglinton G, Corner E D. Sterols and fatty acids of the marine diatombiddulphia sinensis[J]. Phytochemistry,1980,19(8):1809-1813.
    [83] Volkman J K, Jeffery S W, Nichols P D et al.. Fatty acid and lipid composition of10species of microalgae used in mariculture[J]. Journal of Experimental Marine Biologyand Ecology,1989,128:219-240.
    [84] Volkman J K, Jeffery S W, Nichols P D et al.. Fatty acid and lipid composition of10species of microalgae used in mariculture[J]. Journal of Experimental Marine Biologyand Ecology,1989,128:219-240.
    [85] Vollenweider R A. Advances in defining critical loading levels for phosphorus in lakeeutrophication[J]. Men. IstIta. Idrobio.,1976,33(2):53-83.
    [86] Vollenweider R A. Scientific fundamentals of the eutrophication of lakes and flowingwaters, with particular reference to nitrogen and phosphorus as factors in eutrophication(No. DAS/CSI/68.27)[R]. Paris: Organization for Economic Cooperation andDevelopment,1968:192.
    [87] Watanabe T. The importance of docosahexaenoic acid in marine larval fish[J]. WorldAquaculture Society,1993,(2):152-161.
    [88] Wood B. J. B. Lipids of algae and protozoa. In:(C. Ratledge and S. G. Wilkinson, eds)Microbial Lipids. Academic Press, London.1988.807-67.
    [89] Zelles L, Bai Q Y. Fractionation of fatty acids derived from soil lipids by soil phaseextraction and their quantitative analysis by GC-MS[J]. Soil Biology and Biochemistry,1993,25:495-507.
    [90] Zelles L. Fatty acid patterns of microbial phospholipids and lipopolysaccharides. In:Schinner F, Ohlinger R, Kandeler E, et al.(eds). Methods in soil biology[G]. Springer,Berlin Heidelberg New York,1996,80-93.
    [91] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in thecharacterization of microbial communities in soil: A review[J]. Biology and Fertility ofSoils,1999,29:111-129.
    [92] Zhu C J, Lee Y K, Chao T M. Effects of temperature and growth phase on lipid andbiochemical composition of Isochrysis galbana TK1[J]. Journal of Applied Phycology,1997,9:451-457.
    [93] Zhukova N V, Aizdaicher N A. Fatty acid composition of15marine microalgae[J].Phytochemistry,1995,39(2):351-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700