面向智能电网AMI的网络计量关键技术与用户用电数据挖掘研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入智能电网时代,大量电能表分散固定安装所导致的计量性能维护难题依然存在。AMI计量数据采集和处理的边际成本极低,然而对其挖掘和应用的研究尚在起步阶段,致使大量宝贵资源归于闲置。分时阶梯电价体系的推行使得经济用电问题成为只有专家才能解决的复杂规划问题。而智能电网AMI以其丰富的测量、通信、计算和存储资源,为这些问题的解决提供了广阔平台。
     论文各部分围绕AMI计量功能,并由此出发向下延伸研究了计量性能的维护,向上研究了计量数据的挖掘应用。研究内容涉及四个问题:(1)时间同步,此为分布式测控系统的基本问题;(2)AMI远程校准,旨在解决特定电能表的计量校准问题;(3)基于AMI计量数据的电能误差分析挖掘,实现对AMI的整体巡检,发现超差电表,使校准有的放矢;(4)家庭用电规划,为分时阶梯电价体系下家庭电力用户提供专业的用电经济规划服务。其中(1)的解决是前提,(2)(3)协同保障AMI计量性能的准确可靠,(3)(4)是对AMI计量数据的挖掘应用,体现AMI的内在价值。
     在时间同步问题的研究中,论文提出了二阶漂移补偿(SODC)误差修正算法和指数增长线性调整(EGLR)对钟间隔自适应算法相结合的时间同步方法。在处理非线性时钟漂移时,SODC算法具有较线性误差修正算法更小的残余误差和更大的漂移抑制比,从而加大对钟间隔,从而减小系统开销。EGLR算法在确定对钟间隔上具有更小的系统开销。
     在AMI远程校准系统的研究中,论文提出了通用远程校准平台设计的一般原则以及实现方案,给出了硬件和软件构成。实现了将互联网模块与标准仪器共同作为传递单元,通过互联网在远程主机的监控下完成校准。为实现通用性摆脱具体接口的束缚,将边缘分布函数(MDF)特征提取与神经元网络分类器相结合,很好地实现了图像字符数据的识别和采集。还对通用平台进行优化,得到AMI远程校准系统。并利用该平台实现对所提出的基于矢量合成的外磁场影响试验装置进行远程校准。
     论文将电能表、水表、气表抽象为一类具有树形拓扑且满足守恒关系的广义流量仪表。并证明若已知集群中任意仪表误差,无需借助外部标准仪器,仅通过对若干次集群的读数的分析挖掘,即可确定其余电能表的误差。在考虑了AMI中各种损耗后,给出了针对AMI的修正算法,并仿真验证了算法的有效性。
     在家庭用电规划研究中,将电费优化问题抽象为一类含积分函数的优化,给出了完整数学表达。提出了解析法与启发式方法相结合的混合优化方法以及基于全概率公式的优化效果评估方案。仿真表明,该方法能够显著降低电费。
In the era of the smart grid, the challenge of calibration of large number of distributed fixed-installation electricity meters still remains. The marginal cost of AMI metering data acquisition and processing is very low, yet the study on mining and application of these data is still in its infancy, resulting in the idle of large number of valuable resources. The introducing of time-of-use and step tariff system makes using power efficiently out of ordinary user’s ability and the skeduling problem complex only solvable to experts. AMI and smart grid with rich resources of measuring, communicating, computing and storage provide a broad platform for the problems above.
     This dissertation focuses on the measuring function of AMI, underlying maintainence of measuring function and high level application of AMI data mining. The dissertation covers the 4 problems below. (1) Time synchronization. As is the basic problem in distributed measuring and control system. (2) AMI remote calibration, which aimes to solve the problem of calibrating specific electricity meter. (3) Meter error mining and analysis based on AMI data, which is to screen all the meters in AMI and locate the suspicious meter. (4) Household power consumption scheduling, providing professional service of economic planning for power consumer. Solving of problem (1) is the precondition of solving other problems. (2) and (3) together ensure the measurement accurate and reliable. (3) and (4) are AMI data mining and embody the value of AMI.
     In the study of time synchronization, the dissertation proposes a synchronizing algorithm which is the combination of second order drift compensation (SODC) algorithm for error correcting and exponential growing linear regulation (EGLR) self adaptive algorithm. When dealing nonlinear clock drift, SODC has a minor residual error and a greater drift rejection ratio. So the SODC can enlarge the interval between clock comparisons and reduce the system overhead. EGLR reduces the system overhead in determining the interval of two clock comparison operations.
     In the study of AMI remote calibration system, this dissertation presents the principles and scheme for desigination a general remote calibration platform, and the construction of hardware and software. The Internet module and standard instrument are combined to be the transmiting unit. The calibration is conducted under the monitoring by the remote host through Internet. To achieve maximum versatility and get rid of the constraint of certain interface, the image character realization method is introduced. The method combines marginal distribution function feature extraction and BP neural network classification. By optimizing the general platform, the AMI remote calibration system is achieved. The system is used in the remote calibration of magnetic fields test equipment which is based on synthetic vectors and detailed in the dissertation.
     This dissertation develops an autonomas algorithm for relative errors of meters in tree topology, and demonstrates that, giving the premise of energy conservation, providing any meter’s relative error, all the other meters’relative errors can be accomplished according to a group of meter readings. Considering the energy wastage in AMI, a revised algorithm is presented and proven to be effective by computer simulation.
     In the study of scheduling of household power consumption for Step and Time of Use (TOU) tariff system, this dissertation treats the problem of cost optimization of electricity as an optimization problem of function containing integration and provides the complete mathematic presentation. This dissertation proposes a hybrid optimization method which contains analysis stage and heuristic stage. An evaluation methodology is deduced to evaluate the optimization. The computer simulation demonstrates that the proposed approach can reduce the cost of electricity evidently in the sense of probability.
引文
[1] M. E. J. Newman, The Structure and Function of Complex Networks, SIAM Review, 2003, 45(2): 167~256
    [2] R. v. d. Hofstad, Random Graphs and Complex Networks, Eindhoven, Netherlands: Eindhoven University of Technology, 2009, 1~25
    [3] P. Crucitti, V. Latora, M. Marchiori, Model for Cascading Failures in Complex Networks, Physical Review E, 2004, 69(4): 1~4
    [4] S. Boccaletti, V. Latora, Y. Moreno, et al., Complex Networks: Structure and Dynamics, Physics Reports, 2006, 424(4-5): 175~308
    [5] A. E. Motter, and Y. C. Lai, Cascade-based Attacks on Complex Networks, Physical Review E, 2002, 66(6): 1~4
    [6] S. H. Strogatz, Exploring Complex Networks, Nature, 2001, 410(8): 268~276
    [7] M. Ruh, G. O. Andersson, A. Borer, A Configuration Manager for a Fully Transparent Distribution Management System, Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.9822&rep=rep1&type=pdf
    [8]国家电网, 2020年全面建成统一“坚强智能电网”, http://www.gov.cn/jrzg/2009-05/21/content_1321530.htm
    [9]余贻鑫,智能电网的技术组成和实现顺序,南方电网技术, 2009, 3(2): 1~5
    [10] B. Simons, J. L. Welch, N. Lynch, An Overview of Clock Synchronization, Fault-Tolerant Distributed Computing, 1990, 448 of LNCS: 84~96
    [11] B. Patt-Shamir, and S. Rajsbaumy, A Theory of Clock Synchronization, Proceedings of the 26th Annual ACM Symposium on Theory of Computing, New York, USA: ACM, 1994, 810~819
    [12]李孝辉,杨旭海,刘娅等,时间频率信号的精密测量,北京:科学出版社, 2010, 1~57
    [13] F. B. Schneider, A Paradigm for Reliable Clock Synchronization, Proceedings of the Advanced Seminar on Real-time Local Area Networks, Bandol, France: INRIA, 1986, 85~104
    [14] D. Barsotti, L. P. Nieto, A. Tiu, Verification of Clock Synchronization Algorithms: Experiments on a combination of Deductive Tools, Proceedings of the 5th International Workshop on Automated Verification of Critical Systems, 2006, 145(14): 63~78
    [15] C. Lenzen, P. Sommer, R. Wattenhofer, Optimal Clock Synchronization in Networks, Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, New York, USA: ACM, 2009
    [16] P. Ohly, D. N. Lombard, K. B. Stanton, Hardware Assisted Precision Time Protocol Design and Case Study, Proceeding of the 9th LCI International Conference on High-Performance Clustered Computing, Intel LTD, 2008
    [17] D. L. Mills, Network Time Protocol Version 4 Reference and Implementation Guide, University of Delaware, Tech. Rep. 06-06-1, June 2006
    [18] J. C. Eidson, Measurement, Control, and Communication Using IEEE 1588, London, UK: Springer-Verlag, London Limited, 2006, 1~31
    [19] Technical Committee on Sensor Technology, IEEE Std 1588—2008, Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, New York: IEEE, 2008
    [20]王惠南, GPS导航原理与应用,北京:科学出版社, 2005, 5~32
    [21] G. Taylor, C. Brunsdon, J. Li, et al., GPS Accuracy Estimation Using Map Matching Techniques: Applied to Vehicle Positioning and Odometer Calibration, Computers, Environment and Urban Systems, 2006, 30(6): 757~772
    [22] P. Ferrari, A. Flammini, D. Marioli, et al., IEEE 1588-based Synchronization System for a Displacement Sensor Network, IEEE Transactions on Instrumentation and Measurement, 2008, 57(2): 254~260
    [23] Technical Committee PEL/13, Electricity Meters, BS EN 62053-11: 2003 Electricity Metering Equipment (a.c.)—Particular Requirements—Part 11: Electromechanical Meters for Active Energy (classes 0,5 1 and 2), London: BSI, 2003
    [24]国家质量监督检验检疫总局, JJG 307—2006机电式交流电能表,北京:中国计量出版社, 2006
    [25]蓝永林, JJG 307—2006《机电式交流电能表》实施指南,北京:中国计量出版社, 2006, 5~24
    [26]国家质量监督检验检疫总局, JJG 596—1999电子式电能表,北京:中国计量出版社, 1999
    [27] Technical Committee PEL/13, Electricity Meters, BS EN 62052-11:2003 Electricity Metering Equipment (a.c.)—General Requirements, Tests and Test Conditions—Part 11: Metering Equipment, London: BSI, 2003
    [28] Technical Committee PEL/13, Electricity Meters, BS EN 62053-21: 2003 Electricity Metering Equipment (a.c.)—Particular Requirements—Part 21: Static Meters for Active Energy (Classes 1 and 2), London: BSI, 2003
    [29]毛晓波,黄云峰,黄俊杰,高精度电能表现场校验仪设计,电力自动化设备, 2007, 27(7): 86~92
    [30]何绘宇,丘文昌,远程校准系统通用环境的分析与设计,软件导刊, 2009, 8(1): 109~110
    [31] P. I. Espina, Flow Tele-metrology, Instrumentation and Measurement Technology Conference, Venice, Italy: IEEE, 1999, 2, 614~617
    [32] D. Amicone, A. Bernieri, G. Betta, et al., On the Remote Calibration of Electrical Energy Meters, 16th IMEKO TC4 Symposium, Florence Italy: IMEKO, 2008
    [33] M. M. Albu, A. Ferrero, F. Mihai, et al., Remote Calibration Using Mobile, Multiagent Technology, IEEE Transactions on Instrumentation and Measurement, 2005, 54(1): 24~30
    [34] ?. Sand, Applying the Internet to Instrumentation and Metrology: [Ph.D. Thesis], Trondheim: Norwegian University of Science and Technology, 2006
    [35]郭恩全,苗胜,测试总线发展的回顾与展望,电子测量与仪器学报, 2009, 23(8): 1~6
    [36]冯冬芹,廖智军,基于以太网的工业控制网络实时通信模型研究,仪器仪表学报, 2003, 24(4): 715~718
    [37] I. Gustavsson, Remote Laboratory Experiments in Electrical Engineering Education, Fourth IEEE International Caracas Conference on Devices, Circuits and System, Aruba: IEEE, 2002, I025-1~I025-5
    [38]赵强,钱晓龙,汪晋宽,基于CAN总线的工业测控网络,仪器仪表学报, 2004, 25(4): 627~629
    [39] J. P. Thomesse, Fieldbus Technology and Industrial Automation, Emerging Technologies and Factory Automation, 2005, 1, 651~653
    [40]冯冬芹,工业通信网络与系统集成,北京:科学出版社, 2005, 34~46
    [41]鲁力,张波,嵌入式TCP/IP协议的高速电网络数据采集系统,仪器仪表学报, 2009, 30(2): 405~409
    [42]余贻鑫,栾文鹏,智能电网,电网与清洁能源, 2009, 25(1): 7~11
    [43]陈树勇,宋书芳,李兰欣等,智能电网技术综述,电网技术, 2009, 33(8): 1~7
    [44]李再华,白晓民,周子冠等,基于特征挖掘的电网故障诊断方法,中国电机工程学报, 2010, 30(10): 16~22
    [45]童晓阳,叶圣永,数据挖掘在电力系统暂态稳定评估中的应用综述,电网技术, 2009, 33(20): 88~93
    [46]曾德良,杨婷婷,程晓等,数据挖掘方法在实时厂级负荷优化分配中的应用,中国电机工程学报, 2010, 30(11): 109~114
    [47] M. J. Zaki, Advances in Knowledge Discovery and Data Mining, Berlin, Germany: Springer-verlag, 2010, 12~56
    [48]焦李成,刘芳,侯水平等,智能数据挖掘与知识发现,西安:西安电子科技大学出版社, 2006, 34~52
    [49]李凡长,钱旭培,谢琳等,机器学习理论及应用,合肥:中国科学技术大学出版社, 2009, 12~41
    [50] M. M. Gaber, Scientific Data Mining and Knowledge Discovery: Principles and Foundations, New York: Springer-verlag, 2009, 120~143
    [51] Y. Peng, G. Kou, Y. Shi, et al., A Descriptive Framework for the Field of Data Mining and Knowledge Discovery, International Journal of Information Technology and Decision Making, 2008, 7(4): 639~682
    [52]化柏林,数据挖掘与知识发现关系探析,情报理论与实践, 2008, 31(4): 507~510
    [53] N. Pavlidou, H. Vinck, J. Yazdani, et al., Power Line Communications: State of the Art and Future Trends, IEEE Communications Magazine, 2003, 41(4): 34~40
    [54] H. A. LatchmanL, W. Yonge, Power Line Local Area Networking, IEEE Communications Magazine, 2003, 41(4): 32~33
    [55] A. Majumder, J. Caffery Jr., Power Line Communications, IEEE Potentials, 2004, 23(4): 4~8
    [56] W. Liu, H. Widmer, P. Raffin, Broadband PLC Access Systems and Field Deployment in European Power Line Networks, IEEE Communications Magazine, 2003, 41(5): 114~118
    [57] M. K. Lee, H. A. Latchman, R. E. Newman, et al., Field Performance Comparison of IEEE 802.11 b and Homeplug 1.0, 27th Annual IEEE Conference on Local Computer Network, Florida: USA, 2002, 598~599
    [58] W. Liu, H. P. Widmer, J. Aldis, et al., Nature of Power Line Medium and Design Aspects for Broadband PLC System, 2000 International Zurich Seminar on Broadband Communications, Zurich: IEEE, 2003: 185~189
    [59] Y. J. Lin, H. A. Latchman, M. Lee, et al., A Power Line Communication Network Infrastructure for the Smart Home, IEEE Wireless Communications, 2002, 9(6): 104~111
    [60] A. Kosonen, M. Jokinen, J. Ahola, et al., Ethernet-based Broadband Power Line Communication Between Motor and Inverter, IET Electric Power Applications, 2008, 2(5): 316~324
    [61] J. Abad, A. Badenes, J. Blasco, et al., Extending the Power Line Lan up to the Neighborhood Transformer, IEEE Communications Magazine, 2003, 41(4): 64~70
    [62] Y. D. Lin, Y. H. Hu, Power-line Interference Detection and Suppression in ECG Signal Processing, IEEE Transactions on Biomedical Engineering, 2008, 55(1): 354~357
    [63] A. E?er, A. Kamper, M. Franke, et al., Scheduling of Electrical Household Appliances with Price Signals, Operations Research Proceedings 2006, 2007, 253-258
    [64] S. A. h. Soliman, I. HelalA, M. Youssef, Electric Load Management Using Electricity Tariff Algorithm. International Journal of Emerging Electric Power Systems, 2007, 8(5): Article 3
    [65] G. L. NemhauserL, A. Woolsey, Integer and Combinatorial Optimization, New York: Wiley, 1988, 13~67
    [66] S. G. Nash, A. Sofer, Linear and Nonlinear Programming, New York: McGraw-Hill, 1996, 79~120
    [67] H. P. Moreton, C. H. Séquin, Functional Optimization for Fair Surface Design, Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, ACM, 1992: 167~176
    [68] S. Giulini, M. Sanguineti, Approximation Schemes for Functional Optimization Problems, Journal of Optimization Theory and Applications, 2008, 140(1): 33~54
    [69] C. Barbarosie, A. M. Toader, Shape and Topology Optimization for Periodic Problems, Structural and Multidisciplinary Optimization, 2009, 40(1-6): 393~408
    [70] Y. Cai, K. L. Judd, Stable and Efficient Computational Methods for Dynamic Programming, Journal of European Economic Association, 2010, 8(2-3): 626~634
    [71] C. Bandle, A. Wagner, Optimization Problems for an Energy Functional with Mass Constraint Revisited, Journal of Mathematical Analysis and Applications, 2008, 352(1): 400~417
    [72]管晓宏,翟桥柱,冯泳翰等,一类含积分约束的生产制造系统优化调度,中国科学:技术科学, 2010, 40(1): 41~45
    [73] S. Konjik, M. Kunzinger, M. Oberguggenberger, Foundations of the Calculus of Variations in Generalized Function Algebras, Acta Applicandae Mathematicae, 2008, 102(2): 169~199
    [74] M. Oberguggenberger, S. Pilipovi?, D. Scarpalézos, Positivity and Positive Definiteness in Generalized Function Algebras, Journal of Mathematical Analysis and Applications, 2007, 328(2): 1321~1335
    [75] D. Dentcheva, A. Ruszczyński, Optimization with Multivariate Stochastic Dominance Constraints, Mathematical Programming, 2009, 117(1-2): 111~127
    [76]袁学民,孙保胜,李波,港口油品配送系统调度优化的启发式方法,计算机工程与应用, 2009, 45(28): 225~229
    [77] D. L. Mills, Internet Time Synchronization: The Network Time Protocol, IEEE Transaction on Communications, 1991, 39(10): 1482~1493
    [78] S. Wang, C. Gong, F. Wang, et al., Error Analysis of Time Synchronization Mechanism in TCP/IP Network, Computer Engineering, 2009, 35(18): 111~112
    [79]刘鲁源,王晓欣,刘昆等,分布式系统高精度时钟同步算法及其实现,天津大学学报, 2006, 39(8): 923~927
    [80]赵英,王旖旎,马严等,基于拟合偏差的时钟同步,计算机工程, 2008, 34(16): 13~15
    [81] MAXIM LTD, DS3231 Datasheet, Available on: http://pdfserv.maxim-ic.com/en/ds/DS3231.pdf
    [82] P. Cornelli, P. Ferragina, M. N. Granieri, et al., Optical Recognition of Motor Vehicle License Plates, IEEE Transactions on Vehicular Technology, 1995, 44(4): 790~799
    [83] S. H. Park, K. J. Kim, K. Jung, et al., Locating Car License Plates Using Neural Networks, Electronics Letters, 1999, 35(17): 1475~1477
    [84] T. D. Duan, D. A. Duc, T. L. H. Du, Combining Hough Transform and Contour Algorithm for Detecting Vehicles' License-plates, Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004: 747~750
    [85] E. Kavallieratou, N. Fakotakis, G. Kokkinakis, An Unconstrained Handwriting Recognition System, International Journal on Document Analysis and Recognition, 2002, 4(4): 226~242
    [86] A. Vinciarelli, M. Perrone, Combining Online and Offline Handwriting Recognition, Proceedings of the Seventh International Conference on Document Analysis and Recognition, IEEE Computer Society, 2003, 2: 844~848
    [87]中国电子技术标准化研究所, GB/T 17626.8-1998电磁兼容试验和测量技术工频磁场抗扰度试验,北京:中国标准出版社, 1998
    [88] International Electrotechnique Commission, IEC 61000-4-8:2009, Electromagnetic Compatibility (EMC)—Part 4-8: Testing and Measurement Techniques—Power Frequency Magnetic Field Immunity Test, Geneva: IEC, 1993
    [89] Technical Committee PEL/13, Electricity Meters, BS EN 61000-4-8:1994 Electromagnetic Compatibility (EMC)—Testing and Measurement Techniques—Power Frequency Magnetic Field Immunity Test - Basic EMC Publication, London: BSI, 1994
    [90]中国电子技术标准化研究所, GB/T 17215.311—2008 0.5级、1级、2级机电式有功电能表特殊要求,北京:中国标准出版社, 2008
    [91]中国电子技术标准化研究所, GB/T 17215.321—2008 1级、2级静止式有功电能表特殊要求,北京:中国标准出版社, 2008
    [92] International Electrotechnique Commission, IEC 62053-21:2003 Electricity Metering Equipment (a.c.)—Particular Requirements–Part 21:Static Meters for Active Energy (Classes 1 and 2), Geneva: IEC, 2003
    [93] International Electrotechnique Commission, IEC 62053-11:2003 Electricity Metering Equipment (a.c.)–Particular Requirements–Part 11:Electromechanical Meters for Active Energy (Classes 0,5, 1 and 2) , Geneva: IEC, 2003
    [94]李庆扬,王能超,易大义,数值分析,北京:清华大学出版社施普林格出版社, 2001, 205~213
    [95]程云鹏,张凯院,徐仲,矩阵论,西安:西北工业大学出版社, 2002, 109~138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700