新烟碱类化合物结构衍生和生物活性测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新烟碱类化合物作用于昆虫烟碱型乙酰胆碱受体,其作用机制独特,与常规杀虫剂无交互抗性,具有高效、广谱及良好的根部内吸性、触杀和胃毒作用,对哺乳动物毒性低、对环境安全,已经引起了人们的广泛关注,在30年之内共有七个商品化的产品上市,占据了杀虫剂市场超过20%的份额。然而近年来该类化合物的过量频繁使用,已使多种害虫产生了不同程度的抗性,而且不同种类的新烟碱杀虫剂也产生了一定的交互抗性。本论文从商品化新烟碱类化合物结构出发,分别对开环和闭环类化合物进行结构改造,寻找高活性化合物的同时对构效关系进行研究,为该类化合物的进一步修饰提供一定理论根据。
     1)在开环新烟碱类结构中引入具有医药活性的1,4-二氢吡啶类活性基团,并对合成的新化合物分别进行杀虫活性测试和抗癌活性测试。目标化合物对苜蓿蚜、粘虫和褐飞虱具有一定的杀死率,对五种癌细胞也表现出一定的抑制作用,。
     2)设计合成了含氮杂1,3-二烯结构的开环新烟碱化合物,目标化合物对苜蓿蚜的LCso值均在30 ppm之下,部分化合物还具有一定的除草活性。与相应的闭环化合物相比,环的打开对化合物活性影响非常大。
     3)从不稳定1-氮杂二烯中间体出发,利用Aza-Diels-Alder反应(ADAR)构建四氢吡啶环。该ADAR反应克服了此类反应需催化剂或高压催化、产率低等缺点,可在无催化条件下快速高效得到目标化合物,对反应条件也进行了优化。部分目标化合物对苜蓿蚜表现出高活性,与商品化产品吡虫啉活性相当;目标产物的光稳定性和水稳定性均有明显改善。
     4)对ADAR反应进行多组分反应研究的同时,利用不同底物对目标产物的五个结构片段进行修饰,合成得到一系列化合物并进行生物活性测试。生测结果表明五个部位中有三个为关键影响位点,导致活性差异。另选择一个产物进行手性拆分得到四个光学纯异构体,并测试相应化合物杀虫活性。以目标产物中活性化合物的PIC5o作为因变量,选取DS软件遗传函数算法(GFA模型)中其自身物性参数和预测生物特性参数为自变量,进行多元线回归分析,得到两类较为合理的回归方程。
Acting on insect nicotinic acetylcholine receptors (nAChRs), neonicotinoids have attracted worldwide attention by virtue of novel modes of action, no cross-resistance with conventional insecticides, broad insecticidal spectra, excellent root uptake properties, contact and stomach toxicity, low mammalian toxicity and environmental friendly property. Seven commercial products were introduced to market during the past 30 years, which shared 20% of the crop protection industry. However, significant increases in resistance and cross-resistance were observed in a range of species after frequent field applications. Based above, series of acyclic and cyclic neonicotinoids derivatives had been designed in this thesis to seek high active compounds, the structure activity relationships had also been studied for further research.
     1) Pharmaceutical active 1,4-dihydropyridine fragment was introduced to the acyclic neonicotinoids. The insecticidal and anti-cancer assay indicated that synthesized compounds showed good activities against cowpea aphids(Aphis Craccivora Koch), armyworm (Pseudaletia Separate Walker) and brown planthopper (Nilaparvala lugens(Stal)), and certain activities to five tumor cells (Hela, HCT116, A549, K562 and MCF-7).
     2) Acyclic compounds with N-aza-1,3-diene structure were designed and synthesized. The observed LC50 value against aphids was below 30 ppm, while some compounds showed certain herbicidal acticvities. It indicated that the ring opening had a great impact on the activities.
     3) Tetrahydropyridine was applied to modify the unstable active intermediates by aza-Diels-Alder Reaction (ADAR). The use of common ADAR is limited due to the need for catalysis and low yield, while our particular reaction was easy to proceed with high yield under no catalyst, the reaction conditions were optimized as well. Targeted compounds were endowed with excellent insecticidal activities against cowpea aphids, some of those rivaled imidacloprid. Meanwhile, photo-stability and water stability study indicated the improvement of target compound against the unstable intermediate.
     4) The five segments of ADAR products were modified by multi-component reactions (MCRs) to afford a series of compounds and evaluated their insecticidal activities. Bioassay indicated three of the five segments were the key factors response for activity difference. Then one product was chirally separated to get four optically pure isomers and test their insecticidal activities. Afterwards, two kinds of regression equation were obtained using genetic function approximation (GFA) as QSAR models.
引文
[1]Ohkawa, H.; Miyagawa, H.; Lee, P. W. Pesticide Chemistry-Crop protection, public health, environment satefy. Wiley-VCH, Weinheim,2007.
    [2]陈万仪,王龙根,李钟华.新农药的研发—方法·进展.北京:化学工业出版社,2007.
    [3]Pinner, A.; Nicotin, U. Die constitution des alkaloids. Ber. Dtsch. Chem. Ges.1893,26, 292-305.
    [4]Jeschke, P.; Nauen, R. Neonicotinoid insecticides, In "Comprehensive Molecular Insect Science", Vol.5 (Gilbert, L. I.; Iatrou, L.; Gill, S. S. eds.) Elsevier, Oxford, UK,2005, pp.53-105.
    [5]Soloway, S. B.; Henry, A. C.; Kollmeyer, W. D.; et al. Nitromethylene Heterocycles as Insecticides. In "Pesticide and Venom Neurotoxicity" (Shankland, D. L.; Hollingworth, R. M.; Smyth, T. eds.) New York:Plenum,1978,153-158.
    [6]Kagabu, S.; Medei, S. Chloronicotinyl Insecticides. Part VI. Stability Comparison of Imidacloprid and Related Compounds Under Simulated Sunlight, Hydrolysis Conditions, and to Oxygen. Biosci. Biotech. Biochem.1995,59,980-985.
    [7]殷平,柏亚罗.新烟碱类杀虫剂的回顾与展望.世界农药,2003,25,8-11.
    [8]Ishimitsu, K.; Suzuki, J.; Ohishi, H. Reparation of pyridylalkylamine derivatives as insecticides. WO9104965,1991-07-19.
    [9]Moriie K.; Ootsu, J.; hatsutori, Y.; et al. Preparation of Nitroiminotetrahydrooxadiazines as Insecticides. JP07224062,1995-10-21.
    [10]Shiokawa, K.; Tsuboi, S.; Kagabu, S.; et al. Preparation of (heterocyclylmethyl)imidazolines,-thiazolidines,-tetrahydropyrimidines, and-tetrahydrothiazines as insectidies. EP 235725,1987.
    [11]Uneme, H.; Iwanaga, K.; Higuchi, N.; et al. Preparation of (pyridylmethyl)guanidines as insecticides. EP 376279,1989-12-27.
    [12]Kiriyama, K.; Nishimura, K. Structural effects of dinotefuran and analogues in insecticidal and neural activities. Pest Manag. Sci.2002,58 (7):669-676.
    [13]Loso, M. R.; Nugent, B. M.; Huang, J. X.; Rogers, R. B.; Zhu, Y.; Renga, J. M.; et al. Preparation of insecticidal N-substituted (6-haloalkylpyridin-3-yl)alkyl sulfoximines. WO2007095229,2007.
    [14]Nauen, R.; Ebbinghaus-Kintscher, U.; Elbert, A. J., P.; Tietjen, K. Acetylcholine receptors as sites for developing neonicotinoid insecticides, in Biochemical Sites of Insecticide Action and Resistance. eds. by Ishaaya, I. Springer, New York, NY, pp. 77-105,2001.
    [15]Markley, L. D.; Sparks, L. C.; Dripps, J. E.; Gifford, J. M. Compounds useful as insecticides, Compounds useful as acaricides processes to use and make same. WO218339,2002-03-07.
    [16]Kagabu, S.; Nishiwaki, H.; Sato, K.; Hibi, M.; Yamaoka, N.; Nakagawa, Y. Nicotinic acetylcholine receptor binding of imidacloprid-related diaza compounds with various ring sizes and their insecticidal activity against Musca domestica. Pest Manag. Sci.2002, 58 (5):483-490.
    [17]Kurahashi, Y.; Tsuboi, S. Synergistic insecticides and microbicides containing nitro compounds. JP06329507,1994.
    [18]Maienfisch, P.; Angst, M.; Brandl, F.; Fischer, W.; et al. Chemistry and biology of thiamethoxam:a second generation neonicotinoid. Pest Manag. Sci.2001,57 (10): 906-913.
    [19]Tomizawa, M.; Lee, D. L.; Casida, J. E. Neonicotinoid insecticides:Molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J. Agric. Food Chem.2000,48 (12):6016-6024.
    [20]Tomizawa, M.; Zhang, N.; Durkin, K. A.; Olmstead, M. M.; Casida, J. E. The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor:an anomaly for the nicotinoid cation-pi interaction model. Biochemistry.2003,42 (25):7819-7827.
    [21]Jeschke, P.; Nauen, R. Neonicotinoids-from zero to hero in insecticide chemistry. Pest Manag. Sci.2008,64 (11):1084-1098.
    [22]Jeschke, P.; Schindler, M.; Beck, M. Neonicotinoid insecticides:retrospective consideration and prospects. Proc Brighton Crop Prot Conf-Pcsts and Diseases, BCPC, Farnham, Surrey, UK,2002, pp.137-144.
    [23]Kagabu, S.; Moriya, K.; Shibuya, K.; Hattori, Y.; Tsuboi, S.; Shiokawa, K. 1-(6-Halonicotinyl)-2-nitromethyleneimidazolidines as potential new insecticides. Biosci. Biotechnol. Biochem.1992,56,362-363.
    [24]Moriya, K.; Shibuya, K.; Hattori, Y.; Tsuboi, S.; Shiokawa, K.; Kagabu, S. 1-(6-Chloronicotinyl)-2-nitroimino-imidazolidines and related compounds as potential new insecticides. Biosci. Biotechnol. Biochem.1992,56,364-365.
    [25]Moriya, K.; Shibuya, K.; Hattori, Y.; Tsuboi, S.; Shiokawa, K.; Kagabu, S.; 1-Diazinylmethyl-2-nitromethylene-and 2-nitroimino-imidazolidines as new potential insecticides. J. Pestic. Sci. (International Edition).1993,18,119-123.
    [26]Tabuchi. T.; Fusaka, T.; Iwanaga. K. Studies on acyclic nitroethene compounds.3. Synthesis and insecticidal activity of acyclic nitroethene compounds containing 6-substituted-3-pyridylamino group. J. Pestic. Sci. (International Edition).1994,19, 119-125.
    [27]Kagabu, S. Chloronicotinyl insecticides:discovery, application and future perspective. Rev. Toxicol.1997,1,75-129.
    [28]Kagabu, S.; Matsuno, H. Chloronicotinyl Insecticides.8. Crystal and molecular structures of Imidacloprid and analogous compounds. J. Agric. Food Chem.1997,45 (1):276-281.
    [29]Kagabu, S.; Akagi, T. Quantum chemical consideration of photostability of imidacloprid and related compounds. J. Pest. Sci.1997,22,84-89.
    [30]Ortells, M. O.; Lunt, G. G. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends Neurosci.1995,18(3):121-127.
    [31]Kao, P. N.; Karlin, A. Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystinyl residues. J. Biol. Chem.1986,261 (18):8085-8088.
    [32]Karlin, A.; Akabas, M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron.1995,15 (6):1231-1244.
    [33]Tsunoyama, K.; Gojobori, T. Evolution of nicotinic acetylcholine receptor subunits. Mol. Biol. Evol.1998,15 (5):518-527.
    [34]Hashimoto, K.; Nishiyama, S.; Ohba, H.; Matsuo, M.; Kobashi, T.; Takahagi, M.; Iyo, M.; Kitashoji, T.; Tsukada, H. [11C]CHIBA-1001 as a Novel PET Ligand for a7 Nicotinic Receptors in the Brain:A PET study in conscious monkeys. Plos One.2008,3 (9):e3231.
    [35]Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci.2002,3 (2):102-114.
    [36]Sine, S. M.; Engel, A. G. Recent advances in Cys-loop receptor structure and function. Nature.2006,440 (7083):448-455.
    [37]Sattelle, D. B. Acetylcholine receptors of insects. Adv. Insect. Physiol.1980,15, 215-315.
    [38]Narahashi, T. Neuroreceptors and ion channels as the basis for drug action:Past, present, and future. J. Pharmacol. Exp. Ther.2000,294 (1):1-26.
    [39]Millar, N. S.; Denholm, I. Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invert Neurosci.2007,7(1):53-66.
    [40]Raymond-Delpech, V.; Matsuda, K.; Sattelle, B. M.; Rauh, J. J.; Sattelle, D. B. Ion channels:molecular targets of neuroactive insecticides. Invert Neurosci.2005,5 (3-4): 119-133.
    [41]Salgado, V. L.; Proc. Beltwide. Cotton. Conf.1997,2,1082-1084.
    [42]Dunbar, S. J.9th international congress of pesticide chemistry, book of abstracts 1998,1, 43-46.
    [43]Yamamoto, I.; Yabuta, G.; Tomizawa, M. Molecular mechanism for selective toxicity of nicotinoids and neonicotinoids. J. Pestic. Sci.1995,20,33-40.
    [44]Kagabu, S. Discovery of Imidacloprid and further developments from strategic molecular designs. J. Agric. Food Chem.2011,59 (7):2887-2896.
    [45]Matsuda, K.; Shimomura, M.; Ihara, M.; Akamatsu, M.; Sattelle, D. B. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets:electrophysiology, molecular biology, and receptor modeling studies. Biosci. Biotechnol. Biochem.2005, 69(8):1442-1452.
    [46]Ihara, M.; Shimomura, M.; Ishida, C.; Nishiwaki, H.; Akamatsu, M.; Sattelle, D. B.; Matsuda, K. A hypothesis to account for the selective and diverse actions of neonicotinoid insecticides at their molecular targets, nicotinic acetylcholine receptors: catch and release in hydrogen bond networks. Invert Neurosci.2007,7(1):47-51.
    [47]Wang, Y.; Cheng, J.; Qian, X.; Li, Z. Actions between neonicotinoids and key residues of insect nAChR based on an ab initio quantum chemistry study:hydrogen bonding and cooperative pi-pi interaction. Bioorg. Med. Chem.2007,15 (7):2624-2630.
    [481 Brejc, K.; van Dijk, W. J.; Klaassen, R. V.; Schuurmans, M.; van Der Oost, J.; Smit, A. B.; Sixma, T. K. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature.2001,411 (6835):269-276.
    [49]Hansen, S. B.; Sulzenbacher, G.; Huxford, T.; Marchot, P.; Taylor, P.; Bourne, Y. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. EMBO J.2005,24 (20):3635-3646.
    [50]Hansen, S. B.; Talley, T. T.; Radic, Z.; Taylor, P. Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia califomica. J. Biol. Chem.2004,279 (23):24197-24202.
    [51]Celie, P. H. N.; Klaassen, R. V.; van Rossum-Fikkert, S. E.; van Elk, R.; ct al. Crystal structure of acetylcholine-binding protein from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J. Biol. Chem.2005,280 (28):26457-26466.
    [52]Smit, A. B.; Syed, N. I.; Schaap, D.; van Minnen, J.; Klumperman, J.; et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature. 2001,411 (6835):261-268.
    [53]Tomizawa, M.; Maltby, D.; Talley, T. T.; Casida, J. E.; et al. Atypical nicotinic agonist bound conformations conferring subtype selectivity. Proc. Nat. Acad. Sci. U.S.A.2008, 105 (5):1728-1732.
    [54]Talley, T. T.; Harel. M.; Hibbs. R. E.; Radic. Z.; Tomizawa, M.; Casida, J.E.; Taylor, P. Atomic interactions of neonicotinoid agonists with AChBP:molecular recognition of the distinctive electronegative pharmacophore. Proc. Nat. Acad. Sci. U.S.A.2008,105 (21):7606-7611.
    [55]Tomizawa, M.; Casida, J. E. Molecular recognition of neonicotinoid insecticides:The determinants of life or death. Acc. Chem. Res.2009,42 (2):260-269.
    [56]Ihara, M.; Okajima, T.; Yamashita, A.; Oda, T.; Hirata, K.; et al. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert Neurosci.2008,8 (2):71-81.
    [57]Ohno, I.; Tomizawa, M.; Durkin, K. A.; Casida, J. E.; Kagabu, S. Neonicotinoid substituents forming a water bridge at the nicotinic acetylcholine receptor. J. Agric. Food Chem.2009,57 (6):2436-2440.
    [58]Roberts, TR.; Hutson, TH (eds). Metabolic Pathways of Agrochemicals, Part 2, Insecticides and Fungicides. Cambridge University Press, Cambridge, UK,1999, pp. 111-120.
    [59]Tomizawa, M.; Casida, J. E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Ann. Rev. Entomol.2003,48, 339-364.
    [60]Ford, K. A.; Casida, J. E. Chloropyridinyl neonicotinoid insecticides:diverse molecular substituents contribute to facile metabolism in mice. Chem. Res. Toxicol.2006,19 (7): 944-951.
    [61]Ford, K. A.; Casida, J. E. Unique and common metabolites of thiamethoxam, clothianidin, and dinotefuran in mice. Chem. Res. Toxicol.2006,19 (11):1549-1556.
    [62]Ford, K. A.; Casida, J. E. Comparative metabolism and pharmacokinetics of seven neonicotinoid insecticides in spinach. J. Agric. Food Chem.2008,56 (21): 10168-10175.
    [63]Joussen, N.; Heckel, D. G.; Haas, M.; Schuphan, I.; Schmidt, B. Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag. Sci.2008,64 (1):65-73.
    [64]Kanne, D. B.; Dick, R. A.; Tomizawa, M.; Casida, J. E. Neonicotinoid nitroguanidine insecticide metabolites:synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their derivatives. Chem. Res. Toxicol.2005,18 (9):1479-1484.
    [65]Dick, R. A.; Kanne, D. B.; Casida, J. E. Substrate specificity of rabbit aldehyde oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides. Chem. Res. Toxicol. 2005,19(1):38-43.
    [66]Tomizawa, M.; Casida, J. E. Structure and diversity of insect nicotinic acetylcholine receptors. Pest Manag. Sci.2001,57,914-922.
    [67]Matsuda, K.; Buckingham, S. D.; Kleier, D.; Rauh, J. J.; Grauso, M.; Sattelle, D. B. Neonicotinoids:insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci.2001,22 (11):573-580.
    [68]Liu, M. Y.; Casida, J. E. High affinity binding of [3H]Imidacloprid in the insect acetylcholine receptor. Pestic. Biochem. Physiol.1993,46 (1):40-46.
    [69]Tomizawa, M.; Casida, J. E. Neonicotinoid insecticide toxicology:mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol.2005,45,247-268.
    [70]Arias, H. R. Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Res. Rev.1997,25(2):133-191.
    [71]Cashin, A. L.; Petersson, E. J.; Lester, H. A.; Dougherty, D. A. Using physical chemistry to differentiate nicotinic from cholinergic agonists at the nicotinic acetylcholine receptor. J. Am. Chem. Soc.2005,127 (1):350-356.
    [72]Matsuda, K.; Buckingham, S. D.; Freeman, J. C.; Squire, M. D.; Baylis, H. A.; Sattelle, D. B. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Br. J. Pharmacol.1998,123(3):518-524.
    [73]Ihara, M.; Matsuda, K.; Otake, M.; Kuwamura, M.; Shimomura, M.; Sattelle, D. B.; Komai, K.; et al. Diverse actions of neonicotinoids on chicken a7, α4β2 and Drosophila-chicken SADβ2 and ALSβ2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. Neuropharmacology.2003,45(1):133-144.
    [74]Shimomura, M.; Yokota, M.; Matsuda, K.; Sattelle, D. B.; Komai, K. Roles of loop C and the loop B-C interval of the nicotinic receptor a subunit in its selective interactions with imidacloprid in insects. Neurosci. Lett.2004,363(3):195-198.
    [75]Shimomura, M.; Okuda, H.; Matsuda, K.; Komai, K.; Akamatsu, M.; Sattelle, D. B. Effects of mutations of a glutamine residue in loop D of the α7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. Br. J. Pharmacol.2002,137(2):162-169.
    [76]Shimomura, M.; Yokota, M.; Okumura, M.; Matsuda, K.; Akamatsu, M.; Sattelle, D. B.; Komai, K. Combinatorial mutations in loops I) and F strongly influence responses of the (x7 nicotinic acetylcholine receptor to imidacloprid. Brain Res.2003,991 (1-2): 71-77.
    [77]Tomizawa, M.; Talley, T. T.; Maltby, D.; Durkins, K. A.; et al. Mapping the elusive neonicotinoid binding site. Proc. Natl. Acad. Sci. U.S.A.2007,104 (21):9075-9080.
    [78]Nauen, R.; Denholm, I. Resistance of insect pests to neonicotinoid insecticides:current status and future prospects. Arch. Insect. Biochem. Physiol.2005,58 (4):200-215.
    [791 Wang,Z.; Yao. M.; Wu, Y. Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B-biotype Bemisia tabaci. Pest Manag. Sci.2009,65 (11): 1189-1194.
    [80]Matsumura, M.; Takeuchi, H.; Satoh, M.; Sanada-Morimura, S.; Otuka, A.; Watanabe, T.; Van Thanh, D. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Manag. Sci.2008,64 (11):1115-1121.
    [81]Baker, M. B.; Alyokhin, A.; Porter, A. H.; Ferro, D. N.; Dastur, S. R.; Galal, N. Persistence and inheritance of costs of resistance to imidacloprid in Colorado potato beetle. J. Econ. Entomol.2007,100 (6):1871-1879.
    [82]Tan, J.; Salgado, V. L.; Hollingworth, R. M. Neural actions of imidacloprid and their involvement in resistance in the Colorado potato beetle, Leptinotarsa decemlineata (Say). Pest Manag. Sci.2008,64 (1):37-47.
    [83]Gorman, K.; Devine, G.; Bennison, J.; Coussons, P.; Punchard, N.; Denholm, I. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera:Aleyrodidae). Pest Manag. Sci.2007,63 (6):555-558.
    [84]Philippou, D.; Field, L.; Moores, G. Metabolic enzyme(s) confer imidacloprid resistance in a clone of Myzus persicae (Sulzer) (Hemiptera:Aphididae) from Greece. Pest Manag. Sci.66 (4):390-395.
    [85]Wang, K. Y.; Liu, T. X.; Yu, C. H.; Jiang, X. Y.; Yi, M. Q. Resistance of aphis gossypii (Homoptera:Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. J. Econ. Entomol.2002,95 (2):407-413.
    [86]Kaufman, P. E.; Nunez, S. C.; Geden, C. J.; Scharf, M. E. Selection for resistance to imidacloprid in the house fly (Diptera:Muscidae). J. Econ. Entomol.2010,103 (5): 1937-1942.
    [87]Cahill, M.; Gorman, K.; Day, S.; Denholm, I.; Elbert, A.; Nauen, R. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bull. Entomol. Res.1996,86 (04):343-349.
    [88]赵建周;Bishop, A. B.; Edward. J. G.马铃薯甲虫对吡虫啉抗性的测定、遗传方式和机理研究.植物保护21世纪展望.1998,715-718.
    [89]Foster, S. P.; Denholm, I.; Thompson, R. Variation in response to necotinoid insecticides in peach-potato aphids, Myzus pericae (Homoptera:Aphididae). Pest Manag. Sci.2003, 59,166-173.
    [90]王开运,姜兴印,仪美琴.山东省主要菜区瓜(棉)蚜(Aphis gossypii Glover)抗药性及机理研究.农区学学报.2000,2(3):19-24.
    [91]Elbert, A.; Nauen, R. Resistance of Bemisia tabaci (Homoptera:Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Manag. Science.2000,56(1):60-64.
    [92]Mota-Sanchez, D.; Hollingworth, R. M.; Grafius, E. J.; Moyer, D. D. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera:Chrysomelidae). Pest Manag. Sci.2006, 62(1):30-37.
    [93]Le Goff, G.; Boundy, S.; Daborn, P. J.; Yen, J. L.; Sofer, L.; Lind, R.; Sabourault, C.; Madi-Ravazzi, L.; ffrench-Constant, R. H. Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem. Mol. Biol.2003,33 (7): 701-708.
    [94]Prabhaker, N.; Toscano, N. C.; Castle, S. J.; Henneberry, T. J., Selection for imidacloprid resistance in silverleaf whiteflies from the Imperial Valley and development of a hydroponic bioassay for resistance monitoring. John Wiley & Sons, Ltd:1997,51, pp.419-428.
    [95]Wen, Z.; Scott, J. G., Cross-Resistance to Imidacloprid in strains of german Cockroach (Blattella germanica) and House Fly (Musca domestica). John Wiley & Sons, Ltd:1997, 49, pp.367-371.
    [96]Rauch, N.; Nauen, R. Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera:Aleyrodidae). Arch. Insect Biochem. Physiol.2003,54 (4):165-176.
    [97]Daborn, P.; Boundy, S.; Yen, J.; Pittendrigh, B.; ffrench-Constant, R. DDT resistance in Drosophila correlates with Cyp6gl over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Mol. Genet. Genomics.2001,266 (4):556-563.
    [98]Pedra, J. H.; McIntyre, L. M.; Scharf, M. E.; Pittendrigh, B. R. Genome-wide transcription profile of field-and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc. Nat. Acad. Sci. U.S.A.2004,101(18):7034-7039.
    [99]Liu, Z.; Williamson. M. S.; Lansdell, S. J.; Denholm, I.; Han, Z.; Millar, N. S. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc. Nat. Acad. Sci. U.S.A. 2005,102(24):8420-8425.
    [100]Liu, Z.; Williamson, M. S.; Lansdell, S. J.; Han, Z.; Denholm, L.; Millar, N. S. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. J. Neurochem.2006,99 (4):1273-1281.
    [101]Cox, C. Imidacloprid. J. Pestic. Reform.2001,21:15-21.
    [102]Suchail, S.; Guez, D.; Belzunces, L. P. Characteristics of imidacloprid toxicity in two Aphis mellifera subspecies. Environ. Toxicol. Chem.2000,19:1901-1905.
    [1031 Colin, M. E.: Le Conte, Y.; Vermandere, J. P. Managing nuclei in insect-proof tunnel as an observation tool for foraging bees:sublethal effects of deltamethrin and imidacloprid. In "Hazards of Pesticides to Bees" (Belzunces, L. P.; Pelissier, C.; Lewis, G. B. eds.) INRA, Paris,2001, pp.259-268.
    [104]Kirchner, W. H. Mad-bee-disease? Sublethal effects of imidacloprid (Gaucho(?)) on the behaviour of honey bees. Association of institutes for bee research,50 year anniversary 1949-1999, reports of the 46th seminar in Marburg,23-25 March 1998. Apidologie 1999,30:422-423.
    [105]Decourtye, A.; Le Metayer, M.; Pottiau, H.; Tisseur, M.; Odoux, J. F.; Pham-Delegue, M. H. Impairment of olfactory learning performances in the honey bee after long term ingestion of imidacloprid. In "Hazards of Pesticides to Bees" (Belzunces, L. P.; Pelissier, C.; Lewis, G. B. eds.) INRA, Paris,2001, pp.113-117.
    [106]龚瑞忠,陈锐,陈良燕.吡虫啉对环境生物的毒性与安全性评价.农药科学与管理,1999,20(3):12-16.
    [107]吴凌云,李学锋,邱立红等.几种吡虫啉和啶虫脒制剂对蜜蜂的急性毒性.农药与环境安全国际会议论文集,2005.
    [108]Jeschke P.; Bech, M. E.; Kraemer, W. Preparation of 2-Iminothiazoles and 2-Iminoimidazoles as Pesticides. DE10119423,2002-12-24.
    [109]Hense, A.; Fischer, R.; Gensing, E. R. Substituted Imidates as Pesticidal Agents. WO2002096872,2002-12-05.
    [110]Jeschke, P.; Beck. M. E.; Kraemer, W.; et al. Novel Azoles Having an Insecticidal Action. WO02085870,2002-10-31.
    [111]Kanellakopulos, J.; Wollweber, D.; Erdelen, C. Insectisidal Tetrahydropyrimidine Derivatives, WO9732878,1997-09-12.
    [112]Mazen, E. S.; Peter, J.; Pete, L.; et al. Preparation of N-Nitro-4,6-diazaspiro[2,4]Hept-4-en-5-amines and Related Compounds as Pesticides. DE102004013528,2005-10-13.
    [113]Wollweber, D.; Kramer, W.; Riyadeneira, E. Preparation of Heterocyclyl-substituted Nitroguandines. WO9842690,1998-10-01.
    [114]Wagner, K.; Erdelen, C.; Andersch, W.; et al. Preparation of Novel Cyclic Guanidines as Insecticides. WO9935141,1999-07-15.
    [115]Jeschke, P.; Losel, P.; Nauen, R.; et al. Substituted Oxyguanidines. WO2006056333, 2006-06-01.
    [116]Kanellakopulos, J.; Findeisen, K.; Linker, K. H.; et al. Preparation of N-(Hetercyclylalkylaminomethylene)thioureas as Pesticides. DE19623658,1997-01-02.
    [117]Muller, K. H.; Drewes, M. W.; Feucht, D.; et al. Substituted 2-Iminothiazolines and Their Use as Hebicides. WO2000034257,2000-06-15.
    [118]Samaritoni, J. G.; Demeter, D. A.; Gifford. J. M.; Watson, G. B.; Kempc, M. S.; Bruce, T. J. Dihydropiperazine neonicotinoid compounds. Synthesis and insecticidal activity. J. Agric. Food Chem.2003,51 (10):3035-3042.
    [119]Samaritoni, J. G. Preparation of Pesticidal Chloropyridinamino Derivatives. WO2004056178,2004-07-08.
    [120]杨吉春,李淼,柴宝山,刘长令.新烟碱类杀虫剂最新研究进展.农药.2007,46(7):433-440.
    [121]Zhu, Y. M.; Rogers, R. B.; Huang, J. X. Insecticidal N-substituted Sulfoximines. US2005228027,2005-10-13.
    [122]Loso, M. R.; Nugent, B. M.; Zhu, Y. M.; Rogers, R. B.; et al. Heteroaryl (substituted) alkyl N-substituted sulfoximines as insecticides. PCT Int. Appl. WO2008057131,2008.
    [123]Zhu, Y. M.; Loso, M. R.; Nugent, B. M.; Huang, J. X.; Rogers, R. B.; et al. Multi-substituted pyridyl sulfoximines and their use as insecticides. PCT Int. Appl. WO2008057129,2008.
    [124]Loso, M. R.; Nugent, B. M.; Huang, J. X. Insecticidal N-substituted (heteroaryl) cycloalkyl sulfoximines. PCT Int. Appl. WO2008027073,2008.
    [125]Huang, J. X.; Rogers, R. B.; Orr, N.; Sparks, T. C.; Gifford, J. M.; et al. A method to control insects resistant to common insecticides. PCT Int. Appl. WO2007149134,2007.
    [126]Benko, Z. L.; Deamicis, C. V.; Demeter, D. A. Compounds Useful as Pesticides. WO2004067960,2004-07-10.
    [127]Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.; et al. Discovery and characterization of sulfoxaflor, a novel insecticide targeting sap-feeding pests. J. Agric. Food Chem.2010,59 (7):2950-2957.
    [128]Babcock, J. M.; Gerwick, C. B.; Huang, J. X.; Loso, M. R.; et al. Biological characterization of sulfoxaflor, a novel insecticide. Pest Manag. Sci.2011,67 (3): 328-334.
    [129]Thomas, G.; Eliane, H.; Maurizio, S. Preparation of Pyridin-3-ylmethylamine Derivatives as Pesticides. WO2000029378,2000-05-25.
    [130]Thomas, G.; Eliane, H.; Maurizio, S. Preparation of Pyridin-3-ylmethylamine Derivatives as Pesticides:US2002028806,2002-03-07.
    [131]Kinoshita, K.; Odaka K.; et al. Preparation of 3-Aminomethyltetrahydro furan Derivatives as Insecticides. JP08269035.1996-10-15.
    [132]Maienfisch, P.; Gsell, L. Preparation of Substituted 4-Nitroiminoperhydro-1,3,5-oxadiazine Derivatives and Their Use as Pesticides. WO9806710,1998-02-19.
    [133]Maienfisch P. Preparation of Insecticidal and Acaricidal 2-Nitroguanidines. WO9909009,1999-02-25.
    [134]Pittern, T.; Szczepanski, H.; Maienfisch, P.; et al. Preparation of Thiazoles. WO9827074, 1998-06-25.
    [135]Piotrowski, D. W. Arthropodicidal Nitromethylenes. WO9705146,1997-02-13.
    [136]Maccann, S. F. Preparation of Tetrahydropyrimidines as Arthropodicides. WO9705145, 1997-02-13.
    [137]Maienfisch, P. Heterocyclic Compound as Pesticide, WO9912906,1999-03-18.
    [138]Kinoshita, K.; Odaka, K.; Kawahara, N.; et al. Preparation of 1-[(Tetrahydrofuran-3-yl)methyl]-1,3-diazacycloalkane Derivatives as Insecticides. JP08269053,1996-10-15.
    [139]Kagabu, S.; Ito, N.; Imai, R.; Hieta, Y.; Nishimura, K. Effects of halogen introduction at the C5 position of the imidacloprid pyridine ring upon insecticidal activity. J. Pestic. Sci. 2005,30 (4):409-413.
    [140]Kagabu, S. Methyl, Trifluoromethyl and Methoxycarbonyl-Introduction to the fifth position on the pyridine ring of chloronicotinyl insecticide Imidacloprid. Synth. Commun.2006,36,1235-1245.
    [141]Kagabu, S.; Nishimura, K. Preparation of Alkylene-Tethered Bis-Nitroiminoimidazolidines as Insecticides. EP1348705,2003-10-01.
    [142]Kagabu, S.; Iwaya, K.; Konishi, H. Synthesis of Alkylene-Tethered Bis-Imidacloprid Derivatives as Highly Insecticidal and Nerve-exiting Agents with Potent Affinity to [3H]Imidacloprid-binding Sites on Nicotinic Acetylcholine Receptors. Nippon Noyaku Gakkaishi,2002,27,249-256.
    [143]Kagabu, S. Preparation of Heteroarylguanidine Derivatives and Insecticidal Containing Them. JP2005060292,2005-03-10.
    [144]Kagabu, S.; Kiriyama, K.; Nishiwaki, H.; Kumamoto, Y.; Tada, T.; Nishimura,K. Asymmetric chloronicotinyl insecticide, 1-[1-(6-chloro-3-pyridyl)ethyl]-2-nitroiminoimidazolidine:preparation, resolution and biological activities toward insects and their nerve preparations. Biosci. Biotechnol. Biochem.2003,67 (5):980-988.
    [145]Ohno, I.; Hirata, K.; Ishida, C.; Ihara, M.; Matsuda, K.; Kagabu, S. Proinsecticide candidates N-(5-methyl-2-oxo-1,3-dioxol-4-yl)methyl derivatives of imidacloprid and 1-chlorothiazolylmethyl-2-nitroimino-imidazolidine. Bioorg. Med. Chem. Lett.2007, 17 (16):4500-4503.
    [146]Tian, Z.; Shao, X.; Li, Z.; Qian, X.; Huang, Q. Synthesis, insecticidal activity, and QSAR of novel nitromethylene neonicotinoids with tetrahydropyridine fixed cis configuration and exo-ring ether modification. J. Agric. Food Chem.2007,55 (6): 2288-2292.
    [147]Shao, X.; Li, Z.; Qian, X.; Xu, X. Design, synthesis, and insecticidal activities of novel analogues of neonicotinoids:replacement of nitromethylene with nitroconjugated system. J. Agric. Food Chem.2009,57 (3):951-957.
    [148]Shao, X.; Fu, H.; Xu, X.; Liu, Z.; Li, Z.; Qian, X. Divalent and oxabridged neonicotinoids constructed by dialdehydes and nitromethylene analogues of imidacloprid:design, synthesis, crystal structure, and insecticidal activities. J. Agric. Food Chem.2009,58 (5):2696-2702.
    [149]杨新玲,黄文耀,凌云等.苜蓿蚜报警信息素[反]-β-法尼烯的含氮类似物及其制备方法.CN1544421,2004-11-10.
    [150]杨新玲,黄文耀,凌云等.[反]-β-法尼烯类似物的设计,合成与生物活性研究.高等化学学报,2004,25(9):1657-1661.
    [151]Wang, Q.; Li, H.; Li, Y.; Huang, R. Synthesis and herbicidal activity of 2-cyano-3-(2-chlorothiazol-5-yl)methylaminoacrylates. J. Agric. Food Chem.2004,52 (7):1918-1922.
    [152]Sun, C. W.; Zhu, J.; Wang, H.; Jin, J.; Xing, J.; Yang, D. Chiral 1,5-disubstituted 1,3,5-hexahydrotriazine-2-N-nitroimine analogues as novel potent neonicotinoids: Synthesis, insecticidal evaluation and molecular docking studies. Eur. J. Med. Chem. 2011,46(1):11-20.
    [153]Sun, C.; Xu, X.; Xu, Y.; Yan, D.; Fang, T.; Liu, T. Synthesis, insecticidal activity, and molecular docking studies of nitenpyram analogues with a flexible ester arm anchored on tetrahydropyridine ring. J. Agric. Food Chem.2011,59 (9):4828-4835.
    [154]Coburger, C.; Wollmann, J.; Krug, M.; Baumert, C.; Seifert, M.; Molnar, J.; Lage, H.; Hilgeroth, A. Novel structure-activity relationships and selectivity profiling of cage dimeric 1,4-dihydropyridines as multidrug resistance (MDR) modulators. Bioorg. Med. Chem.2010,18 (14):4983-4990.
    [155]Sirisha, K.; Bikshapathi, D.; Achaiah, G.; Reddy, V. M. Synthesis, antibacterial and antimycobacterial activities of some new 4-aryl/heteroaryl-2,6-dimethyl-3,5-bis-N-(aryl)-carbamoyl-1,4-dihydropyridines. Eur. J. Med. Chem.2011,46 (5):1564-1571.
    [156]Bulbul, B.; Ozturk, (i. S.; Vural, M.; Simsek. R.; Sarioglu, Y.; Linden, A.; Ulgen, M.; Safak, C. Condensed 1,4-dihydropyridines with various esters and their calcium channel antagonist activities. Eur. J. Med. Chem.2009,44 (5):2052-2058.
    [157]Pedemonte, N.; Boido, D.; Moran, O.; Giampieri, M.; Mazzi, M.; Ravazzolo, R.; Galietta, L. J. Structure-activity relationship of 1,4-dihydropyridines as potentiators of the cystic fibrosis transmembrane conductanee regulator chloride channel. Mol. Pharmacol.2007,72 (1):197-207.
    [158]Sirisha, K.; Achaiah, G.; Reddy, V. M. Facile synthesis and antibacterial, antitubercular, and anticancer activities of novel 1,4-dihydropyridines. Arch. Pharm. (Weinheim, Ger.) 2010,343 (6):342-352.
    [159]Roh, E. J.; Keller, J. M.; Olah, Z.; Iadarola, M. J.; Jacobson, K. A. Structure-activity relationships of 1,4-dihydropyridines that act as enhancers of the vanilloid receptor 1 (TRPV1). Bioorg. Med. Chem.2008,16 (20):9349-9358.
    [160]Voigt, B.; Coburger, C.; Monar, J.; Hilgeroth, A. Structure-activity relationships of novel N-acyloxy-1,4-dihydropyridines as P-glycoprotein inhibitors. Bioorg. Med. Chem. 2007,15 (15):5110-5113.
    [161]El Bakali, J.; Muccioli, G G.; Renault, N.; Pradal, D.; Body-Malapel, M.; Djouina, M.; Hamtiaux, L.; Andrzejak, V.; Desreumaux, P.; Chavatte, P.; Lambert, D. M.; Millet, R. 4-Oxo-1,4-dihydropyridines as selective CB2 cannabinoid receptor ligands:structural insights into the design of a novel inverse agonist series. J. Med. Chem.2010,53 (22): 7918-7931.
    [162]Reimao, J. Q.; Scotti, M. T.; Tempone, A. G. Anti-leishmanial and anti-trypanosomal activities of 1,4-dihydropyridines:In vitro evaluation and structure-activity relationship study. Bioorg. Med. Chem.2010,18 (22):8044-8053.
    [163]Okazawa, A.; Akamatsu, M.; Nishiwaki, H.; Nakagawa, Y.; Miyagawa, H.; Nishimura, K.; Ueno, T. Three-dimensional quantitative structure-activity relationship analysis of acyclic and cyclic chloronicotinyl insecticides. John Wiley & Sons, Ltd.2000; 56, pp. 509-515.
    [164]Ihara, M.; Matsuda, K.; Shimomura, M.; Sattelle, D. B.; Komai, K. Super agonist actions of clothianidin and related compounds on the SAD beta2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Biosci. Biotechnol. Biochem.2004,68 (3):761-763.
    [165]Goebel, T.; Humbert-droz, E.; Schwarzenbach, M. Acyclic and cyclic guanidine and acetamidine derivatives, their preparation and their use as pesticides, esp. as parasiticides. US20020028806,2002-03-07.
    [166]Uneme, H.; Iwanaga, K.; Higuchi, N.; Minamida, I.; Okauchi, T., Guanidine derivatives, their production and insecticides. US5034404,1991-06-23.
    [167]Jeschke, P.; Losel, P.; Nauen, R.; Marczok, P.; Arnold, C.; Sanwald, E. Substituted oxyguanidines. WO2006056333,2006-01-06.
    [168]Gsell, L. 1-nitro-2,2-diaminoethylene derivatives. US5049571,1991-09-17.
    [169]Gsell, L. Pyridyl substituted guanidines useful as insecticides. US5063236 1991-11-05.
    [170]Kishimoto, T.; Shibata, Y.; Matsuda, M.; Hatano, R.; Yamamoto, A.; Iwasa, T. Nitrogenous heterocyclic compound, process for producing the same, and pest control agent. WO09406765,1994-03-31.
    [171]Wakita, T.; Kinoshita, K.; Yasui, N.; Yamada, E.; Kawahara, N.; Kodaka, K. Synthesis and structure-activity relationships of dinotefuran derivatives:Modification in the nitroguanidine part. J. Pestic. Sci.2004,29 (4):348-355.
    [172]Wakita, T.; Kinoshita, K.; Kodaka, K.; Yasui, N.; Naoi, A.; Banba, S. Synthesis and structure-activity relationships of dinotefuran derivatives:Modification in the tetrahydro-3-furylmethyl part. J. Pestic. Sci.2004,29 (4):356-363.
    [173]钱旭红,李忠,田忠贞等.硝基亚甲基衍生物及其用途.CN1631887,2005-06-02.
    [174]Shi, W.; Qian, X. H.; Zhang, R.; Song, G. H. Synthesis and quantitative structure-activity relationships of new 2,5-disubstituted-1,3,4-oxadiazoles. J. Agric. Food Chem.2001,49 (1):124-130.
    [175]Chen, L.; Wang, Q. M.; Huang, R.; Mao, C.; Shang, J.; Bi, F. Synthesis and insecticidal evalution of propesticides of benzoylphenylureas. J. Agric. Food Chem.2005,53, 38-41.
    [176]Shao, X.; Xu, Z.; Zhao, X.; Xu, X.; Tao, L.; Li, Z.; Qian, X. Synthesis, crystal structure, and insecticidal activities of highly congested hexahydroimidazo[1,2-a]pyridine derivatives:effect of conformation on activities. J. Agric. Food Chem.2010,58 (5): 2690-2695.
    [177]Chigr, M.; Fillion, H.; Rougny, A. A regioselective synthesis of 4,5-and 4,8-disubstitutedaza-anthraquinones by the diels-alder route. Tetrahedron Lett.1988,29 (46):5913-5916.
    [178]Nebois, P.; Fillion, H.; Benameur, L.; Fenet, B.; Luche, J.-L. Synthesis and NMR structural study of furoquinolines and naphthofurans from quinones and a 1-azadiene. Tetrahedron.1993,49 (43):9767-9774.
    [179]Levesque, S.; Brassard, P. The regiochemistry of 6-chloro-5,8-quinolinequinones and 7-chloro-5,8-quinolinequinones. Heterocycles.1994,38 (10):2205-2218.
    [180]Poumaroux, A.; Bouaziz, Z.; Domard, M.; Fillion, H. Regiospecific hetero Diels-Alder synthesis of pyrido[2,3-b]-and pyrido[3,2-b]carbazole-5,11-diones. Heterocycles.1997, 45 (3):585-596.
    [181]Barfacker, L.; Hollmann, C.; Eilbracht, P. Rhodium(I)-catalysed hydrocarbonylation and silylcarbonylation reactions of alkynes in the presence of primary amines leading to 2-pyrrolidinones and 4-silylated l-aza-1,3-butadienes. Tetrahedron.1998,54 (18): 4493-4506.
    [182]Martin, N.; Martinez-Grau. A.; Sanchez, L.; Seoane, C.; Torres, M. The first hetero-Diels-Alder reaction of C-60 with 1-azadienes. Synthesis of tetrahydropyrido[2',3':1,2][60]fullerene derivatives. J. Org. Chem.1998.63 (22): 8074-8076.
    [183]Steinhagen, H.; Corey, E. J. A convenient and versatile route to hydroquinolines by inter-and intramolecular aza-Diels-Alder pathways. Angew. Chem. Int. Edit.1999,38 (13-14):1928-1931.
    [184]Barluenga, J.; Tomas, M.; LopezPelegrin, J. A.; Rubio, E. First [4+2] cycloaddition of alkynyl Fischer carbene complexes with heterodienes. Facile synthesis of 1,4-dihydropyridines from 1-azadienes. Tetrahedron Lett.1997,38 (22):3981-3984.
    [185]Boger, D. L. Azadiene diels-alder reactions:Scope and applications. Total synthesis of natural and Ent-fredericamycin A. J. Hetero. Chem.1996,33 (5):1519-1531.
    [186]Sisti, N. J.; Motorina, I. A.; Tran Huu Dau, M.; Riche, C.; Fowler, F. W.; Grierson, D. S. Reactivity of N-phenyl-l-aza-2-cyano-1,3,-butadienes in the Diels-Alder reaction. J. Org. Chem.1996,61 (11):3715-3728.
    [187]Boger, D. L.; Corbett, W. L.; Curran, T. T.; Kasper, A. M. Inverse electron-demand Diels-Alder reactions of N-sulfonyl α, β-unsaturated imines:a general approach to implementation of the 4π participation of l-aza-1,3-butadienes in Diels-Alder reactions. J. Am. Chem. Soci.1991,113(5):1713-1729.
    [188]Boger, D. L.; Curran, T. T. Diels-Alder reactions of l-aza-1,3-butadienes:room temperature, endo-selective LUMOdiene-controlled [4+2] cycloaddition reactions of N-sulfonyl-4-(ethoxycarbonyl)-l-aza-1,3-butadienes. J. Org. Chem.1990,55 (20): 5439-5442.
    [189]Boger, D. L.; Nakahara, S. Diels-Alder reactions of N-sulfonyl-l-aza-1,3-butadienes: development of a synthetic approach to the streptonigrone C ring. J. Org. Chem.1991, 56 (2):880-884.
    [190]Boger, D. L.; Cassidy, K. C.; Nakahara, S. Total synthesis of streptonigrone. J. Am. Chem. Soci.1993,115(23):10733-10741.
    [191]Boger, D. L.; Jacobson, I. C. Synthesis and preliminary evaluation of the fredericamycin-a abcde ring-system. J. Org. Chem.1991,56 (6):2115-2122.
    [192]Boger, D. L.; Jacobson, I. C. Studies on the total synthesis of fredericamycin-a-development of an intermolecular alkyne-chromium carbene complex cyclization approach to the abcde ring-system. Tetrahedron Lett.1989,30 (16):2037-2040.
    [193]Sisti, N. J.; Zeller, E.; Grierson, D. S.; Fowler, F. W. Intramolecular Diels-Alder reaction of 2-cyano-l-aza-1,3-butadienes. J. Org. Chem.1997,62 (7):2093-2097.
    [194]Teng, M.; Fowler, F. W. The N-Acyl-Alpha-Cyano-1-Azadienes remarkably reactive heterodienes in the Diels-Alder Reaction. J. Org. Chem.1990,55 (21):5646-5653.
    [195]Kagabu. S.; Yokoama, K.; Iwaya, K.; Tanaka, M. Chloronicotinyl Insecticides. Part X. Imidacloprid and related compounds:structure and water solubility of N-alkyl derivatives of imidacloprid. Biosci. Biotechnol. Biochem.1998,62,1216-1224.
    [196]Sauer, J. Diels-Alder-reactions Part I:New preparative aspects. Angew. Chem. Int.Ed. 1966,5,211-230.
    [197]Sauer, J. Diels-Alder reactions Part II:The reaction mechanism. Angew. Chem. Int. Ed. 1967,6,16-33.
    [198]Zheng, W.; Liu, W. Kinetics and mechanism of the hydrolysis of imidacloprid. Pestic. Sci.1999,55(4):482-485.
    [199]Kambe, S.; Saito, K.; Sakurai, A.; Midorikawa, H. Synthesis. A simple method for the preparation of 2-amino-4-aryl-3-cyanopyridines by the condensation of malononitrile with aromatic aldehydes and alkyl ketones in the presence of ammonium acetate. Synthesis.1980,5,366-368.
    [200]Kumar, D.; Reddy, V. B.; Mishra, B. G.; Rana, R. K.; Nadagouda, M. N.; Varma, R. S. Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes. Tetrahedron.2007,63 (15):3093-3097.
    [201]Yan, C.; Song, X.; Wang, Q.; Sun, J.; Siemeling, U.; Bruhn, C. One-step synthesis of polysubstituted benzene derivatives by multi-component cyclization of alpha-bromoacetate, malononitrile and aromatic aldehydes. Chem. Commun.2008,12, 1440-1442.
    [202]Wen, L.; Jiang, C.; Li, M.; Wang, L. Application of 2-(2-chloroaroyl)methylenei midazolidines in domino and multicomponent reaction:new entries to imida-zo[1, 2-a]pyridines and benzo[b]imidazo[1,2,3-ij][1,8]naphthyridines. Tetrahedron.2011,6 7 (2):293-302.
    [203]Dyachenko, V. D.; Krivokolysko, S. G.; Litvinov, V. P. Synthesis and some properties of 4-alkyl-5-cyano-6-mercapto-3,4-dihydropyridin-2(1H)-ones. Russ. Chem. Bull. (Engl. Transl.) 1997,46,1912-1915.
    [204]Latli, B.; Than, C.; Morimoto, H.; Williams, P. G.; Casida, J. E.[6-Chloro-3-pyridylmethyl-3H]-neonicotinoids as high-affinity radioligands for the nicotinic acetylcholine receptor:preparation using NaB3H4 and LiB3H4. J. Labelled. Compd. Radiopharm.1996,38,971-978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700