多种天然化合物的模式识别及双通道传感器的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要
     本论文基于超分子化学领域经典的指示剂置换法,设计合成了一系列带有多个硼酸结合位点的受体,并筛选了多种指示剂组成指示剂对。受体与指示剂对结合起来,组成了动力学三组分检测体系。该检测体系应用于传感阵列对多种天然化合物进行了模式识别与分类。另外基于汞离子诱导醛基脱保护机理,设计合成了一种以BODIPY为荧光团的双通道化学传感器。
     第一部分研究了传感阵列对人参皂苷和人参提取物的模式识别与分类。与传统的硼酸受体不同之处在于受体中引入了多个硼酸结合位点,并引入了各种各样长度与结构不同的连接臂,进而增强受体与客体之间的交互作用。对多种指示剂进行了筛选,得到了两组能产生理想光信号的指示剂对。受体与指示剂对结合起来组成了动力学三组分检测体系,并最终建立了传感阵列。通过传感阵列,成功地对人参皂苷和人参提取物进行了模式识别与分类。
     第二部分研究了传感阵列对黄酮类化合物和红茶提取物的模式识别与分类。大部分黄酮类化合物带有邻苯二酚基团,这一基团可以与芳香基硼酸可逆结合,形成环状的硼酸酯。利用硼酸类受体和指示剂对组成的动力学检测体系对黄酮类化合物具有差异响应,并由此建立相应的传感阵列。模式识别分析结果表明该传感阵列对黄酮类化合物和红茶提取物有着出色的区分和分类能力。
     第三部分基于汞离子诱导的硫缩醛脱保护反应,设计、合成和表征了一个基于1,3-二噻烷修饰的BODIPY化学传感器,能对汞离子和银离子产生不同的信号模式。
In the dissertation, a library of simple multi-boronic acid-based receptors with various spacers was synthesized for the sensing of saccharide-based natural products. Based on indicator displacement assay, a cross-reactive sensing array was constructed using the receptors in conjunction with different pairs of indicators. Pattern recognition analysis created from the colorimetric response of the hosts and indicator pairs reveal excellent classification of natural products. Moreover, based on the concept of aldehyde group protection/deprotection, a new BODIPY based dual-channel chemodosimeter for Hg2+ and Ag+ has been developed.
     The first section studied on the pattern recognition of ginsenosides and ginseng extracts. A library of simple bis-boronic acid based receptors for ginsenosides were designed and synthesized. Multiple boronic acids were incorporated for simultaneous binding of saccharides on two ends of ginsenosides while some of the spacers were used to target hydrophobic steroids. A suite of indicators were screened, and the pairing of indicators (ML-PV or ARS-PV) provided greater absorbance signal modulation. Pattern recognition analysis indicated excellent separation and classification of individual ginsenosides and ginseng extracts with high accuracy.
     The second section focused on the discrimination of vicinal-diol-containing flavonoids and black tea extracts. Boronic acids are suitable for binding flavonoids because most flavonoids contain catechol groups which can reversibly associate with phenyl boronic acids to form cyclic boronic esters. The resulting dynamic three-component sensing ensembles (H-ML-PV, H-ARS-PV) are capable of responding differently to flavonoids, providing the basis for array sensing. Sensing arrays in 96-well plates were constructed and successfully employed to discriminate both vicinal-diol-containing flavonoids and black tea extracts.
     The third section described the design, synthesis and spectral characterization of BODIPY-1,3-dithiane-based chemodosimeter, which yields distinctive signal patterns towards Hg2+ and Ag+.
引文
[1]Lehn, J., Supramolecular chemistry, Science,1993,260 (5115):1762-1763.
    [2]Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W., Supramolecular Chemistry in Water, Angew. Chem., Int. Ed.,2007,46 (14):2366-2393.
    [3]Cohen, G.; Mytilineou, C.; Barrett, R. E.,6,7-Dihydroxytetrahydroisoquinoline. Uptake and storage by peripheral sympathetic nerve of the rat, Science,1972,175 (4027):1269-72.
    [4]Bureekaew, S.; Shimomura, S.; Kitagawa, S., Chemistry and application of flexible porous coordination polymers, Sci. Technol. Adv. Mater.,2008,9 (1):014108.
    [5]Cosic, I., Macromolecular bioactivity:is it resonant interaction between macromolecules?-theory and applications, Biomedical Engineering, IEEE Transactions on, 1994,41 (12):1101-1114.
    [6]Gellman, S. H., Introduction:□ Molecular Recognition, Chem. Rev.,1997,97 (5): 1231-1232.
    [7]Kurth, D. G., Metallo-supramolecular modules as a paradigm for materials science, Sci. Technol. Adv. Mater.,2008,9 (1):014103.
    [8]Lehn, J.-M., Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self-Organization, Angew. Chem., Int. Ed. Engl.,1990,29(11):1304-1319.
    [9]Lehn, J.-M., Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chem., Int. Ed. Engl.,1988, 27(1):89-112.
    [10]Ariga, K.; Hill, J. P.; Lee, M. V.; Vinu, A.; Charvet, R.; Acharya, S., Challenges and breakthroughs in recent research on self-assembly, Sci. Technol. Adv. Mater.,2008,9 (1): 014109.
    [11]Ikeda, T.; Stoddart, J. F., Electrochromic materials using mechanically interlocked molecules, Sci. Technol. Adv. Mater.,2008,9 (1):014104.
    [12]Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart. J. F., Dynamic Covalent Chemistry, Angew. Chem., Int. Ed.,2002,41 (6):898-952.
    [13]Cacciapaglia, R.; Di Stefano. S.; Mandolini, L., Metathesis Reaction of Formaldehyde Acetals:□ An Easy Entry into the Dynamic Covalent Chemistry of Cyclophane Formation, J. Am. Chem. Soc.,2005,127 (39):13666-13671.
    [14]Dickert, F. L.; Hayden, O., Molecular imprinting in chemical sensing, TrAC Trends in Analytical Chemistry,1999,18 (3):192-199.
    [15]Satir, P.; Christensen, S., Structure and function of mammalian cilia, Histochemistry and Cell Biology,2008,129 (6):687-693.
    [16]Ballardini, R.; Balzani, V.; Credi, A.; Gandolfi, M. T.; Venturi, M., Artificial Molecular-Level Machines:□ Which Energy To Make Them Work?, Ace. Chem. Res.,2001, 34 (6):445-455.
    [17]Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S., Imidazolium receptors for the recognition of anions, Chem. Soc. Rev.,2006,35 (4):355-360.
    [18]Prodi, L., Luminescent chemosensors:from molecules to nanoparticles, New J. Chem., 2005,29(1):20-31.
    [19]Amendola, V.; Fabbrizzi, L., Anion receptors that contain metals as structural units, Chem. Commun.,2009,45 (5):513-531.
    [20]Wright, A. T.; Anslyn, E. V., Differential receptor arrays and assays for solution-based molecular recognition, Chem. Soc. Rev.,2006,35 (1):14-28.
    [21]Sinkeldam, R. W.; Greco, N. J.; Tor, Y., Fluorescent Analogs of Biomolecular Building Blocks:Design, Properties, and Applications, Chem. Rev.,2010,110 (5):2579-2619.
    [22]Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging, Chem. Rev.,2010,110 (5): 2620-2640.
    [23]Dickinson, B. C.; Srikun, D.; Chang, C. J., Mitochondrial-targeted fluorescent probes for reactive oxygen species, Curr. Opin. Chem. Biol.,2010,14 (1):50-56.
    [24]Lodeiro, C.; Capelo, J. L.; Mejuto, J. C.; Oliveira, E.; Santos, H. M.; Pedras, B.; Nunez, C., Light and colour as analytical detection tools:A journey into the periodic table using polyamines to bio-inspired systems as chemosensors, Chem. Soc. Rev.,2010,39 (8): 2948-2976.
    [25]Bell, T. W.; Hext, N. M., Supramolecular optical chemosensors for organic analytes, Chem. Soc. Rev.,2004,33 (9):589-598.
    [26]Jiang, P.; Guo, Z., Fluorescent detection of zinc in biological systems:recent development on the design of chemosensors and biosensors, Coordin. Chem. Rev.,2004,248 (1-2):205-229.
    [27]Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M., Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors, Coordin. Chem. Rev.,2006,250 (23-24):3094-3117.
    [28]Kim. J. S.; Quang, D. T., Calixarene-Derived Fluorescent Probes, Chem. Rev.,2007.107 (9):3780-3799.
    [29]Xu, Z.; Yoon, J.; Spring, D. R., Fluorescent chemosensors for Zn2+, Chem. Soc. Rev., 2010,39(6):1996-2006.
    [30]Valeur, B.; Leray, I., Design principles of fluorescent molecular sensors for cation recognition, Coordin. Chem. Rev.,2000,205 (1):3-40.
    [31]Martinez-Manez, R.; Sancenon, F., Fluorogenic and chromogenic chemosensors and reagents for anions, Chem. Rev.,2003,103 (11):4419-4476.
    [32]Callan, J. F.; de, S. A. P.; Magri, D. C., Luminescent sensors and switches in the early 21st century, Tetrahedron,2005,61 (36):8551-8588.
    [33]de, S. A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling recognition events with fluorescent sensors and switches, Chem. Rev.,1997,97 (5):1515-1566.
    [34]Gunnlaugsson, T.; Ali, H. D. P.; Glynn, M.; Kruger, P. E.; Hussey, G. M.; Pfeffer, F. M.; Santos, C. M. G.; Tierney, J., Fluorescent photoinduced electron transfer (PET) sensors for anions; from design to potential application, J. Fluoresc.,2005,15 (3):287-299.
    [35]de Silva, A. P.; de Silva, S. S. K.; Goonesekera, N. C. W.; Gunaratne, H. Q. N.; Lynch, P. L. M; Nesbitt, K. R.; Patuwathavithana, S. T.; Ramyalal, N. L. D. S., Analog Parallel Processing of Molecular Sensory Information, J. Am. Chem. Soc.,2007,129 (11): 3050-3051.
    [36]de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Patty, A. J.; Spence, G. L. Luminescence and charge transfer. Part 3. The use of chromophores with ICT (internal charge transfer) excited states in the construction of fluorescent PET (photoinduced electron transfer) pH sensors and related absorption pH sensors with aminoalkyl side chains, J. Chem. Soc. Perk. T.2,1993, (9):1611-1616.
    [37]K., Q. X. Z. Z. C., The synthesis, Application and Prediction of Stocks Shift in Fluorescent Dyes Derived from 1,8-naphthalic Anhydride, Dyes Pigm.,1989,11 (2):13-21.
    [38]Gunnarsson Gunnar, T.; Desai Umesh, R., Interaction of designed sulfated flavanoids with antithrombin:lessons on the design of organic activators, J. Med. Chem.,2002,45 (20): 4460-70.
    [39]Ramachandram, B.; Samanta, A., How important is the quenching influence of the transition metal ions in the design of fluorescent PET sensors?, Chem. Phys. Lett.,1998,290 (1-3):9-16.
    [40]James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S., Chiral Discrimination of Monosaccharides Using a Fluorescent Molecular Sensor, Nature,1995,374 (6520):345-347.
    [41]Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. Rational Design of Fluorescein-Based Fluorescence Probes. Mechanism-Based Design of a Maximum Fluorescence Probe for Singlet Oxygen, J. Am. Chem. Soc.,2001,123 (11): 2530-2536.
    [42]Demchenko, A. P., The future of fluorescence sensor arrays, Trends in Biotechnology, 2005,23 (9):456-460.
    [43]Wang, J.; Qian, X.; Cui, J., Detecting Hg2+ ions with an ICT fluorescent sensor molecule: Remarkable emission spectra shift and unique selectivity, J. Org. Chem.,2006,71 (11): 4308-4311.
    [44]Suzuki, Y.; Yokoyama, K., Design and synthesis of ICT-based fluorescent probe for high-sensitivity protein detection and application to rapid protein staining for SDS-PAGE, Proteomics,2008,8 (14):2785-2790.
    [45]Rettig, W.; Lapouyade, R., Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions, Top. Fluoresc. Spectrosc,1994,4 (1):109-149.
    [46]Bosch, L. I.; Mahon, M. F.; James, T. D., The B-N bond controls the balance between locally excited (LE) and twisted internal charge transfer (TICT) states observed for aniline based fluorescent saccharide sensors, Tetrahedron Lett,2004,45 (13):2859-2862.
    [47]Carlson, H. J.; Campbell, R. E., Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging, Curr. Opin. Biotechnol.,2009,20 (1):19-27.
    [48]Sapsford, K. E.; Berti, L.; Medintz, I. L., Materials for fluorescence resonance energy transfer analysis:beyond traditional donor-acceptor combinations, Angew. Chem., Int. Ed., 2006,45 (28):4562-4588.
    [49]Takakusa, H.; Kikuchi, K.; Urano, Y.; Sakamoto, S.; Yamaguchi, K.; Nagano, T., Design and Synthesis of an Enzyme-Cleavable Sensor Molecule for Phosphodiesterase Activity Based on Fluorescence Resonance Energy Transfer, J. Am. Chem. Soc.,2002,124 (8): 1653-1657.
    [50]Zhang, X.; Xiao, Y.; Qian, X., A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg(2+) Ions in Living Cells, Angew. Chem., Int. Ed.,2008,47 (42):8025-8029.
    [51]Lodeiro, C.; Pina, F., Luminescent and chromogenic molecular probes based on polyamines and related compounds, Coordin. Chem. Rev.,2009,253 (9-10):1353-1383.
    [52]Schazmann, B.; Alhashimy, N.; Diamond, D., Chloride Selective Calix[4]arene Optical Sensor Combining Urea Functionality with Pyrene Excimer Transduction, J. Am. Chem. Soc., 2006,128 (26):8607-8614.
    [53]Berezin, M. Y.; Achilefu, S., Fluorescence Lifetime Measurements and Biological Imaging, Chem. Rev,2010.110 (5):2641-2684.
    [54]Hsieh, C.-C.; Cheng, Y.-M.; Hsu, C.-J.; Chen, K.-Y.; Chou, P.-T., Spectroscopy and Femtosecond Dynamics of Excited-State Proton Transfer Induced Charge Transfer Reaction, J. Phys. Chem. A,2008,112 (36):8323-8332.
    [55]Henary, M. M.; Fahrni, C. J., Excited state intramolecular proton transfer and metal ion complexation of 2-(2'-hydroxyphenyl)benzazoles in aqueous solution, J. Phys. Chem. A,2002, 106 (21):5210-5220.
    [56]Mordzinski, A.; Grabowska, A., Intramolecular proton transfer in excited benzoxazoles, Chem. Phys. Lett.,1982,90 (2):122-7.
    [57]Xu, Y.; Pang, Y., Zinc binding-induced near-IR emission from excited-state intramolecular proton transfer of a bis(benzoxazole) derivative, Chem. Commun.,2010,46 (23):4070-4072.
    [58]Wang, M.; Zhang, G.; Zhang, D.; Zhu, D.; Tang, B. Z., Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature, J. Mater. Chem.,2010,20 (10):1858-1867.
    [59]Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission:phenomenon, mechanism and applications, Chem. Commun.,2009,45 (29):4332-4353.
    [60]Thomas, S. W., Ⅲ; Joly, G. D.; Swager, T. M., Chemical sensors based on amplifying fluorescent conjugated polymers, Chem. Rev.,2007,107 (4):1339-1386.
    [61]Qian, J. H.; Xu, Y. F.; Qian, X. H.; Wang, J. B.; Zhang, S. Y., Effects of anionic surfactant SDS on the photophysical properties of two fluorescent molecular sensors, J. Photochem. Photobiol. A-Chem.,2008,200 (2-3):402-409.
    [62]Hecht, S.; Frechet, J. M. J., Dendritic encapsulation of function:applying nature's site isolation principle from biomimetics to materials science, Angew. Chem., Int. Ed.,2001,40 (1):74-91.
    [63]Fan, C.; Wang, S.; Hong, J. W.; Bazan, G. C.; Plaxco, K. W.; Heeger, A. J., Beyond superquenching:Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles, Proc. Natl. Acad. Sci.,2003,100 (11):6297-6301.
    [64]Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun.,2001,37 (18):1740-1741.
    [65]Liu, L.; Zhang, G.; Xiang, J.; Zhang, D.; Zhu, D., Fluorescence "Turn On" Chemosensors for Ag+ and Hg2+ Based on Tetraphenylethylene Motif Featuring Adenine and Thymine Moieties, Org. Lett.,2008,10 (20):4581-4584.
    [66]Wu, J.-S.; Liu. W.-M.; Zhuang, X.-Q.; Wang, F.; Wang, P.-F.; Tao. S.-L.; Zhang, X.-H.; Wu, S.-K.; Lee, S.-T., Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization, Org. Lett.,2007,9(1):33-36.
    [67]Yang, G.; Morlet-Savary, F.; Peng, Z.; Wu, S.; Fouassier, J.-P., Triplet-triplet absorption of 2-(2'-hydroxyphenyl)benzoxazole (HBO) in polar solvents, Chem. Phys. Lett.,1996,256 (4-5):536-542.
    [68]Li, Z.; Wu, S., The effect of molecular structure on the photophysical behavior of substituted styryl pyrazine derivatives, J. Fluoresc.,1997,7 (3):237-242.
    [69]Wang, P.; Wu, S., Spectroscopy and photophysics of bridged enone derivatives:effect of molecular structure and solvent, J. Photochem. Photobiol., A,1995,86 (1-3):109-13.
    [70]Ikeda, H.; Nakamura, M.; Ise, N.; Oguma, N.; Nakamura, A.; Ikeda, T.; Toda, F.; Ueno, A., Fluorescent Cyclodextrins for Molecule Sensing:□ Fluorescent Properties, NMR Characterization, and Inclusion Phenomena of N-Dansylleucine-Modified Cyclodextrins, J. Am. Chem. Soc.,1996,118 (45):10980-10988.
    [71]Metivier, R.; Leray, I.; Valeur, B., Lead and mercury sensing by calixarene-based fluoroionophores bearing two or four dansyl fluorophores, Chem. Eur. J.,2004,10 (18): 4480-4490.
    [72]Manimala, J. C.; Anslyn, E. V., Solid-phase synthesis of guanidinium derivatives from thiourea and isothiourea functionalities, Eur. J. Org. Chem.,2002,2002 (23):3909-3922.
    [73]Xu, Y. F.; Liu, Y.; Qian, X. H., Novel cyanine dyes as fluorescent pH sensors:PET, ICT mechanism or resonance effect?, J. Photochem. Photobiol. A-Chem.,2007,190 (1):1-8.
    [74]Sun, Z. N.; Liu, F. Q.; Chen, Y.; Tam, P. K. H.; Yang, D., A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid, Org. Lett.,2008,10 (11):2171-2174.
    [75]Yu, H. B.; Xiao, Y.; Guo, H. Y.; Qian, X. H., Convenient and Efficient FRET Platform Featuring a Rigid Biphenyl Spacer between Rhodamine and BODIPY:Transformation of 'Turn-On'Sensors into Ratiometric Ones with Dual Emission, Chem. Eur. J.,2011,17 (11): 3179-3191.
    [76]Wang, J. B.; Qian, X. H., A series of polyamide receptor based PET fluorescent sensor molecules:Positively cooperative Hg2+ ion binding with high sensitivity, Org. Lett.,2006,8 (17):3721-3724.
    [77]King, D. W.; Cooper, W. J.; Rusak, S. A.; Peake, B. M.; Kiddle, J. J.; O'Sullivan, D. W.; Melamed, M. L.; Morgan, C. R.; Theberge, S. M., Flow Injection Analysis of H2O2 in Natural Waters Using Acridinium Ester Chemiluminescence:□ Method Development and Optimization Using a Kinetic Model, Anal. Chem.,2007,79 (11):4169-4176.
    [78]Xu, Z. C.; Baek, K. H.; Kim. H. N.; Cui, J. N.; Qian, X. H.; Spring, D. R.; Shin, I.; Yoon, J., Zn(2+)-Triggered Amide Tautomerization Produces a Highly Zn(2+)-Selective, Cell-Permeable, and Ratiometric Fluorescent Sensor, J. Am. Chem. Soc.,2010,132 (2): 601-610.
    [79]Cui, D. W.; Qian, X. H.; Liu, F. Y.; Zhang, R., Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide, Org. Lett.,2004,6 (16): 2757-2760.
    [80]Sheng, J. R.; Feng, F.; Qiang, Y.; Liang, F. G.; Lin, S.; Wei, F.-H., A Coumarin-Derived Fluorescence Chemosensors Selective for Copper(Ⅱ), Anal. Lett.,2008,41 (12):2203-2213.
    [81]Cheng, T. Y.; Xu, Y. F.; Zhang, S. Y.; Zhu, W. P.; Qian, X. H.; Duan, L. P., A Highly Sensitive and Selective OFF-ON Fluorescent Sensor for Cadmium in Aqueous Solution and Living Cell, J. Am. Chem. Soc.,2008,130 (48):16160-16161.
    [82]Kojima, H.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Hirata, Y.; Nagano, T., Fluorescent indicators for imaging nitric oxide production, Angew. Chem., Int. Ed.,1999,38 (21): 3209-3212.
    [83]Lim, M. H.; Wong, B. A.; Pitcock, W. H., Jr.; Mokshagundam, D.; Baik, M.-H.; Lippard, S. J., Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes, J. Am. Chem. Soc.,2006,128 (44):14364-14373.
    [84]Yang, Y. J.; Seidlits, S. K.; Adams, M. M.; Lynch, V. M.; Schmidt, C. E.; Anslyn, E. V.; Shear, J. B., A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide, J. Am. Chem. Soc.,2010,132(38):13114-13116.
    [85]Albers, A. E.; Rawls, K. A.; Chang, C. J., Activity-based fluorescent reporters for monoamine oxidases in living cells, Chem. Commun.,2007,43 (44):4647-4649.
    [86]Cui, L.; Zhong, Y.; Zhu, W. P.; Xu, Y. F.; Qian, X. H., Selective and sensitive detection and quantification of arylamine N-acetyltransferase 2 by a ratiometric fluorescence probe, Chem. Commun.,2010,46 (38):7121-7123.
    [87]Wiskur, S. L.; Ait-Haddou, H.; Lavigne, J. J.; Anslyn, E. V., Teaching old indicators new tricks, Ace. Chem. Res.,2001,34 (12):963-972.
    [88]Nguyen, B. T.; Anslyn, E. V., Indicator-displacement assays, Coordin. Chem. Rev.,2006, 250 (23-24):3118-3127.
    [89]Metzger, A.; Lynch, V. M.; Anslyn, E. V., A synthetic receptor selective for citrate, Angew. Chem., Int. Ed. Engl.,1997,36 (8):862-865.
    [90]Lavigne, J. J.; Anslyn, E. V., Teaching old indicators new tricks:A colorimetric chemosensing ensemble for tartrate/malate in beverages, Angew. Chem. Int. Ed.,1999,38 (24):3666-3669.
    [91]Cabell, L. A.; Monahan, M. K.; Anslyn, E. V., A competition assay for determining glucose-6-phosphate concentration with a tris-boronic acid receptor, Tetrahedron Lett,1999, 40 (44):7753-7756.
    [92]Niikura, K.; Metzger, A.; Anslyn, E. V., Chemosensor ensemble with selectivity for inositol-trisphosphate, J. Am. Chem. Soc.,1998,120 (33):8533-8534.
    [93]Wiskur, S. L.; Anslyn, E. V., Using a synthetic receptor to create an optical-sensing ensemble for a class of analytes:A colorimetric assay for the aging of scotch, J. Am. Chem. Soc.,2001,123 (41):10109-10110.
    [94]Ait-Haddou, H.; Wiskur, S. L.; Lynch, V. M.; Anslyn, E. V., Achieving large color changes in response to the presence of amino acids:A molecular sensing ensemble with selectivity for aspartate, J. Am. Chem. Soc.,2001,123 (45):11296-11297.
    [95]Bonizzoni, M.; Fabbrizzi, L.; Piovani, G.; Taglietti, A., Fluorescent detection of glutamate with a dicopper(II) polyamine cage, Tetrahedron,2004,60 (49):11159-11162.
    [96]Hortala, M. A.; Fabbrizzi, L.; Marcotte, N.; Stomeo, F.; Taglietti, A., Designing the Selectivity of the Fluorescent Detection of Amino Acids:□ A Chemosensing Ensemble for Histidine, J. Am. Chem. Soc.,2002,125 (1):20-21.
    [97]Han, M. S.; Kim, D. H., Naked-Eye Detection of Phosphate Ions in Water at Physiological pH:A Remarkably Selective and Easy-To-Assemble Colorimetric Phosphate-Sensing Probe, Angew. Chem., Int. Ed.,2002,41 (20):3809-3811.
    [98]Tobey, S. L.; Jones, B. D.; Anslyn, E. V., C-3v symmetric receptors show high selectivity and high affinity for phosphate, J. Am. Chem. Soc.,2003,125 (14):4026-4027.
    [99]Hanshaw, R. G.; Hilkert, S. M.; Jiang, H.; Smith, B. D., An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological conditions, Tetrahedron Lett,2004,45 (47):8721-8724.
    [100]Atilgan, S.; Akkaya, E. U., A calixpyridinium-pyranine complex as a selective anion sensing assembly via the indicator displacement strategy, Tetrahedron Lett,2004,45 (50): 9269-9271.
    [101]Inouye, M.; Hashimoto, K.-i.; Isagawa, K., Nondestructive Detection of Acetylcholine in Protic Media:Artificial-Signaling Acetylcholine Receptors, J. Am. Chem. Soc.,1994,116 (12):5517-5518.
    [102]Maue, M.; Schrader, T., A color sensor for catecholamines, Angew. Chem. Int. Ed., 2005,44 (15):2265-2270.
    [103]Siering, C.; Kerschbaumer, H.; Nieger, M.; Waldvogel, S. R., A Supramolecular Fluorescence Probe for Caffeine, Org. Lett.,2006,8 (7):1471-1474.
    [104]Leontiev, A. V.; Rudkevich, D. M., Revisiting Noncovalent SO2-Amine Chemistry: An Indicator-Displacement Assay for Colorimetric Detection of SO2, J. Am. Chem. Soc., 2005,127(41):14126-14127.
    [105]Zhu, L.; Anslyn, E. V., Facile quantification of enantiomeric excess and concentration with indicator-displacement assays:An example in the analyses of alpha-hydroxyacids, J. Am. Chem. Soc.,2004,126 (12):3676-3677.
    [106]Zhu. L.; Zhong, Z. L.; Anslyn, E. V., Guidelines in implementing enantioselective indicator-displacement assays for alpha-hydroxycarboxylates and diols. J. Am. Chem. Soc., 2005,127 (12):4260-4269.
    [107]Leung, D.; Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V., Using enantioselective indicator displacement assays to determine the enantiomeric excess of alpha-amino acids, J. Am. Chem. Soc.,2008,130 (37):12318-12327.
    [108]Persaud, K.; Dodd, G., Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose, Nature,1982,299 (5881):352-5.
    [109]Rakow, N. A.; Suslick, K. S., A colorimetric sensor array for odour visualization, Nature, 2000,406 (6797):710-713.
    [110]Wiskur, S. L.; Floriano, P. N.; Anslyn, E. V.; McDevitt, J. T., A multicomponent sensing ensemble in solution:Differentiation between structurally similar analytes, Angew. Chem., Int. Ed.,2003,42 (18):2070-2072.
    [111]Buryak, A.; Severin, K., A chemosensor array for the colorimetric identification of 20 natural amino acids, J. Am. Chem. Soc.,2005,127 (11):3700-3701.
    [112]Shabbir, S. H.; Joyce, L. A.; da Cruz, G. M.; Lynch, V. M.; Sorey, S.; Anslyn, E. V., Pattern-Based Recognition for the Rapid Determination of Identity, Concentration, and Enantiomeric Excess of Subtly Different Threo Diols, J. Am. Chem. Soc.,2009,131 (36): 13125-13131.
    [113]Adams, M. M.; Anslyn, E. V., Differential Sensing Using Proteins:Exploiting the Cross-Reactivity of Serum Albumin To Pattern Individual Terpenes and Terpenes in Perfume, J. Am. Chem. Soc.,2009,131 (47):17068-17069.
    [114]Anslyn, E. V., Supramolecular analytical chemistry, J. Org. Chem.,2007,72 (3): 687-699.
    [115]Schmidtchen, F. P.; Berger, M., Artificial organic host molecules for anions, Chem. Rev.,1997,97 (5):1609-1646.
    [116]Beer, P. D.; Gale, P. A., Anion recognition and sensing:The state of the art and future perspectives, Angew. Chem., Int. Ed.,2001,40 (3):486-516.
    [117]de Silva, A. P.; McCaughan, B.; McKinney, B. O. F.; Querol, M., Newer optical-based molecular devices from older coordination chemistry, Dalton Trans.,2003,32 (10): 1902-1913.
    [118]Piatek, A. M.; Bomble, Y. J.; Wiskur, S. L.; Anslyn, E. V., Threshold detection using indicator-displacement assays:An application in the analysis of malate in Pinot Noir grapes, J. Am. Chem. Soc.,2004,126 (19):6072-6077.
    [119]Wolf, C.; Mei, X. F., Determination of enantiomeric excess and concentration of unprotected amino acids, amines, amino alcohols, and carboxylic acids by competitive binding assays with a chiral scandium complex, J. Am. Chem. Soc.,2006,128 (41): 13326-13327.
    [120]Zhang, T. Z.; Anslyn, E. V., A colorimetric boronic acid based sensing ensemble for carboxy and phospho sugars, Org. Lett.,2006,8 (8):1649-1652.
    [121]Chen, B. L.; Yang, Y.; Zapata, F.; Lin, G. N.; Qian, G. D.; Lobkovsky, E. B., Luminescent open metal sites within a metal-organic framework for sensing small molecules, Adv. Mater.,2007,19 (13):1693-1696.
    [122]Czarnik, A. W., Desperately Seeking Sensors, Chem. Biol.,1995,2 (7):423-428.
    [123 JFolmer-Andersen, J. F.; Lynch, V. M.; Anslyn, E. V., Colorimetric enantiodiscrimination of alpha-amino acids in protic media, J. Am. Chem. Soc.,2005,127 (22):7986-7987.
    [124]Hargrove, A. E.; Reyes, R. N.; Riddington, I.; Anslyn, E. V.; Sessler, J. L., Boronic Acid Porphyrin Receptor for Ginsenoside Sensing, Org. Lett.,2010,12 (21):4804-4807.
    [125]Radad, K.; Gille, G.; Liu, L. L.; Rausch, W. D., Use of ginseng in medicine with emphasis on neurodegenerative disorders, J. Pharmacol. Sci.,2006,100 (3):175-186.
    [126]Wu, J. Y.; Zhou, L. G., Development and application of medicinal plant tissue cultures for production of drugs and herbal medicinals in China, Nat. Prod. Rep.,2006,23 (5): 789-810.
    [127]Yoshikawa, M.; Sugimoto, S.; Nakamura, S.; Matsuda, H.; Kitagawa, N., Chemical Constituents from Seeds of Panax ginseng:Structure of New Dammarane-Type Triterpene Ketone, Panaxadione, and HPLC Comparisons of Seeds and Flesh, Chem. Pharm. Bull.,2009, 57 (3):283-287.
    [128]Min, B. S.; Lee, S. M.; Shon, H. J.; Choi, C. S.; Hung, T. M; Bae, K., Ginsenosides from Heat Processed Ginseng, Chem. Pharm. Bull.,2009,57 (1):92-94.
    [129]Fuzzati, N., Analysis methods of ginsenosides, J. Chromatogr. B.,2004,812 (1-2): 119-133.
    [130]Umali, A. P.; LeBoeuf, S. E.; Newberry, R. W.; Kim, S.; Tran, L.; Rome, W. A.; Tian, T. A.; Taing, D.; Hong, J.; Kwan, M.; Heymann, H.; Anslyn, E. V., Discrimination of flavonoids and red wine varietals by arrays of differential peptidic sensors, Chem. Sci.,2011,2 (3): 439-445.
    [131]Fang, H.; Kaur, G.; Wang, B. H., Progress in boronic acid-based fluorescent glucose sensors, J. Fluoresc.,2004,14 (5):481-489.
    [132]Zhao, J. Z.; Fyles, T. M.; James, T. D., Chiral binol-bisboronic acid as fluorescence sensor for sugar acids, Angew. Chem., Int. Ed.,2004,43 (26):3461-3464.
    [133]Wiskur, S. L.; Lavigne. J. L.; Metzger, A.; Tobey, S. L.; Lynch, V.; Anslyn, E. V., Thermodynamic analysis of receptors based on guanidinium/boronic acid groups for the complexation of carboxylates, alpha-hydroxycarboxylates, and diols:Driving force for binding and cooperativity, Chem. Eur. J.,2004,10(15):3792-3804.
    [134]Gray, C. W.; Houston, T. A., Boronic acid receptors for alpha-hydroxycarboxylates: High affinity of Shinkai's glucose receptor for tartrate, J. Org. Chem.,2002,67 (15): 5426-5428.
    [135]Imada, T.; Kijima, H.; Takeuchi, M.; Shinkai, S., Discrimination between Glucose-1-Phosphate and Glucose-6-Phosphate with a Boronic-Acid-Appended Metalloporphyrin, Tetrahedron Lett,1995,36 (12):2093-2096.
    [136]Wright, A. T.; Zhong, Z. L.; Anslyn, E. V., A functional assay for heparin in serum using a designed synthetic receptor, Angew. Chem., Int. Ed.,2005,44 (35):5679-5682.
    [137]Zhong, Z. L.; Anslyn, E. V., A colorimetric sensing ensemble for heparin, J. Am. Chem. Soc.,2002,124 (31):9014-9015.
    [138]Singaram, B.; Schiller, A.; Vilozny, B.; Wessling, R. A., Recognition of phospho sugars and nucleotides with an array of boronic acid appended bipyridinium salts, Anal. Chim. Acta., 2008,627 (2):203-211.
    [139]Wang, B. H.; Jin, S.; Zhu, C. Y.; Cheng, Y. F.; Li, M. Y., Synthesis and carbohydrate binding studies of fluorescent alpha-amidoboronic acids and the corresponding bisboronic acids, Bioorg. Med. Chem.,2010,18 (4):1449-1455.
    [140]Zhao, J. Z.; Wu, Y. B.; Guo, H. M.; Zhang, X.; James, T. D., Chiral Donor Photoinduced-Electron-Transfer (d-PET) Boronic Acid Chemosensors for the Selective Recognition of Tartaric Acids, Disaccharides, and Ginsenosides, Chem. Eur. J.,2011,17 (27): 7632-7644.
    [141]Zhu, L.; Shabbir, S. H.; Gray, M.; Lynch, V. M.; Sorey, S.; Anslyn, E. V., A structural investigation of the N-B interaction in an o-(N,N-dialkylaminomethyl)arylboronate system, J. Am. Chem. Soc.,2006,128 (4):1222-1232.
    [142]Wang, B. H.; Wang, W.; Gao, X. M., Boronic acid-based sensors, Curr. Org. Chem., 2002,6(14):1285-1317.
    [143]James, T. D.; Zhao, J. Z.; Davidson, M. G.; Mahon, M. F.; Kociok-Kohn, G., An enantioselective fluorescent sensor for sugar acids, J. Am. Chem. Soc.,2004,126 (49): 16179-16186.
    [144]Collins, B. E.; Sorey, S.; Hargrove, A. E.; Shabbir, S. H.; Lynch, V. M.; Anslyn, E. V., Probing Intramolecular B-N Interactions in Ortho-Aminomethyl Arylboronic Acids, J. Org. Chem.,2009,74 (11):4055-4060.
    [145]Gray, C. W.; Walker, B. T.; Foley, R. A.; Houston, T. A., Boronate derivatives of bioactive amines:potential neutral receptors for anionic oligosaccharides, Tetrahedron Lett, 2003,44 (16):3309-3312.
    [146]Steed, J. W.; Wallace, K. J.; Belcher, W. J.; Turner, D. R.; Syed, K. F., Slow anion exchange, conformational equilibria, and fluorescent sensing in Venus flytrap aminopyridinium-based anion hosts, J. Am. Chem. Soc.,2003,125 (32):9699-9715.
    [147]Roelens, S.; Vacca, A.; Nativi, C.; Cacciarini, M.; Pergoli, R., A new tripodal receptor for molecular recognition of monosaccharides. A paradigm for assessing glycoside binding affinities and selectivities by H-1 NMR spectroscopy, J. Am. Chem. Soc.,2004,126 (50): 16456-16465.
    [148]Buryak, A.; Severin, K., Easy to optimize:Dynamic combinatorial libraries of metal-dye complexes as flexible sensors for tripeptides, J. Comb. Chem.,2006,8 (4):540-543.
    [149]Buryak, A.; Pozdnoukhov, A.; Severin, K., Pattern-based sensing of nucleotides in aqueous solution with a multicomponent indicator displacement assay, Chem. Commun., 2007,43 (23):2366-2368.
    [150]Zaubitzer, F.; Riis-Johannessen, T.; Severin, K., Sensing of peptide hormones with dynamic combinatorial libraries of metal-dye complexes:the advantage of time-resolved measurements, Org. Biomol. Chem.,2009,7 (22):4598-4603.
    [151]X. Zhang, L. Y., E. V. Anslyn, X. Qian, Discrimination and Classification of Ginsenosides and Ginsengs Using Bis-Boronic Acid Receptors in Dynamic Multi-Component Indicator Displacement Sensor Arrays, Chem. Eur. J.,2011,18 (4):1102-1110.
    [152]Singaram, B.; Sharrett, Z.; Gamsey, S.; Levine, P.; Cunningham-Bryant, D.; Vilozny, B.; Schiller, A.; Wessling, R. A., Boronic acid-appended bis-viologens as a new family of viologen quenchers for glucose sensing, Tetrahedron Lett,2008,49 (2):300-304.
    [153]Shabbir, S. H.; Regan, C. J.; Anslyn, E. V., A general protocol for creating high-throughput screening assays for reaction yield and enantiomeric excess applied to hydrobenzoin, Proc. Natl. Acad. Sci.,2009,106 (26):10487-10492.
    [154]Jurs, P. C.; Bakken, G. A.; McClelland, H. E., Computational methods for the analysis of chemical sensor array data from volatile analytes, Chem. Rev.,2000,100 (7):2649-2678.
    [155]Gong, G., Cross-Validation, the Jackknife, and the Bootstrap-Excess Error Estimation in Forward Logistic-Regression, J. Am. Stat. Assoc.,1986,81 (393):108-113.
    [156]Martin, F. L.; Kelly, J. G.; Singh, M. N.; Stringfellow, H. F.; Walsh, M. J.; Nicholson, J. M.; Bahrami, F.; Ashton, K. M.; Pitt, M. A.; Martin-Hirsch, P. L., Derivation of a subtype-specific biochemical signature of endometrial carcinoma using synchrotron-based Fourier-transform infrared microspectroscopy, Cancer Lett.,2009,274 (2):208-217.
    [157]But P. P. H.; Chan, T. W. D.; Cheng, S. W.; Kwok, I. M. Y.; Lau, F. W.; Xu, H. X., Differentiation and authentication of Panax ginseng. Panax quinquefolius, and ginseng products by using HPLC/MS, Anal. Chem.,2000,72 (6):1281-1287.
    [158]Balentine, D. A., Manufacturing and Chemistry of Tea, Acs. Sym. Ser.,1992,506 (8): 102-117.
    [159]Rusak, G.; Komes, D.; Likic, S.; Horzic, D.; Kovac, M., Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used, Food Chem.,2008,110 (4):852-858.
    [160]Le, W. D.; Pan, T. H.; Jankovic, J., Potential therapeutic properties of green tea polyphenols in Parkinson's disease, Drugs Aging,2003,20 (10):711-721.
    [161]Cabrera, C.; Gimenez, R.; Lopez, M. C., Determination of tea components with antioxidant activity, J. Agric. Food Chem.,2003,51(15):4427-4435.
    [162]Inoue, M.; Tajima, K.; Mizutani, M.; Iwata, H.; Iwase, T.; Miura, S.; Hirose, K. Hamajima, N.; Tominaga, S., Regular consumption of green tea and the risk of breast cancer recurrence:follow-up study from the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC), Japan, Cancer Lett.,2001,167 (2):175-182.
    [163]Michels, K. B.; Willett, W. C.; Fuchs, C. S.; Giovannucci, E., Coffee, tea, and caffeine consumption and incidence of colon and rectal cancer, J. Natl. Cancer Inst.,2005,97 (4): 282-292.
    [164]Maron, D. J.; Lu, G. P.; Cai, N. S.; Wu, Z. G.; Li, Y. H.; Chen, H.; Zhu, J. Q.; Jin, X. J.; Wouters, B. C.; Zhao, J., Cholesterol-lowering effect of a theaflavin-enriched green tea extract-A randomized controlled trial, Arch. Intern. Med.,2003,163 (12):1448-1453.
    [165]Vinson, J. A.; Teufel, K.; Wu, N., Green and black teas inhibit atherosclerosis by lipid, antioxidant, and fibrinolytic mechanisms, J. Agric. Food Chem.,2004,52 (11):3661-3665.
    [166]Vinson, J. A.; Zhang, J., Black and green teas equally inhibit diabetic cataracts in a streptozotocin-induced rat model of diabetes, J. Agric. Food Chem.,2005,53 (9):3710-3713.
    [167]Ruhl, C. E.; Everhart, J. E., Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States, Gastroenterology,2005,129 (6): 1928-1936.
    [168]Tremblay, A.; Berube-Parent, S.; Pelletier, C.; Dore, J., Effects of encapsulated green tea and Guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men, Brit. J. Nutr.,2005,94 (3):432-436.
    [169]Schwartz, J. L.; Baker, V.; Larios, E.; Chung, F. L., Molecular and cellular effects of green tea on oral cells of smokers:A pilot study, Mol. Nutr. Food Res.,2005,49 (1):43-51.
    [170]Suzuki, F.; Tsuda, Y.; Takahashi, H.; Kobayashi, M.; Hanafusa, T.; Herndon, D. N., Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus, Immunity,2004,21 (2):215-226.
    [171]Friedman, M.; Henika, P. R.; Levin, C. E.; Mandrell, R. E.; Kozukue, N., Antimicrobial Activities of Tea Catechins and Theaflavins and Tea Extracts against Bacillus cereus, J. Food Protect.,2006,69 (2):354-361.
    [172]Del Rio, D.; Stewart, A. J.; Mullen, W.; Burns, J.; Lean, M. E. J.; Brighenti, F.; Crazier, A., HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea, J. Agric. Food Chem.,2004,52 (10):2807-2815.
    [173]Friedman, M.; Levin, C. E.; Choi, S. H.; Kozukue, E.; Kozukue, N., HPLC analysis of catechins, theaflavins, and alkaloids in commercial teas and green tea dietary supplements: Comparison of water and 80% ethanol/water extracts, J. Food Sci.,2006,71 (6):C328-C337.
    [174]Friedman, M.; Kim, S. Y.; Lee, S. J.; Han, G. P.; Han, J. S.; Lee, K. R.; Kozukue, N., Distribution of catechins, theaflavins, caffeine, and theobromine in 77 teas consumed in the United States, J. Food Sci.,2005,70 (9):C550-C559.
    [175]Zuo, Y. G.; Chen, H.; Deng, Y. W., Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector, Talanta,2002,57 (2):307-316.
    [176]Wu, C. D.; Wei, G. X., Tea as a functional food for oral health, Nutrition,2002,18 (5): 443-444.
    [177]Callan, J. F.; de Silva, A. P.; Magri, D. C., Luminescent sensors and switches in the early 21st century, Tetrahedron,2005,61 (36):8551-8588.
    [178]de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev.,1997,97 (5):1515-1566.
    [179]Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N., Luminescent chemosensors for transition metal ions, Coordin Chem Rev,2000,205 (1):59-83.
    [180]Ha-Thi, M.-H.; Penhoat, M.; Michelet, V.; Leray, I., Highly selective and sensitive phosphane sulfide derivative for the detection of Hg2+ in an organoaqueous medium, Org. Lett.,2007,9 (6):1133-1136.
    [181]Liu, J.; Lu, Y., Rational design of "Turn-On" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity, Angew. Chem. Int. Ed.,2007, 46 (40):7587-7590.
    [182]Park, C. S.; Lee, J. Y.; Kang, E.-J.; Lee, J.-E.; Lee, S. S., A highly selective fluorescent chemosensor for silver(I) in water/ethanol mixture, Tetrahedron Lett,2009,50 (6):671-675.
    [183]Wang, J. B.; Qian, X. H., Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor, Chem. Commun.,2006,42 (1):109-111.
    [184]Chen, T.; Zhu, W.; Xu, Y.; Zhang, S.; Zhang, X.; Qian, X., A thioether-rich crown-based highly selective fluorescent sensor for Hg(2+) and Ag(+) in aqueous solution, Dalton Trans.,2010,39 (5):1316-1320.
    [185]Jimenez, D.; Martinez-Manez, R.; Sancenon, F.; Soto, J., Electro-optical triple-channel sensing of metal cations via multiple signalling patterns, Tetrahedron Lett,2004,45 (6): 1257-1259.
    [186]Jung, H. J.; Singh, N.; Lee, D. Y.; Jane, D. O., Single sensor for multiple analytes: chromogenic detection of I(-) and fluorescent detection of Fe(3+), Tetrahedron Lett.,2010,51 (30):3962-3965.
    [187]Kaur, N.; Kumar, S., Single molecular colorimetric probe for simultaneous estimation of Cu2+and Ni2+, Chem. Commun.,2007,43 (29):3069-3070.
    [188]Kim, S. H.; Kim, J. S.; Park, S. M.; Chang, S. K., Hg2+-selective OFF-ON and Cu2+-selective ON-OFF type fluoroionophore based upon cyclam, Org. Lett.,2006,8 (3): 371-374.
    [189]Kim, S. K.; Lee, S. H.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S., An excimer-based, binuclear, on-off switchable calix 4 crown chemosensor, J. Am. Chem. Soc.,2004,126 (50): 16499-16506.
    [190]Komatsu, H.; Citterio, D.; Fujiwara, Y.; Minamihashi, K.; Araki, Y.; Hagiwara, M.; Suzuki, K., Single molecular multianalyte sensor:Jewel pendant ligand, Org. Lett.,2005,7 (14):2857-2859.
    [191]Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Kitamura, Y.; Oka, K. Suzuki, K., Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging, J. Am. Chem. Soc.,2005,127 (31):10798-10799.
    [192]Kubo, Y.; Obara, S.; Tokita, S., Effective signal control (off-on-off action) by metal ionic inputs on a new chromoionophore-based calix 4 crown, Chem. Commun.,1999,35 (23): 2399-2400.
    [193]Lee, D. Y.; Singh, N.; Jang, D. O., Ratiometric and simultaneous estimation of Fe(3+) and Cu(2+) ions:1,3,5-substituted triethylbenzene derivatives coupled with benzimidazole, Tetrahedron Lett,2011,52 (30):3886-3890.
    [194]Mikami, D.; Ohki, T.; Yamaji, K.; Ishihara, S.; Citterio, D.; Hagiwara, M.; Suzuki, K., Quantification of ternary mixtures of heavy metal cations from metallochromic absorbance spectra using neural network inversion, Anal. Chem.,2004,76 (19):5726-5733.
    [195]Schmittel, M.; Lin, H.-W., Quadruple-channel sensing:A molecular sensor with a single type of receptor site for selective and quantitative multi-ion analysis, Angew. Chem., Int. Ed., 2007,46 (6):893-896.
    [196]Singh, N.; Mulrooney, R. C.; Kaur, N.; Callan, J. F., A nanoparticle based chromogenic chemosensor for the simultaneous detection of multiple analytes, Chem. Commun.,2008,44 (40):4900-4902.
    [197]Tang, L.; Li. F.; Liv, M.; Nandhakumar, R., Single sensor for two metal ions: Colorimetric recognition of Cu(2+) and fluorescent recognition of Hg(2+), Spectrochimica Acta Part A,2011,78(3):1168-1172.
    [198]Singh, N.; Kaur, N.; Choitir, C. N.; Callan, J. F., A dual detecting polymeric sensor: chromogenic naked eye detection of silver and ratiometric fluorescent detection of manganese, Tetrahedron Lett.,2009,50 (29):4201-4204.
    [199]Clarkson, T. W.; Magos, L.; Myers, G. J., The toxicology of mercury-Current exposures and clinical manifestations, N. Engl. J. Med.,2003,349 (18):1731-1737.
    [200]Yoon, S.; Miller, E. W.; He, Q.; Do, P. H.; Chang, C. J., A bright and specific fluorescent sensor for mercury in water, cells, and tissue, Angew. Chem. Int. Ed.,2007,46 (35):6658-6661.
    [201]Zalups, R. K., Molecular interactions with mercury in the kidney, Pharmacol. Rev.,2000, 52(1):113-143.
    [202]Morel, F. M. M.; Kraepiel, A. M. L.; Amyot, M., THE CHEMICAL CYCLE AND BIOACCUMULATION OF MERCURY, Annu. Rev. Ecol. Sys.,1998,29 (1):543-566.
    [203]Renzoni, A.; Zino, F.; Franchi, E., Mercury Levels along the Food Chain and Risk for Exposed Populations, Environ. Res.,1998,77 (2):68-72.
    [204]Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D., Environmental exposure to mercury and its toxicopathologic implications for public health, Environ. Toxicol.,2003, 18(3):149-175.
    [205]Ratte, H. T., Bioaccumulation and toxicity of silver compounds:A review, Environ. Toxicol. Chem.,1999,18 (1):89-108.
    [206]Caballero, A.; Martinez, R.; Lloveras, V.; Ratera, I.; Vidal-Gancedo, J.; Wurst, K.; Tarraga, A.; Molina, P.; Veciana, J., Highly selective chromogenic and redox or fluorescent sensors of Hg(2+) in aqueous environment based on 1,4-disubstituted azines, J. Am. Chem. Soc.,2005,127(45):15666-15667.
    [207]Chen, X.; Nam, S.-W.; Jou, M. J.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J., Hg(2+) Selective Fluorescent and Colorimetric Sensor:Its Crystal Structure and Application to Bioimaging, Org. Lett.,2008,10 (22):5235-5238.
    [208]Coskun, A.; Akkaya, E. U., Signal ratio amplification via modulation of resonance energy transfer:Proof of principle in an emission ratiometric Hg(Ⅱ) sensor, J. Am. Chem. Soc.,2006,128(45):14474-14475.
    [209]Descalzo, A. B.; Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J., Coupling selectivity with sensitivity in an integrated chemosensor framework:Design of a Hg2+-responsive probe, operating above 500 nm, J. Am. Chem. Soc.,2003,125 (12): 3418-3419.
    [210]He, G.; Zhao, Y.; He, C.; Liu, Y.; Duan, C., "Turn-On" fluorescent sensor for Hg2+via displacement approach. Inorg. Chem.,2008,47 (12):5169-5176.
    [211]Huang. C.-C.; Chang, H.-T., Parameters for selective colorimetric sensing of mercury(Ⅱ) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles, Chem. Commun.,2007,43 (12):1215-1217.
    [212]Lee, J.-S.; Han, M. S.; Mirkin, C. A., Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles, Angew. Chem., Int. Ed.,2007, 46 (22):4093-4096.
    [213]Li, D.; Wieckowska, A.; Willner, I., Optical analysis of Hg(2+) ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines, Angew. Chem., Int. Ed., 2008,47 (21):3927-3931.
    [214]Nolan, E. M.; Lippard, S. J., A "Turn-On" fluorescent sensor for the selective detection of mercuric ion in aqueous media, J. Am. Chem. Soc.,2003,125 (47):14270-14271.
    [215]Nolan, E. M.; Lippard, S. J., Turn-on and ratiometric mercury sensing in water with a red-emitting probe, J. Am. Chem. Soc.,2007,129 (18):5910-5918.
    [216]Nolan, E. M.; Lippard, S. J., Tools and tactics for the optical detection of mercuric ion, Chem. Rev.,2008,108 (9):3443-3480.
    [217]Nolan, E. M.; Racine, M. E.; Lippard, S. J., Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins, Inorg. Chem.,2006,45 (6):2742-2749.
    [218]Ono, A.; Togashi, H., Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions, Angew. Chem. Int. Ed.,2004,43 (33):4300-4302.
    [219]Xue, X.; Wang, F.; Liu, X., One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates, J. Am. Chem. Soc.,2008,130 (11): 3244-3245.
    [220]Zhu, X.-J.; Fu, S.-T.; Wong, W.-K.; Guo, H.-P.; Wong, W.-Y., A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin, Angew. Chem. Int. Ed.,2006,45 (19):3150-3154.
    [221]Chatterjee, A.; Santra, M.; Won, N.; Kim, S.; Kim, J. K.; Bin Kim, S.; Ahn, K. H., Selective Fluorogenic and Chromogenic Probe for Detection of Silver Ions and Silver Nanoparticles in Aqueous Media, J. Am. Chem. Soc.,2009,131 (6):2040-2041.
    [222]Coskun, A.; Akkaya, E. U., Ion sensing coupled to resonance energy transfer:A highly selective and sensitive ratiometric fluorescent chemosensor for Ag(I) by a modular approach, J. Am. Chem. Soc.,2005,127 (30):10464-10465.
    [223]Liu, L.; Zhang, D.; Zhang, G.; Xiang, J.; Zhu, D., Highly selective ratiometric fluorescence determination of Ag(+) based on a molecular motif with one pyrene and two adenine moieties, Org. Lett.,2008,10 (11):2271-2274.
    [224]Swamy, K. M. K.; Kim, H. N.; Soh, J. H.; Kim, Y.; Kim, S.-J.; Yoon, J., Manipulation of fluorescent and colorimetric changes of fluorescein derivatives and applications for sensing silver ions, Chem. Commun,2009,45 (10):1234-1236.
    [225]Yang, R. H.; Chan, W. H.; Lee, A. W. M.; Xia, P. F.; Zhang, H. K.; Li, K. A., A ratiometric fluorescent sensor for Ag-1 with high selectivity and sensitivity, J. Am. Chem. Soc.,2003,125 (10):2884-2885.
    [226]Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J., Screening mercury levels in fish with a selective fluorescent chemosensor, J. Am. Chem. Soc.,2005,127 (46):16030-16031.
    [227]Chiang, C.-K.; Huang, C.-C.; Liu, C.-W.; Chang, H.-T., Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury(II) in aqueous solution, Anal. Chem.,2008,80 (10):3716-3721.
    [228]Darbha, G. K.; Singh, A. K.; Rai, U. S.; Yu, E.; Yu, H.; Ray, P. C., Selective detection of mercury (Ⅱ) ion using nonlinear optical properties of gold nanoparticles, J. Am. Chem. Soc.,2008,130 (25):8038-8043.
    [229]Guo, X. F.; Qian, X. H.; Jia, L. H., A highly selective and sensitive fluorescent chemosensor for Hg2+in neutral buffer aqueous solution, J. Am. Chem. Soc.,2004,126 (8): 2272-2273.
    [230]Huang, C.-C.; Chang, H.-T., Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(Ⅱ) in aqueous solution, Anal. Chem.,2006,78 (24): 8332-8338.
    [231]Wegner, S. V.; Okesli, A.; Chen, P.; He, C., Design of an emission ratiometric biosensor from MerR family proteins:A sensitive and selective sensor for Hg2+, J. Am. Chem. Soc., 2007,129 (12):3474-3475.
    [232]Yang, Y. K.; Yook, K. J.; Tae, J., A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media, J. Am. Chem. Soc., 2005,127(48):16760-16761.
    [233]Zhao, Y.; Zhong, Z., Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy, J. Am. Chem. Soc.,2006,128 (31):9988-9989.
    [234]Soderquist, J. A.; Miranda, E. I., FORMYLTRIISOPROPYLSILANE-THE SYNTHESIS AND CHEMISTRY OF A STABLE FORMYLSILANE, J. Am. Chem. Soc., 1992,114(25):10078-10079.
    [235]Vedejs, E.; Fuchs, P. L., Improved aldehyde synthesis from 1,3-dithianes, J. Org. Chem., 1971,36 (2):366-367.
    [236]Cheng, X. H.; Li, Q. Q.; Qin, J. G.; Li, Z., A New Approach to Design Ratiometric Fluorescent Probe for Mercury(Ⅱ) Based on the Hg(2+)-Promoted Deprotection of Thioacetals, Acs Appl. Mater. Inter.,2010,2 (4):1066-1072.
    [237]Kim, J. H.; Kim, H. J.; Kim, S. H.; Lee, J. H.; Do, J. H.; Kim, H. J.; Lee, J. H.; Kim, J. S., Fluorescent coumarinyldithiane as a selective chemodosimeter for mercury(Ⅱ) ion in aqueous solution. Tetrahedron Lett.,2009,50 (43):5958-5961.
    [238]Lin, W. Y.; Yuan, L.; Tan, W.; Feng, J. B.; Long, L. L., Construction of Fluorescent Probes Via Protection/Deprotection of Functional Groups:A Ratiometric Fluorescent Probe for Cu(2+), Chem. Eur. J.,2009,15 (4):1030-1035.
    [239]Mahapatra, A. K.; Roy, J.; Sahoo, P., Fluorescent carbazolyldithiane as a highly selective chemodosimeter via protection/deprotection functional groups:a ratiometric fluorescent probe for Cd(II), Tetrahedron Lett.,2011,52 (23):2965-2968.
    [240]Cho, D. W.; Fujitsuka, M.; Sugimoto, A.; Yoon, U. C; Mariano, P. S.; Majima, T., Photoinduced electron transfer processes in 1,8-naphthalimide-linker-phenothiazine dyads, J. Phys. Chem. B,2006,110(23):11062-11068.
    [241]Lu, Y.; Huang, S.; Liu, Y.; He, S.; Zhao, L.; Zeng, X., Highly Selective and Sensitive Fluorescent Turn-on Chemosensor for Al3+ Based on a Novel Photoinduced Electron Transfer Approach, Org. Lett.,2011,13 (19):5274-5277.
    [242]Ott, I.; Xu, Y.; Liu, J.; Kokoschka, M.; Harlos, M.; Sheldrick, W. S.; Qian, X., Sulfur-substituted naphthalimides as photoactivatable anticancer agents:DNA interaction, fluorescence imaging, and phototoxic effects in cultured tumor cells, Bioorg. Med. Chem., 2008,16 (15):7107-7116.
    [243]Ramachandram, B.; Saroja, G.; Sankaran, N. B.; Samanta, A., Unusually high fluorescence enhancement of some 1,8-naphthalimide derivatives induced by transition metal salts, J. Phys. Chem. B,2000,104 (49):11824-11832.
    [244]Takakusa, H.; Kikuchi, K.; Urano, Y.; Kojima, H.; Nagano, T., A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral, Chem. Eur. J.,2003,9 (7):1479-1485.
    [245]Liu, X.; Yang, X.; Fu, Y.; Zhu, C.; Cheng, Y., Novel fluorescent sensor for Ag+ and Hg2+ based on the BINOL-pyrene derivative via click reaction, Tetrahedron,2011,67 (18): 3181-3186.
    [246]Raker, J.; Glass, T. E., Cooperative Ratiometric Chemosensors:□ Pinwheel Receptors with an Integrated Fluorescence System, J. Org. Chem.,2001,66 (20):6505-6512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700