长江口滨岸潮滩重金属环境生物地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以长江口滨岸潮滩为典型地区,选择几种重金属元素Cu、Pb、Fe、Mn、Zn、Cr等为研究对象,分析在受自然和高强度人类活动综合作用下的河口潮滩生态系统中,重金属元素在水体—沉积物—生物三相介质中的分布、累积、迁移和转化规律及其生态效应,探讨河口潮滩重金属的主要来源及其输入途径,估算潮滩重金属主要的源汇通量及其在滞留重金属方面所作的贡献大小,并以崇明东滩为典型断面试图建立潮滩重金属收支平衡模式,同时对整个长江口滨岸潮滩底质重金属进行了环境质量及生态风险评价。主要得到以下几条结论:
     (1) 长江口潮滩沉积物中的重金属含量处于我国中等偏下水平。评价结果显示,XP、SDK和LG的重金属污染水平最高,但仍属中度污染,其中Zn的污染贡献最大;从沉积物潜在生态危害程度来看,只有长江口南岸潮滩沉积物表现出中等的生态危害,其中Cu的毒性贡献最大。石洞口排污口及黄浦江等几条入海河流是重金属污染物输入的主要通道,水合铁锰氧化物是长江口地区重金属污染物输运、迁移的主要载体,受长江冲淡水及涨潮流双向水流的共同作用,重金属污染物大多滞留于长江口南岸边滩,并有相当一部分随涨潮流在上游潮滩中发生沉降与累积。极端天气条件比如风暴潮在短时间内虽能造成潮滩的严重侵蚀,但在较长的时间尺度下,不会影响潮滩重金属收支平衡。
     (2) 在长江口潮滩沉积物中,Cu、Fe、Zn、Cr均以残渣态含量为主,Mn以碳酸盐结合态为主,其含量在48%以上,Pb的碳酸盐结合态、残渣态与铁锰氧化物结合态含量都很高。各重金属元素的非残渣态部分所占百分含量的排序为Mn>Pb>Zn>Cu>Cr>Fe。在非残渣态中,碳酸盐结合态以Mn、Pb、Zn的含量最高,铁锰氧化物结合态以Pb的含量最高,有机结合态中Zr、Cu、Pb的含量达到9%以上。与总量相比,生物可利用态重金属所占百分含量依次为Cu 26%、Pb 36%、Fe 7%、Mn 49%、Zn 32%、Cr 14%和Al 1.6%,其大小顺序与前述非残渣态重金属所占百分含量排序一致,说明HA可提取态重金属可以用来解释沉积物中重金属的生物有效性问题。
     (3) 重金属在潮滩沉积物中的迁移与转化受早期成岩作用、植被生长发育等多种因素的共同作用。在水动力作用较弱、没有植被生长的潮滩中,早期成岩作用对重金属在表层或次表层沉积物中的富集贡献较大。在有植物生长的高、中潮滩,夏、秋季根系的吸收富集使沉积物中的重金属含量降低,冬、春季死亡植物根系的归还使沉积物中的重金属含量相应上升。在污染较为严重、水动力作用相对较弱的潮滩沉积物中,Cu、Pb的地球化学行为主要受沉积物中有机质含量变化的控制,当有机质有充分时间进行降解时,Cu、Pb被溶解释放出来并发生扩散迁移,当沉积物淤积速度较快时,有机质来不及降解,在有机质含量高的沉积物层Cu、Pb含量也相对升高。
    
    华东帅范人学2004届博士学位论文
    摘要
     (4)在水动力作用较强、受人为干扰较小的潮滩沉积物中,Fe、Mn、Cr、Zr等元素
    的峰值分布可以作为地球化学标记层来判断潮滩的冲淤变化。从春季到冬季,位于长江日北
    岸的寅阳近岸潮滩冲淤基本持平,但其季节冲淤变幅较大,达3一6cm。芦潮港近岸潮滩以侵
    蚀冲刷为主,潮滩冲淤变幅达7一scm。崇明东滩的季节性冲淤变幅较大,但总体上表现出淤
    积的趋势。沉积物中这种地球化学标记层的确定可以为研究潮滩冲淤变化提供一个颇有价值
    的替代「具。但在污染较为严重的地区,由于污染物掩盖了自然来源重金属的变化特征,沉
    积物中重金属的含量峰值不能作为地球化学标记层来判断潮滩的冲淤变化。
     (5)在涨落潮过程中,颗粒态重金属一般在涨潮初期、高平潮前后及落潮末期出现较
    高含量。水体的盐度、Do及pH等环境因子对潮周期内颗粒态重金属的变化影响不大,悬
    浮颗粒中    说明这种变化土要与水动力条件有关。当水体流速增大时,底部再悬浮颗粒对水体中的颗粒
    态重金属起了很大的稀释效应,当水动力条件变弱时,粗颗粒大量沉降,单位质量的悬浮颗
    粒中细颗粒及其吸附与捕集的重金属含量相应上升。在秋季一次大潮过程中,颗粒态重金属
    在崇明东滩om线以上滩地中的滞留量分别为:Cu 2.lt、Pb 1.3t、Fe 2706t、Mn49.2t、zn
    7 It、Cr 2.2t和AI 4650t。
     (6)芦苇与海三棱蕉草是长江口滨岸潮滩的优势种群,这两种植物对重金属的吸收具
    有较强的调节作用,不受沉积物中重金属含量的控制。Cu、Pb、Fe、Zn、C:在植物根系中
    的含量最高,Mn在海三棱蕉草茎叶中的含量接近或超过根系中的含量。海三棱蔗草枯叶能
    大量富集Cu、Pb、Fe、Zn、Cr,这种富集主要是由细颗粒沉积物的注入引起的,Mn在枯
    叶中未出现富集现象。海三棱蕉草与芦苇单位面积内对Fe的吸收量最大,其次依次是Mn、
    /n和Cu,对Pb、Cr的吸收量最小,比其它生物必需元素低一至几个数量级。单位面积内
    芦苇地上组织比海三棱蕉草能吸收更多的重金属。
     (7)河蚁是长江口潮滩湿地特别是低潮滩分布最广的大型底栖动物,重金属主要在河
    蚁的软体组织中富集。河蚁对Cu有明显的选择性吸收作用,使河蛆体?
The intertidal flat in coastal areas of the Yangtze estuary is a complex ecosystem influenced both by natural factors and strong human activities. The distribution, accumulation, transport and fate of heavy metals such as Cu, Pb, Fe, Mn, Zn, Cr and their ecological effects in water-sediment-organisms of such an ecosystem were analysed. Sources and transport channels of heavy metals in intertidal flat of the estuary were discussed. Based on which, the source fluxes and retention of heavy metals were quantitatively estimated. This is favourable for evaluating the intertidal flat contribution in accumulating heavy metals to the whole estuary. The intertidal flat in eastern shore of the Chongming Island was selected for a typical area to construct mass balance for heavy metals. Moreover, environment quality assessment and ecological risk assessment of the heavy metals in intertidal sediments were performed for the whole estuary. The main conclusions can be summed up as follows.
    (1) Concentrations of heavy metals in intertidal sediments of the Yangtze estuary lie between the mid to lower range for Chinese estuarine and coastal sediments indicating that the Yangtze Estuary receives low but appreciable heavy metal contaminant inputs. Assessment results show that the highest pollution of heavy metals lie in XP (Xu Pu), SDK (Shi Dong Kou) and LG (Lao Gang), but the pollution level of these areas belongs to mid pollution range, in which Zn contribute the most. Moreover, mid potential ecological risk of heavy metals in intertidal sediments is only found along the southern coast of the estuary, in which Cu is the most toxic element. Sewage outlet at SDK and main rivers flowing to the estuary such as Huangpu River are the main pollutant input channels and the hydro-oxides of iron and manganese are the main carriers when pollutants enter the water and are transported. Influenced by the fresh water and the tidal current, most of the heavy metals are deposited in the southern region and some
     even deposited in the upper areas of the estuary following the flood-tide current. Extreme weather conditions such as storm tide can cause heavily erosion of the intertidal sediments in short term, but may not largely influence the mass balance for heavy metals in intertidal sediments in a long time scale.
    (2) Cu, Fe, Zn and Cr in intertidal sediments of the Yangtze estuary are mainly in residual fraction, while the major chemical association of Mn is carbonates, with the content up to 48%. The carbonates, residuals and Fe-Mn oxides of Pb have similar contents in the sediments.
    Concentrations of non-residual heavy metals can be ordered as follows: Mn>Pb>Zn>Cu>Cr>Fe. In the non-residuals, the carbonates of Mn, Pb and Zn have high contents than the other elements and the Fe-Mn oxides have the highest content in Pb. Contents of the organic matter fraction were higher for Cr, Cu and Pb, with the contents up to 9%. The percentages of reducible Cu, Pb, Fe, Mn, Zn, Cr and Al in total concentrations are respectively 26%, 36%, 7%, 49%, 32%, 14% and 1.6%. This order is similar to that of the non-residuals, showing that the bioavailability of heavy metals can be represented by the concentrations of reducible heavy metals available to HA
    
    
    
    
    (hydroxylamine hydrochloride in 25% (v/v) acetic acid) to a large extent.
    (3) The transport and transformation of heavy metals in intertidal sediments are influenced by many factors such as the early diagenetic process, plant growing and so on. Concentrations of metals show surface or sub-surface elevation in mudflat sediments with weak hydrodynamic conditions, which are mainly caused by sediment early diagenetic process. However in salt marsh sediments, the concentrations of heavy metals at the depth of 5-15cm decrease gently due to the absorption of plant roots in summer and autumn and increase gradually to reach broad sub-surface maxima due to the metal release from the decomposition of plant roots at the same depth range in winter and spring. The biogeochemical activities of Cu and P
引文
Alberts JJ, Price MT, Kania M. Metal concentrations in tissues of Spartina alterniflora (Loisel.) and sediments of Georgia salt marshes. Estuarine, Coastal and Shelf Science, 1990, 30: 47-58.
    Alongi DM, Boyle SG, Tirendi F, et al. Composition and behaviour of trace metals in Post-oxic sediments of the gulf of Papua, Papua New Guinea. Estuarine, Coastal and Shelf Science, 1996, 42:197-211.
    Alongi D. M. 1998. Coastal and ecosystem processes. Marine Science Series, CRC Press, London, UK.
    Babukutty Y and Chacko J. Chemical partitioning and bioavailability of lead and nickel in an estuarine system. Environmental Toxicology and Chemistry, 1995, 14(3): 427-434.
    Balls PW. Distribution and composition of suspended particulate material in the Clyde Estuary and associated sea lochs. Estuarine, Coastal and Shelf Science, 1990, 30: 457-487.
    Birch G, Taylor S. Source of heavy metals in sediments of the Port Jackson estuary, Australia. The Science of the Total Environment, 1999, 227: 123-138.
    Bird FL, Boon PI, Nichols PD. Physicochemical and microbial properties of burrows of the deposit-feeding Thalassinidean Ghost Shrimp Biffarius arenosus (Decapoda: Callianassidae). Estuarine, Coastal Shelf Science, 2000, 51: 279-291.
    Black KS. Paterson DM, Cramp A. 1998. Sedimentary processes in the intertidal zone. Special Publication 139. Geological Society, London. UK
    Botto F, Iribarne O. Contrasting effects of two burrowing crabs (Chasmagnathus granulate and uca uruguayensis) on sediment composition and transport in estuarine environments. Estuarine, Coastal and Shelf Science, 2000, 51: 141 - 151.
    Brügmann L. Metals in sediments and suspended matter of the river Elbe. The Science of the Total Environment, 1995, 195: 53-65.
    Burke DJ, Weis JS, Weis R Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis, Estuarine. Coastal and Shelf Science, 2000, 51:153-159.
    Cacador I, Vale C, Catarino F. Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus estuary salt marshes, Portugal. Estuarine, Coastal and Shelf Science, 1996, 42: 393-403.
    Cacador I, Vale C, Catarino F. Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritime and Halimione portulacoides from Tagus estuary salt marshes. Marine Environmental Research, 2000, 49: 279-290.
    Che Y. He Q, Lin W-Q. The distributions of particulate heavy metals and its indication to the transfer of sediments in the Changjiang Estuary and Hangzhou Bay, China. Marine Pollution Bulletin, 2003, 46: 123-131.
    Cheevaporn V. Jacinto GS, Diego-Mcglone MLS. Heavy metal fluxes in Bang Pakong River estuary, Thailand: Sedimentary vs diffusive fluxes. Marine Pollution Bulletin, 1995, 31(4-12): 290-294.
    Chen Z, Kostaschuk R, Yang M. Heavy metals on tidal flats in the Yangtze Estuary, China. Environmental Geology, 2001, 40(6): 742-748.
    Chiffoleau J-F, Auger D, Chattier E. Fluxes of selected trace metals from the Seine estuary to the eastern English Channel during the period August 1994 the July 1995. Continental Shelf Research, 1999, 19: 2063-2082.
    Covelli S, Faganeli J, Horvat M, et al. Porewater distribution and benthic flux measurements of mercury and methylmercury in the Gulf of Trieste (Northern Adriatic Sea). Estuarine, Coastal and Shelf Science, 1999, 48: 415-428.
    Feng H, Cochran JK, Lwiza H, et al. Distribution of heavy metal and PCB contaminants in the sediments of an urban estuary: the Hudson River. Marine Environmental Research, 1998, 45(1): 69-88.
    Feng H. Cochran JK, Hirschberg DJ. ~(234)Th and ~7Be as as tracers for transport and sources of particle-associated contaminants in the Hudson River Estuary. The Science of the Total Environment, 1999, 237/238: 401-418.
    Feng H, Cochran JK, Hirschberg DJ. Transport and sources of metal contaminants over the course of tidal cycle in the turbidity maximum zone of the Hudson River estuary. Water Research, 2002, 36: 733-743.
    Fernandes HM. Heavy metal distribution in sediments and ecological risk assessment: the role of diagenetic processes in
    
    reducing metal toxicity in bottom sediments. Environmental Pollution, 1997, 97(3):317-325.
    Gambrell LP, Wiesepape JB, Patrick WH, et al. The effects of pH, redox, and salinity on metal release from a contaminated sediment. Water, Air and Soil Pollution, 1991, 57-58: 359-367.
    Graf G. Do benthic animals control the particle exchange between bioturbated sediments and benthic turbidity zones? Biogeochemical Cycling and Sediment Ecology, 1999, 153-159.
    Hatje V, Birch GF, Hill DM. Spatial and temporal variability of particulate trace metals in Port Jackson Estuary, Australia. Estuarine, Coastal and Shelf Science, 2001, 53: 63-77.
    Jickells TD. Nutrient biogeochemistry of the coastal zone. Science, 1998, 281:217-222.
    Kerner M, Wallmann K. Remobilization events involving Cd and Zn from intertidal flat sediments in the Elbe Estuary during the tidal cycle. Estuarine, Coastal and Shelf Science, 1992, 35: 371-393.
    Lee SV, Cundy AB. Heavy metal contamination and mixing processes in sediments from the Humber estuary, eastern England. Estuarine, Coastal and Shelf Science, 2001, 53: 619-636.
    Leendertse PC, Scholten MCTh, Wal JT. Fate and effects of nutrients and heavy metals in experimental salt marsh ecosystems. Environmental Pollution, 1996, 94(1): 19-29.
    Li X, Shen Z, Wai OWH, et al. Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl river estuary. Marine Pollution Bulletin, 2001, 42(3): 215-223.
    Martin J. Attrill, R. Myles Thomes. Heavy metal concentrations in sediment from the Thames estuary, UK. Marine Pollution Bulletin, 1995, 30(11): 742-744.
    Martino M, Turner A, Nimmo M, Millward GE. Resuspension reactivity and recycling of trace metals in the Mersey Estuaty, UK. Marine Chemistry, 2002, 77: 171-186.
    Michel P, Boutier B, Chiffoleau J-F. Net fluxes of dissolved arsenic, cadmium, copper, zinc, nitrogen and phosphorus from the Gironde estuary (France): seasonal variations and trends. Estuarine, Coastal and Shelf Science, 2000, 51:451-462.
    Millward GE, Glegg GA. Fluxes and retention of trace metals in the Humber estuary. Estuarine, Coastal and Shelf Science, 1997, 44 (Suppl. A): 97-105.
    Mortimer RJG, Davey JT, Krom MD, et al. The effect of macrofauna on porewater profiles and nutrients fluxes in the intertidal zone of the Humber Estuary. Estuarine, Coastal and Shelf Science, 1999, 48: 683-699.
    Mortimer RJG, Rae JE. Metal speciation (Cu, Zn, Pb, Cd) and organic matter in oxic to suboxic salt marsh sediments, Severn Estuary, Southwest Britain. Marine Pollution Bulletin, 2000, 40(5): 377-386.
    Munksgaard NC, Batterham GJ, Parry DL. Lead isotope ratios determined by ICP-MS: Investigation of anthropogenic lead in seawater and sediment from the Gulf of Carpentaria, Australia. Marine Pollution Bulletin, 1998, 36: 527-534.
    Nedwell D.B., Taffaelli D.G. 1999. Advances in ecological research: Estuaries. Academic Press, London, UK.
    Nolting RF, Sundby B, Duinker JC. The behaviour of minor and major elements in suspended matter in the Rhine and Meuse rivers and estuary. Science of the Total Environment, 1990, 97/98: 169-180.
    Nolting RF, Helder W, Baar HJW, et al. Contrasting behaviour of trace metals in the Scheldt estuary in 1978 compared to recent years. Journal of Sea Research, 1999, 42:275-290.
    Orson RA, Simpson RL, Good RE. A mechanism for the accumulation and retention of heavy metals in tidal freshwater marshes of the upper Delaware River Estuary. Estuarine, Coastal and Shelf Science, 1992, 34:171-186.
    Rees JG, Ridgway J, Knox RWOB, et al. Sediment-borne contaminants in rivers discharging into the Humber estuaty, UK. Marine Pollution Bulletin, 1998, 37(3-7): 316-329.
    Regnier P, Wollast R. Distribution of trace metals in suspended matter of the Scheldt estuary. Marine Chemistry, 1993, 43: 3-19.
    Riedel GF, Sanders JG, Osman RW. Biogeochemical control on the flux of trace elements from estuarine sediments: effects of seasonal and short-term hypoxia. Marine Environmental Research, 1999, 47: 349-372.
    Rozan TF and Benoit Ca Heavy metal removal efficiencies in a river-marsh system estimated from patterns of metal accumulation in sediments. Marine Environmental Research, 1999, 48: 335-351.
    
    
    Sagemann J, Skowronek F, Dahmke A, et al. Pore-water response on seasonal environmental changes in intertidal sediments of the Wester Estuary, Germany. Environmental Geology, 1996, 27: 362-369.
    Santschi P. Hhener P, Benoit G, et al. Chemical processes at the sediment-water interface. Marine Chemistry, 1990, 30: 269-315.
    Saulnier I, Mucci A. Trace metal remobilization following the resuspension of estuarine sediments: Saguenay Fjord, Canada. Appllicd Geochemistry, 2000, 15: 191-210.
    Soto-Jiménez MF, Páez-Osuna F. Distribution and normalization of heavy metal concentrations in mangrove and lagoonal sediments from Mazatlān Harbor (SE Gulf of California). Estuarine, Coastal and Shelf Science, 2001, 53: 259-274.
    Stecko JRP, Bendell-Young LI. Contrasting the geochemistry of suspended particulate matter and deposited sediments within an estury. Applied Geochemistry, 2000, 15: 753-775.
    Tang D, Warnken KW, Santschi PH. Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston Bay waters Marine Chemistry, 2002, 78: 29-45.
    Thomas CA, Bendell-Young LI. The significance of diagenesis versus riverine input in contributing to the sediment geochemical matrix of iron and manganese in an intertidal region, estuary. Estuarine, Coastal and Shelf Science, 1999,48: 635-647.
    Turner A, Millward GE, Morris AW. Particulate metals in five major North Sea estuaries. Estuarine, Coastal and Shelf Science, 1991, 32: 325-346.
    Turner A, Millward GE, Schuchardt B, et al. Trace metal distribution coefficients in the Weser Estuary (Germany). Continental Shelf Research, 1992, 12: 1277-1292.
    Turner A, Millward GE, Tyler AO. The distribution and chemical composition of particles in a macrotidal estuary. Estuarine, Coastal, and Shelf Science, 1994, 38: 1-17.
    Turner A. Diagnosis of chemical reactivity and pollution sources from particulate trace metal distributions in estuaries. Estuarine, Coastal and Shelf Science, 1999, 48: 177-191.
    Turner A. Trace metal contamination in sediments from U.K. estuaries: an empirical evaluation of the role of hydrous iron and manganese oxides, estuary. Estuarine, Coastal and Shelf Science, 2000, 50: 355-371.
    Turner A and Millward GE. Particle dynamics and trace metal reactivity in estuarine plumes. Estuarine, Coastal and Shelf Science, 2000, 50: 761-774.
    Warnken KW, Gill GA, Griffin LL, et al. Sediment-water exchange of Mn, Fe, Ni and Zn in Galveston Bay, Texas. Marine Chemistry, 200 1, 73 : 215-231.
    Wen L-S, Santschi P. Gill G, et al. Estuarine trace metal distributions in Galveston Bay: importance of Colloidal forms in the speciation of the dissolved phase. Marine Chemistry, 1999, 63: 185-212.
    Williams TP, Bubb JM, Lester JN. Metal accumulation within salt marsh environments: a review. Marine Pollution Bulletin, 1994, 28(5): 277-290.
    Windom HL, Niencheski LF, Smith RG. Biogeochemistry of nutrients and trace metals in the estuarine region of the Patos lagoon (Brazil). Estuarine, Coastal and Shelf Science, 1999, 48:113-123.
    Yang M, Saudo-Wilhelmy SA. Cadmium and manganese distributions in the Hudson River estuary: interannual and seasonal variability. Earth and Planetary Science Letters, 1998, 160: 403-418.
    Zawislanski PT, Chau S, Mountford H, et al. Accumulation of selenium and trace metals on plants litter in a tidal marsh. Estuarine, Coastal and Shelf Science, 2001, 52: 589-603.
    Zhang J, Huang WW. Liu SM et al. Transport of particulate heavy metals towards the China Sea: a preliminary study and comparison Marine Chemistry, 1992, 40:161-178.
    Zhang J. Geochemistry of trace metals from Chinese river/estuary systems: an overview. Estuarine, Coastal and Shelf Science. 1995, 41: 631-658.
    Zhang J. Heavy metal compositions of suspended sediments in the Changjiang ( Yangtze River) estuary: significance of riverine transport to the ocean. Continental Shelf Research, 1999, 19:1521-1543.
    
    
    Zhang W, Yu L, Hutchinson SM, Xu S, Chen Z, Gao X. China's Yangtze Estuary: Ⅰ. Geomorphic influence on heavy metal accumulation in intertidal sediments. Geomorphology, 2001, 41: 195-205.
    Zwolsman JJG, Eck GTM. Geochemistry of major elements and trace metals in suspended matter of the Scheldt estuary, southwest Netherlands. Marine Chemistry, 1999, 66:91-111.
    常学秀,文传浩,王焕校.重金属污染与人体健康.云南环境科学,2000,19(1):59-61.
    陈敏,陈邦林,夏福兴.长江口最大混浊带悬移质、底质微量金属形态分布.华东师范大学学报(自然科学版),1996,1:38-56.
    陈松,廖文卓,许爱玉等.长江口沉积物对铅的吸附作用.台湾海峡,1999a,18(1):20-25.
    陈松,廖文卓,许爱玉等.长江口沉积物.铅的吸附动力学及环境影响.台湾海峡,1999b,18(2):125-130.
    陈振楼,许世远,柳林等.上海滨岸潮滩沉积物重金属元素的空间分布与累积.地理学报,2000,55(6):641-651.
    陈宗团,徐立,洪华生.河口沉积物-水界面重金属生物地球化学研究进展.地球科学进展,1997,12(5):434-439.
    戴维明.长江口悬浮固体中重金属元素的形态研究.上海环境科学,1994,13(11):7-9.
    傅瑞标,何青,孙振斌.长江口南槽重金属的分布特征.中国环境科学,2000,20(4):357-360.
    高会旺,张英娟,张凯.大气污染物向海洋的输入及其生态环境效应.地球科学进展,2002,17(3):326-330.
    何池全,赵魁义,余国营等.湿地生态过程研究进展.地球科学进展,2000,15(2):165-171.
    黄华瑞,庞学忠.长江口及其邻近海域铬的行为.海洋与湖沼,1990,21(6):571-577.
    黄清辉,沈焕庭,茅志昌.长江河口溶解态重金属的分布和行为.上海环境科学,2001,20(8):372-374.
    李道季,张经,张利华等. 长江河口悬浮颗粒表面特性的初步研究.泥沙研究,2001,5(http://www.cws.net.cn/joumal/sedires/200105/06.html )
    林以安,Martin JM,ThomasAJ长江口可溶态~(210)Pb的来源、分布和逗留时间.海洋与湖沼,1996,27(2):145-149.
    刘素美,张经.沉积物中重金属的归—化问题—以A1为例.东海海洋,1998,16(3):48-55.
    钱嫦萍,陈振楼,毕春娟等潮滩沉积物重金属生物地球化学研究进展.环境科学研究,2002,15(5):49-61.
    阮正,王正方.长江口内外悬浮体中Cu,Co的形态变化.海洋科学,1990,5:25-29.
    邵秘华,王正方.长江口海域悬浮颗粒物中铜、铅、镉的化学形态及分布特征研究.海洋与湖沼,1992,23(2):144-149.
    苏惠娟,陆维昌,陈晓虹等.长江口表层底泥中重金属(铅、镉、铜、锌)化学形态的研究.海洋通报,1988,7(4):22-30
    孙平跃锌(Zn)、铜(Cu)、铅(Pb)、镉(Cd)、铬(Cr)在长江河口生态系统两种大型底栖动物中的分布和积累.华东师范大学1998年度硕士学位论文.
    夏福兴,陈敏,陈邦林等.长江口最大浑浊带悬浮颗粒中有机重金属的异常.华东师范大学学报(自然科学版),1996,1:52-56.
    许世远,陶静,陈振楼等.上海潮滩沉积物重金属的动力学累积特征.海洋与湖沼,1997,28(5):509-515
    杨晓兰.长江口悬浮颗粒物的表面特性与重金属的沉降.环境污染与防治,1999,21(3):36-38,43.
    杨永兴.国际湿地科学研究的主要特点、进展与展望.地理科学进展,2002,21(2):111-120.
    张经.中国河口地球化学研究的若干进展.海洋与湖沼,1994,25(4):438-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700