疏水缔合阳离子淀粉絮凝剂的制备和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
接枝类淀粉改性高分子絮凝剂是近年来发展较快的一种高效絮凝产品,研究人员利用淀粉分子上的多羟基结构,通过自由基反应引入具有絮凝效应的单体和一些具有多种功能的单体,使淀粉不仅获得良好的絮凝效果,同时又有其他的作用效果。本研究以淀粉分子为主体,通过水溶液聚合引入丙烯酰胺、乙酸乙烯酯等功能性单体,并利用羟甲基化反应使产物阳离子化,合成新型的疏水缔合阳离子淀粉接枝絮凝剂。由于疏水单体的引入,不仅大大的提高了絮凝效率,而且利用疏水基团的疏水亲油的特性,可以轻易使含油废水破乳除油,对含油量较大的废水有良好的吸附絮凝效果,同时疏水基团提高了絮团的脱水能力,使滤饼强度增加,易于絮凝沉降。
     本研究先采用单因素实验来考察单体质量比、引发剂浓度、反应温度、反应时间等因素对絮凝产品的影响,随后在较好的范围内采用正交实验的方式确定疏水缔合淀粉絮凝剂的最佳工艺条件为:淀粉单体比为1:2.5,加入溶剂量为体系总量的92%,引发剂量为单体量的1.25%,在60℃下反应时间为3小时,其中疏水单体量占总单体量的10%,互溶剂乙醇用量为1ml;阳离子化实验中,采用单因素法确定羟甲基化反应的最佳工艺条件为:质量配比丙烯酰胺:甲醛:二甲胺=1:1:1.5,反应温度为60℃,时间为2h,制得的疏水缔合阳离子淀粉絮凝剂的接枝率可达125.91%,接枝效率也可达到92.47%,胺化度为68.7%,分子量为38.4万,并利用红外光谱仪对接枝共聚物的组成和结构进行表征,证明了接枝共聚物的存在。
     对絮凝剂产品进行絮凝性能测试,测试结果显示,该絮凝剂处理废水时用量较少,效率高,pH适应范围较广,在碱性环境下的絮凝性能较好,但温度和离子浓度对其絮凝性能有一定的影响,高温下会使絮凝效果大幅下降;将研究制得的絮凝剂产品分别应用于造纸废水,油田废水、电镀废水和生活废水中,并与接枝不同疏水单体的同类絮凝剂产品进行比较发现,该絮凝剂对浊度和悬浮物(SS)去除率均优于其他产品,因此对造纸和电镀废水有较好的处理效果;而接枝长链烷烃的絮凝剂则对含油量较高的油田废水有着良好的絮凝效果。对比发现,疏水基团烷烃较长的疏水性强,但不宜接枝,处理有机成分较多的污水效果较好,短烷烃的疏水基团有一定的疏水性,接枝效果好,适于对各种水质废水的絮凝处理。
For their efficient flocculation, the grafted starch-modified polymerflocculants were developed rapidly in recent years.Because there is amulti-hydroxyl structure in the starch molecular, the monomer withflocculation effect and variety of function can be introduced in the starchmolecules by free radical reactions, and then the starch can not only showgood flocculation effect, but also can show other effects. In this study, thestarch molecules is treated as the main, the functional monomer such asacrylamide, vinyl acetate is introduced by solution polymerization, andthe product is made cationic by the hydroxymethylation reaction, then anew hydrophobic association cationic starch graft flocculant issynthesized. The introduction of the hydrophobic monomer, not onlygreatly improve the flocculation efficiency, and the oily wastewater canbe emulsion breaking easily by using of the characteristics of thelipophilic of the hydrophobic groups, and the better adsorption andflocculation effect can be made on the larger oil content wastewater, onthe other hand, the hydrophobic group can improve the dewateringcapacity of the flocculant, so that the cake’s strength is increased, and canbe easily flocculation and sedimentation.
     In this study, the effect of the monomer ratio, initiator concentration,reaction temperature, reaction time and other factors on the flocculationproducts is studied by single factor experiments, then the optimumconditions is determined by orthogonal text: the ratio of the weight of thestarch and monomer is1:2.5, the amount of solvent is92%of the totalsystem, the amount of the initiator is1.25%of the amount of monomer, the reaction time is3hours at60℃, the amount of hydrophobicmonomers is10%of the total monomer amount, the amount of mutualsolvent ethanol is1ml; in the cationic experiment, the optimal conditionsis determined by the single factor method: the mass ratio of acrylamide:formaldehyde and Dimethylamine is1:1:1.5, the reaction temperature is60°C, the time is2h, the grafting rate of the hydrophobically associatingcationic starch flocculant can reach125.91%, the grafting efficiency canreach92.47%, the degree of amination was68.7%, The molecular weightis about384,000, and the structure of the graft copolymer is characterizedby infrared spectroscopy and the existence of a graft copolymer.is proved
     A test of the flocculation performance of the flocculant products ismade, and the results show that: the amount of the products is small inwastewater treating, and the flocculation efficiency is higher, it adapt to awider range of the pH, and performance better in an alkaline environment,but the temperature and ion concentration have a certain impact on theflocculation performance, high temperatures make the flocculationefficiency dropped significantly; then the flocculant products are used inpulp and paper effluent, oilfield wastewater, electroplating wastewaterand domestic wastewater, and is compared with the flocculant productsgrafting with different hydrophobic monomers, and the result show thatthe removal efficiency of turbidity and SS of the flocculant is superior toother products, so it has a better treatment effect on pulp and papereffluent and electroplating wastewater; while the flocculant productsgrafting with long-chain alkanes does a good job in the oilfieldwastewater. The result of the comparison show that the hydrophobicity ofthe flocculant products grafting with long-chain alkanes is strong, but it ishard to synthesis, and the flocculant products grafting with short alkanehas a better grafting efficiency and suitable for many kinds of waterquality of wastewater flocculation.
引文
[1]周本省.工业水处理技术[M].北京:化学工业出版社,1996.
    [2] Tatsi A A, Zouboulis A, Matis K A, et al. Coagulation-flocculation pretreatment ofsanitary landfill leachates[J]. Chemosphere,2003,53(7):737-744.
    [3]邓宇.淀粉化学品及其应用[M].北京:化学工业出版社.2002.
    [4]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社.2001.
    [5]巫拱生.甲基丙烯酸甲酯与交联接枝共聚物的制备及产物对水中微量金属离子的吸附[J].环境化学,1988,7(4):24-29.
    [6] Rath S H, Singh R P. On the charaeterization of grafted and ungrafted starth,amylose and anlylopeetin[J]. Journal of applied polymer science,1985,70(9):1795-1810.
    [7]邱广明,邱广亮.淀粉与丙烯酰胺接枝共聚物的合成及絮凝助留性能[J].精细化工,2001,18(3):162-164.
    [8]常文越,韩雪,接枝淀粉高分子絮凝剂的合成及其应用[J].环境保护科学,1999,22(2):4-7.
    [9] Karmakar N C, Rath S K, Sastry B S, et al. Investigation on floeeulationcharaeteristics of polysaccharide-based draft copolymers in coal finessuspension[J]. Journal of applied polyoer science,1998,70(13):2619-2625.
    [10] Karmakar G P, Bhagat R P, Singh R P. Floeeulation of iron ore slimes usingsynthesised stareh-g-acrylamide copolymer[J]. Steel india,1998,21(2):43-48.
    [11] Orumwense F F, Nwachukwu J C.2000. Floeeulation studies on hematite-silicasystem using polymeric flocculants[J]. Ind J Chem Technol,7(l):23-29.
    [12]鲁德忠,巫拱生.丙烯酰胺与玉米淀粉接枝共聚物的合成及其对含石油废水的处理[J].吉林大学自然科学学报,1989,1:81-85.
    [13]李淑红,俞敦义.淀粉改性絮凝剂的制备及其在高矿化度油田水处理中的应用[J].水处理技术,2002,28(4):220-223.
    [14] K J YAO, Y B TANG, Synthesis of stareh-g-poly(aeryamide-co-sodiumallysulfonate) and its application of flocculant to kaolin suspension[J]. Journal ofapplied ploymer science,1992,45:349-353.
    [15]王玉芹,杨巍,崔丹.铈盐-过硫酸盐复合引发淀粉与丙烯酰胺接枝共聚合产物研究[J].高分子学报.1996,(l):111-115.
    [16]张一峰,殷雄,沈之荃.淀粉在CS2/H2O2体系中与烯烃接枝共聚[J].高分子材料科学与工程,2000,16(2):47-50.
    [17] Gao J P, Yu J G, Wang W, et al. Graft copolymerization of stareh-aninitiated bypotassium permanganate[J]. Journal of applied polymer science,1998,68(12):1965-1972.
    [18]喻发全.紫外光引发淀粉接枝丙烯腈的研究[J].高分子材料科学与工程,1998,14(2):31-33.
    [19]贾荣仙,聂容春,王少会.UV聚合法制备淀粉和丙烯酰胺接枝共聚物及其性能表征[J].煤炭技术.2005,24(1):96-99.
    [20]邰玉蕾,宋辉.阳离子型天然高分子絮凝剂的合成及絮凝性能[J].大连轻工业学院学报,2002,21(1):22-25.
    [21]马希晨,曹亚峰,邰玉蕾.以淀粉为基材的两性天然高分子絮凝剂的合成[J].精细石油化工.2002,3(2):13-16.
    [22]陆兴章,高华星.可生物降解的阳离子淀粉絮凝剂[J].化工时刊,2002,6:1-8.
    [23]赵彦生,李万捷.淀粉-丙烯酰胺接枝共聚物的合成与性能[J].水处理技术,1994,20(6):370-373.
    [24]杨通在,刘亦农,杨君.阳离子型改性絮凝剂的结构及其性能[J].塑料工业,1998,26(2):116-118.
    [25]具本植,张淑芬,杨锦宗.干法制备高取代度阳离子淀粉的研究[J].精细化工,2000,17(3):167-169.
    [26] Khalil M I, Farag S, Hashma A. Preparation and charaeterization of somecationie starches[J]. Starch,1993,45(6):226-231.
    [27] Khalil M I, Farag S, Preparation of some cationie starehes using the dryproeess[J]. Stareh,1998,50(6):267-271.
    [28]郑怀礼,舒型武.新型高效复合絮凝剂PCFNS的制备与性能研究[J].现代化工.2001,21(11):28-32.
    [29] Fiseher W, Brossmer C, Bischoff D, et al. Natural substituted powdered polymers,A process for produetion and their applications[P], EU,874000A2,1998-10-28.
    [30]相波,李义久.DTC改性淀粉对铜离子吸附性能的研究[J].有色金属.2003,55(4):54-56.
    [31]罗贞礼,卢桂琴.用季钱盐催化剂合成梭甲基淀粉钠的研究[J].湖南化工,1997,27(1):25-27.
    [32]尹华,彭辉.淀粉改性阳离子絮凝剂的制备及其絮凝性能研究[J].环境科学与技术,2000,88(l):13-15.
    [33] Wing R E, Doane W M. Removal of heavy metal ions from aqueous solutionswith insoluble cross-linked stareh xanthate[P]. US,3979286,1976-09-07.
    [34]张淑媛,李自法.不溶性淀粉黄原酸醋用于处理含镍废水[J].水处理技术,1991,17(5):329-332.
    [35]张淑媛,李自法,罗伟.含铬废水的处理[J].水处理技术,1993,19(5):293-296.
    [36]王爱民.不溶性淀粉黄原酸化二硫的制备及应用[J].工业水处理,1993,13(l):32-34.
    [37] Sanjeev C, Vinod T, Heavy metal-soluble starch xanthate interaetions in aqueousenvironments[J]. Journal of applied polymer Science,1999,71(8):1325-1332.
    [38]徐寿昌,郑士忠.工业冷却水处理技术[M].北京:化学工业出版社,1984.
    [39]川尹华.天然高分子改性喹啉季铵盐型阳离子水处理剂的研制及其絮凝-缓蚀行为研究[D].华南理工大学,1996.
    [40]黄少斌.氮杂环季铵盐絮凝——缓蚀剂的研究[J].华南理工大学学报(自然科学版),1996,24(2):107-112.
    [41]杨福廷.疏水缔合型聚丙烯酰胺共聚物在水处理中的应用[J].精细化工,2001,18(3):144-147.
    [42]终曼丽.聚合反应原理[M].成都:成都科技大学出版社,1997.
    [43]陈集,饶小桐,蒋小惠.波谱分析[M].四川:电子科技大学出版社,2003.
    [44]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,1999.
    [45]马喜平,王爱民.DM-AM、TM-AM共聚反应竞聚率[J].高分子材料科学与工程,1997,13(5):26-30.
    [46]罗开富.疏水缔合水溶性聚合物的合成[J].油田化学,1999,16(3):282-290.
    [47] Ezzell S A. Mccormick C L. Water-soluble copolymers synthesis and solutionproperties of assoeiative aerylmaide copolymers with pyrenesulfonamidefluoreseenee labe1s[J]. Macromolecules,1992,25(7):1881-1886.
    [48] Dowling K C. Thomas J K. A novel micellar synthesis and photophysicalcharacterization of water-soluble acrylamide-styrene block copolynlers[J].Macromolecules,1990,23(4):1059-1064.
    [49]赵华章,高宝玉,邱钦艳.二甲基二烯丙基氯化铵(DMDAAC)聚合物的研究进展[J].工业水处理,1999,19(6):l-4.
    [50]李文兵,王光华.速溶聚丙烯酰胺的表征[J].武汉化工学院学报,2004,26(1):19-21.
    [51]李旭祥.改性淀粉絮凝剂处理印染废水[J].化工环保,1994,(14):313-314.
    [52]严文瑶,钱岑.阳离子型改性絮凝剂的制备及在废水处理中的应用[J].江苏石油化工学院学报,2001,13(4):7-10.
    [53] Y X Chen, S Y Liu, G Y Wang. A kinetic investigation of cationic starchadsorption and flocculation in kaolin suspension[J]. Chemical engineering journal,2007,133(1-3):325-333.
    [54] Pal S, Mal D, singh R P. Cationic starch: an effective flocculating agent[J].Carbohydrate polymers,2005,59:417-423.
    [55]王琛,陈杰珞,宗刚等.微波干法制备阳离子淀粉絮凝剂及其应用[J].化工进展,2003,22(11):1217-1221.
    [56]王琛,陈杰珞.季铵型阳离子淀粉絮凝剂的微波干法合成、结构表征及应用研究[J].处理技术,2005,31(8):21-24.
    [57] Svetlana B, Simona S, Tim L, etal. Starch derivatives of high degree offunctionalization flocculation of kaolin dispersions[J] Colloids and surfaces a:physicochemicaland engineering aspects,2005,254(1-3):75-80.
    [58] Krentz D O, Lohmann C, Schwarz S, etal. Properties and flocculation efficiencyof highly cationized starch derivatives[J]. Starch/Starke,2006,58(3-4):161-169.
    [59]尤新.淀粉衍生物[M].北京:中国物资出版社,2001,174-243.
    [60]张友松.变性淀粉生产与应用手册[M].北京:中国轻工业出版社,1999:133-141.
    [61]刘亚伟,张海俊,田景霞,等.高取代度羧甲基淀粉的制备研究[J].粮油食品科技,2008,16(3):46-49.
    [62]赵国华,张盛贵,周雅林,等.羧甲基葛根淀粉的制备及流变特性的研究[J].中国粮油学报,2004,19(6):43-45.
    [63]赵瑞玉,姜翠玉.高取代度羧甲基淀粉醚合成条件的优化[J].精细石油化工,2000,4:9-12.
    [64]王萍,王亦军.淀粉-丙烯酰胺接枝共聚物反应规律及产物结构性能的研究[J].陕西师范大学学报,2002,30(5):124-127.
    [65]李淑红,俞敦义,罗逸.淀粉改性絮凝剂的制备及其在高矿化度油田水处理中的应用[J].水处理技术,2002,28(4):220-223.
    [66]陈卓,范宏.天然改性淀粉絮凝剂的制备与性能[J].西南师范大学学报(自然科学版),2002,27(4):528-531.
    [67]张延霖,刘佩红,张秋云.淀粉接枝丙烯腈制备絮凝剂的工艺优化及应用研究[J].应用化工,2007,36(4):387-389.
    [68]马希晨,吴星娥,曹亚峰.淀粉基两性天然高分子改性絮凝剂的合成[J].吉林大学学报,2004,42(2):273-277.
    [69] Hui S, Di W, Rui Q Z, et al. Synthesis and application of amphoteric starch graftpolymer[J]. Carbohydrate polymers,2009,78(2):253-257.
    [70]刘明华,张宏.一种复合絮凝剂的絮凝性能及应用研究[J].化学研究与应用,2003,15(4):475-478.
    [71]甘光奉,甘莉.高分子絮凝剂的研究进展[J].工业水处理,1999,19(2):6-7.
    [72]张爱华,许振举.二甲基二丙烯基氯化铵-丙烯酰胺共聚物[P].CN:1051366A,1991-05-15.
    [73]曹炳明.CS-Ⅰ型絮凝剂的制备及其在污水处理方面的应用[J].工业水处理,1987,7(6):27.
    [74]潘松汉,黎国康.接枝型聚丙烯酰胺高分子絮凝剂结构和性能研究[J].精细化工,1991,8(3):12-15.
    [75] Ractior, Ludufg. Lignin cosiposttion process for its preraration[P]. US:3912706,1975-12-14.
    [76] Dilling, Peter, Prazak. Process for making sulfonated lignin surfactauts[P]. US:4001202,1977-01-4.
    [77]曲荣君,刘庆俭.PEG双缩水甘油醚交联壳聚糖的制备及其金属离子吸附性能[J].环境化学,1996,15(1):41.
    [78] Quinlan, Patrick. Quaternized derivatives of polymerized pyridines andquinoline[P]. US:4297484,1981-10-27.
    [79]尹华,肖锦.絮凝-缓蚀剂CMT-A2的应用性能研究[J].工业水处理,1994,14(2):12-15.
    [80]尹华.天然高分子改性喹啉季铵盐阳离子水处理剂的研制及其絮凝-缓蚀行为研究[D].广州:华南理工大学,1996.
    [81]吕向红.微生物絮凝剂[J].化工环保,1995,15(4):211-218.
    [82] Kurare Ryuichiro. Microbial flocculent part Ⅱ cuiture conditions for productionof microbial flocculent by rhodococcus erythropolis[J]. Agric.biol.chem,1986,50(9):2309-2313.
    [83]徐斌,王竟,周集体.微生物利用废弃物产生絮凝剂的研究与应用[J].工业水处理,2000.20(5):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700