用户名: 密码: 验证码:
载人潜器阻力性能的数值和试验预报及外形优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海洋资源的深入开发与利用,载人潜器成为不可缺少的重要工具。载人潜器的用途广泛,设计形式多样,即使同一用途的载人潜器,其构型也各有不同。在载人潜器的初步设计阶段,需要对载人潜器的水动力性能进行计算,预报载人潜器的有效功率,从而为载人潜器配置合适的动力装置提供依据。潜器的节能问题尤为重要,对于初步设计的载人潜器,在满足使用要求的前提下需要对其外形进行阻力性能优化,从而节省能耗。
     为了能够预报载人潜器的有效功率,首先对载人潜器外形进行简化,略去次要附体并对主要附体的构型用相似几何体替代,然后用CFD方法对简化模型进行数值计算,得到载人潜器模型的阻力系数。引入形状简化因子,将阻力系数的计算值与试验值进行比较,从而得到形状简化因子的数值。用CFD方法对简化的载人潜器实体进行数值计算,将形状简化因子应用于载人潜器实体的阻力系数,最终得到载人潜器的有效功率。
     为了对载人潜器的外形进行阻力性能优化,‘需要对载人潜器的数值模拟方法进行研究,得到有效的计算方法,并对载人潜器的阻力性能进行分析,从而为载人潜器的外形优化提供前提条件。为此,以载人潜器的主体和主要附体为研究对象,对其流场进行结构化网格离散,讨论不同湍流模型以及入口湍流强度的不同设置对阻力计算结果的影响,确定对载人潜器实施型值优化时的数值计算方法。
     载人潜器构型复杂,并且附体较多,在水下运动姿态多样,因而有必要对载人潜器不同运动姿态下的水动力性能做试验研究。为了在船模拖曳水池中完成载人潜器不同运行姿态的阻力试验,需要加工制作载人潜器的缩尺模型,并设计运动姿态调整方案。为了完成载人潜器模型不同艏向角和垂直上升及下潜航行时的阻力试验,专门设计加工了一套可调艏向角及浸深的拖带装置。对不同艏向角和航速分别进行了拖带装置携带和不携带潜器模型的阻力测量,从而得到了潜器正浮状态不同艏向角航行时的总阻力系数。根据雷诺数相等原则进行潜器模型与实体的阻力换算,并加入换算补贴系数得到潜器实体的总阻力系数,最终得出潜器实体不同艏向角航行时的阻力及有效功率。
     考虑载人潜器主体和主要附体中电池舱的优化问题,将三维几何体的阻力性能优化转化为二维几何体的外形优化。用多岛遗传算法对二维几何体的阻力数值计算进行一体化优化,并将优化结果应用于三维几何体的型值。经过不同方案的探索,最终得出在满足工程需要的前提下适于该载人潜器的优化外形,优化潜器的阻力比原型减少13%左右,单位体积载人潜器模型阻力的优化收效大于20%。
Manned submersibles are very important vehicles for exploring and making use of ocean resource. The use of manned submersibles is wide spread, and the designs of them have various kinds of forms for different purpose. The form of manned submersibles is even different for the same purpose. It needs calculation for hydrodynamic performances and prediction of effective power of manned submersibles in preliminary design. Accordingly, it offers the base of fixing power equipments of manned submersibles. It needs form optimization for drag reduction in order to save power for manned submersibles of preliminary design in precondition of satifying use demand.
     In this dissertation, in order to predict the effective power of a manned submersible, the submersible model is predigested into a like type of computational model, which major appendages are predigested to somewhat simpler forms, and some small appendages are ignored. The flow field of the computational model is numerically simulated using CFD method, and the drag coefficient of the computational submersible model is obtained. The computational and tested results of drag coefficient are compared. A form factor is introduced by comparing the computational and tested results. The simplified form for the manned submersible is calculated with CFD method, and the form factor is applied in the predictions of the drag and required power of the manned submersible.
     To optimize the form of the manned submersible for drag reduction, it is necessary to study for finding an effective numerical simulation method, and analyze thereby the drag performance of the manned submersible. A workable computational method is obtained, and it is used as a basis for form optimization of the manned submersible. In searching that method, the drag calculations of the main body and major appendages of the manned submersible are investigated. The flow field around the bodies is discretized into structured grids, and the influence of different turbulence models and turbulence intensity of inlet on drag results is discussed. The numerical simulation method is obtained for conducting form optimization of the manned submersible.
     The form of the manned submersible is complex, with many appendages, and it will move with various attitudes. It is necessary to do tested research for hydrodamic performances of the manned submersible moving in different attitudes. To conduct model tests in a towing tank, a scaled model of the manned submersible is made, and a test program is worked out to cover the moving attitudes as required by the project. To obtain the drags for driving the manned submersible model at different yaw angles and in the cases of both ascending and descending, a towing device is dedicatedly made for the tests, making possible to easily adjust both the yaw angle and submergence of the tested model. From measured total drags of both the submersible model with the towing swords and the towing swords without the model at different speeds and yaw angles, drag data reduction is made following the dynamic similitude with equivalent Reynolds Number. The total drag coefficients, and thus the effective power of the corresponding full hull in each case are obtained.
     The main body and battery pods of the manned submersible are considered for optimization. Form optimizations of 2-D bodies are conduceted instead of considering 3-D forms. 2-D forms are optimized with multi-island genetic algorithm for drag reduction, and the optimum results are applied to the 3-D form. After comparing different optimized forms, an optimum form of the manned submersible is obtained, which is shown, by calculation, about 13% drag reduction for the manned submersible, and more than 20% drag reduction for per unit volume.
引文
[1]金翔龙.二十一世纪海洋开发利用与海洋经济发展的展望.科学中国人.2006(11):13-17页
    [2]张耀光,刘岩,李春平,等.中国海洋油气资源开发与国家石油安全战略对策.地理研究.2003,22(3):297-304页
    [3]楼东,谷树忠,钟赛香.中国海洋资源现状及海洋产业发展趋势分析.资源科学.2005,27(5):20-26页
    [4]王世表,宋怿,李平.我国渔业资源现状与可持续发展对策.中国渔业经济.2006(1):24-27页
    [5]孙志辉.回顾过去展望未来——中国海洋科技发展50年.海洋开发与管理.2006(5):7-12页
    [6]栾维新,宋薇.我国海洋产业吸纳劳动力潜力研究.经济地理.2003,23(4):529-533页
    [7]Robinson B H. The coevolution of undersea vehicles and deep-sea research. Marine Technology Society Journal.1999,33(4):65-73P
    [8]Rona P A. Deep-diving manned research submersibles. Marine Technology Society Journal.1999,33(4):13-25P
    [9]Sagalevitch A M. MIR submersibles in science and technology. Marine Technology Society Journal.1996,30(1):7-12P
    [10]Hammer J E, Coombs M L, Shamberger P J, Kimura J-I. Submarine sliver in North Kona:a window into the early magmatic and growth history of Hualalai Volcano, Hawaii. Journal of Volcanology and Geothermal Research.2006,151(1-3):157-188P
    [11]Hilton D R, Mcmurtry G M, Goff F. Large variations in vent fluid CO2/3He ratios signal rapid changes in magma chemistry at Loihi seamount, Hawaii. Nature.1998,396(6709):359-362P
    [12]Tsunogai U, Nakagawa F, Gamo T, Ishibashi J. Stable isotopic compositions of methane and carbon monoxide in the Suiyo hydrothermal plume, Izu-Bonin arc:tracers for microbial consumption/production. Earth and Planetary Science Letters.2005,237(3-4):326-340P
    [13]Bogdanov Y A, Lein A Y, Sagalevich A M, Ul'yanov A A, Dorofeev S A, Ul'yanova N V. Hydrothermal sulfide deposits of the Lucky Strike vent field, Mid-Atlantic Ridge. Geochemistry International.2006,44(4): 403-418P
    [14]Henry L, Nizinski M S, Ross S W. Occurrence and biogeography of hydroids (Cnidaria:Hydrozoa) from deep-water coral habitats off the southeastern United States. Deep-Sea Research Part I:Oceanographic Research Papers.2008:55(6):788-800P
    [15]Felley J D, Vecchione M, Wilson Jr R R. Small-scale distribution of deep-sea demersal nekton and other megafauna in the Charlie-Gibbs Fracture Zone and the Mid-Atlantic Ridge. Deep-Sea Research Part II: Topical Studies in Oceanography.2008,55(1-2):153-160P
    [16]Fryer P, Gill J B, Jackson M C. Volcanologic and tectonic evolution of the Kasuga seamounts, northern Mariana through:Alvin submersible investigations. Journal of Volcanology and Geothermal Research.1997, 79(3-4):277-311P
    [17]Lance S, Henry P, Le Pichon X, Lallemant S, Chamley H, Rostek F, Faugeres J-C, Gonthier E, Olu K. Submersible study of mud volcanoes seaward of the Barbados accretionary wedge:sedimentology, structure and rheology. Marine Geology.1998,145(3-4):255-292P
    [18]Liberatore D, Askew T, Tusting R, Olson S. Harbor Branch submersibles command a role in underwater scientific sampling. Marine Technology Society Journal.1997,31(3):55-60P
    [19]Busby R F. Ocean surveying from manned submersibles. Marine Technology Society Journal.2006,40(2):16-29P
    [20]Sagalevitch A M. Results of five years of operation with deep manned submersibles 'MIR-1' and 'MIR-2' on nuclear submarine 'Komsomolets' wreck. Proceedings of the 1995 MTS/IEEE Oceans Conference Part1, San Diego, CA, USA,1995. Piscataway, NJ, United States:IEEE,6-1 OP
    [21]Byun S H, Choi H J, Lee M J, Kang C G. Survey of latent hazard of a sunken tanker, Kyung Shin. IEEE. Ocean's 2002 Conference and Exhibition, Mississippi, MS, United States,2002:1057-1063P
    [22]Galgani F, Leaute J P, Moguedet P, Souplet A, Verin Y, Carpentier A, Goraguer H, Latrouite D, Andral B, Cadiou Y, Mahe J C, Poulard J C, Nerisson P. Litter on the sea floor along European coasts. Marine Pollution Bulletin.2000,40(6):516-527P
    [23]顾继红,胡震.美国载人深潜器新ALVIN号研制.中外船舶科技.2006(4):5-9页
    [24]Mullins H T, Keller G H, Kofoed J W, Lambert D N, Stubblefield W L, Warme J E. Geology of great abaco submarine canyon (Blake Plateau): observations from the research submersible 'Alvin'. Marine Geology.1982, 48(3-4):239-257P
    [25]Thilmany J. Searching deeper. Mechanical Engineering.2006,128(7): 44-45P
    [26]Jarry J. Sar, Nautile, Saga, Elit-four new vehicles for underwater work and exploration:the IFREMER approach. IEEE Journal of Oceanic Engineering.1986,11(3):413-417P
    [27]Jarry J. Nautile's (SM97) first year:the results of the tests and of the first operational dives. IEEE. Ocean Engineering and the Environment, San Diego, CA, USA,1985:990-992P
    [28]Matthias P K, Silloway R F. Use of automated seabed photomosaicing in forensic analysis of the RMS TITANIC disaster. IEEE. Oceans 2000, Providence, RI, USA,2000:667-671P
    [29]Sagalevitch A M.10 years anniversary of deep manned submersibles MIR-1 and MIR-2. Proceedings of the 1997 Oceans Conference Part 1, Halifax, NS, Canada,1997. Piscataway, NJ, United States:IEEE,59-65P
    [30]Sagalevitch A. A new birth for the MIR-1 and MIR-2 submersibles. Sea Technology.2004,45(12):27-33P
    [31]Sagalevitch A, Bogdanov Y. First dives of the 'MIR' submersibles on new hydrothermal field in the Atlantic. Proceedings of the 1995 MTS/IEEE Oceans Conference Part 1, San Diego, CA, USA,1995. Piscataway, NJ, United States:IEEE,1511-1515P
    [32]Sagalevitch A. MIR submersibles provide direct video link to ocean and land. Sea Technology.2005,46(12):15-20P
    [33]Momma H. Deep ocean technology at JAMSTEC. Marine Technology Society Journal.1999,33(4):49-64P
    [34]Takagawa S, Takahashi K, Sano T, Kyo M, Mori Y, Nakanishi T. 6,500m deep manned research submersible'Shinkai 6500' system. IEEE. Oceans'89 Part 3:Navigation; Remote Sensing; Underwater Vehicles/Exploration, Seattle, WA, USA,1989:741-746P
    [35]Komuku T, Matsumoto K, Imai Y, Sakurai T, Ito K. 1000 dives by the Shinkai 6500 in 18 years. IEEE. International Symposium on Underwater Technology, UT 2007-International Workshop on Scientific Use of Submarine Cables and Related Technologies 2007, Tokyo, Japan,2007: 21-27P
    [36]Zhu J-M, Development of undersea technology in China. IEEE. Oceans'89 Part3:Navigation; Remote Sensing; Underwater Vehicles/Exploration, Seattle, WA, USA,1989:1366-1370P
    [37]Zhu J-M. Deep ocean research activity in China. Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway,2001. International Society of Offshore and Polar Engineering, 668-673P
    [38]王宏健,边信黔,施小成,等.自主式水下潜器虚拟仿真体统研究.系统仿真学报.2004,16(5):927-930页
    [39]刘振明,潜伟建,夏志澜.基于参数自整定模糊控制的潜器动力定位系统. 武汉理工大学学报:交通科学与工程版.2003,27(6):792-795页
    [40]陈伟,索胜军,边信黔,等.无人潜器光学引导回收技术的仿真研究.船舶工程.2001(4):32-35页
    [41]田晓东,刘忠.水下成像声呐探测系统建立与仿真.计算机仿真.2006,23(11):176-179,201页
    [42]丁祥峰,孙恰宁,卢朝洪,等,基于多感知的空间机械手爪控制研究.控制工程.2005,12(4):302-304,309页
    [43]张乐.研制深海载人潜器中国挺进七千米深海.经济工作导刊.2002(13):44-45页
    [44]青早.7000米载人潜水器将试水.军民两用技术与产品.2007(2):17页
    [45]国防.国产7000米载人潜水器亮相.军民两用技术与产品.2007(10):18页
    [46]吴有生,崔维成.世纪之交的船舶力学及其对船舶技术发展的推动作用.上海造船.2001(2):7-11,14页
    [47]沈泓萃.21世纪初我国船舶水动力学技术发展方向与对策建议.上海造船.2003(1):4-11页
    [48]章梓雄,董曾男.粘性流体力学.清华大学出版社,1998:2,39-40页
    [49]高秋新.船舶CFD研究进展.船舶力学.1999,3(4):74-78页
    [50]马运义,刘传云.未来舰艇技术创新发展的趋向.舰船科学技术.2007,29(6):17-22页
    [51]Fujii K. Progress and future prospects of CFD in aerospace-wind tunnel and beyond. Progress in Aerospace Sciences.2005,41(6):455-470P
    [52]陈康.影响船舶CFD模拟的因素分析与三体船阻力计算改进探讨.哈尔滨工程大学博士学位论文.2008:2页
    [53]周连第.船舶计算流体力学发展现状和前景.上海造船.1998(2):40-43页
    [54]Flowe A, Kumar A, Ojha S. Choosing and using commercial CFD packages for modeling contaminant dispersion. Environmental Progress. 2001,20(2):7-12P
    [55]吴有生.力学的永恒魅力与贡献——与时俱进的船舶力学.力学进 展.2003,33(1):41-55页
    [56]Huggins A, Packwood A R. Wind tunnel experiments on a fully appended laminar flow submersible for oceanographic survey. Ocean Engineering. 1995,22(2):207-221P
    [57]刘玉秋,张嘉钟,于开平.非流线型水下航行体阻力测量试验中的几个问题.船舶工程.2006,28(4):39-42页
    [58]李伟华,龙建军,吴百海.小型潜器纵向运动阻力试验研究.舰船科学技术.2007,29(4):39-43页
    [59]Jagadeesh P, Murali K, Idichandy V G. Experimental investigation of hydrodynamic force coefficients over AUV hull form. Ocean Engineering. 2009,36(1):113-118P
    [60]Le Page Y G, Holappa K W. Hydrodynamics of an autonomous underwater vehicle equipped with a vectored thruster. IEEE. Oceans 2000, Providence, RI, USA,2000:2135-2140P
    [61]Fuglestad A-L, Grahl-Madsen M. Computational fluid dynamics applied on an autonomous underwater vehicle. Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, BC, Canada,2004. American Society of Mechanical Engineers, 447-451P
    [62]张怀新,潘雨村.圆碟形潜水器阻力性能研究.上海交通大学学报.2006,40(6):978-982,987页
    [63]Nishi Y, Kashiwagi M, Koterayama W, Nakamura M, Samuel S Z H, Yamamoto I, Hyakudome T. Resistance and propulsion performance of an underwater vehicle estimated by a CFD method and experiment. Proceedings of the 17th 2007 International Offshore and Polar Engineering Conference, Lisbon, Portugal,2007. Cupertino, CA, United States: International Society of Offshore and Polar Engineers,2045-2052P
    [64]Phillips A, Furlong M, Turnock S R. The use of computational fluid dynamics to assess the hull resistance of concept autonomous underwater vehicles.June 18,2007 //http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&amumber=4302434&isnu mber=4302189
    [65]刘玉秋,于开平,张嘉钟.水下非流线型航行体减阻的数值模拟与比较.工程力学.2007,24(2):178-182页
    [66]Listak M, Pugal D, Kruusmaa M. CFD simulations and real world measurements of drag of biologically inspired underwater robot. May 27, 2008 //http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4625556&isnu mber=4625485
    [67]Seo D C, Jo G Choi H S. Pitching control simulations of an underwater glider using CFD analysis. April 8,2008 //http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4530978&isnu mber=4530864
    [68]康涛,胡克,胡志强,林扬.CFX与USAERO的水下机器人操纵性仿真计算研究.机器人.2005,27(6):535-538页
    [69]张韶光,张剑波,肖熙.浅海海底管线检测艇操纵性和运动仿真研究.海洋工程.2006,24(2):72-76页
    [70]李遵华,刑继峰,薛坚,候国林.基于Simulink的潜器在海浪中运动的实时仿真.船舶工程.2007,29(5):43-47页
    [71]de Barros E A, Pascoal A, de Sa E. Investigation of a method for predicting AUV derivatives. Ocean Engineering.2008,35(16):1627-1636P
    [72]高学林,袁新.叶轮机械全三维粘性气动优化设计系统.中国电机工程学报,2006,26(4):88-92页
    [73]秦丽萍.水下航行器主体外形低阻低噪综合优化设计.西北工业大学硕士学位论文.2004:43-56 11-15页
    [74]赵世宜,刘子建,彭志威.基于CFD的坐便器虹吸管道优化设计及实验验证.系统仿真学报,2008,20(16):4412-4416页
    [75]沈松波,宋保维,胡海豹,潘光,毛昭勇.基于遗传退火算法的鱼雷外形优化 设计.力学季刊,2005,26(1):38-43页
    [76]隋洪涛.基因遗传算法及气动外形最优化设计.南京航空航天大学博士学位论文.2001:9-26页
    [77]范鸣玉,张莹.最优化技术.清华大学出版社.1982:1-3,142-148页
    [78]Koch P N, Evans J P, Powell D. Interdigitation for effective design space exploration using iSIGHT. Structural and Multidisciplinary Optimization. 2002,23(2):111-126P
    [79]Cheng Q, Charles Y. An integrated process of CFD analysis and design optimization with underhood thermal application. //http://www.sightna.com/UploadFiles/PUnderhood_Thermal_CFD.pdf
    [80]倪鹏云.计算机网络系统结构分析.第2版.国防工业出版社.2000:309页
    [81]Anderson M B, Gebert G A. Using pareto genetic algorithms for preliminary subsonic wing design. NASA and ISSMO Symposium on Multidisciplinary Analysis and Optimization 6th, Bellevue, WA, United States,1996. AIAA Meeting Papers,363-371P
    [82]Jansson N, Wakeman W D, Manson J-A E. Optimization of hybrid thermoplastic composite structures using surrogate models and genetic algorithms. Composite Structures.2007,80(1):21-31P
    [83]韩志强.某发射装置上架的减重技术研究.南京理工大学硕士学位论文.2006:33-47页
    [84]吴浩,燕瑛.基于可靠性的复合材料结构稳定性约束优化设计.复合材料学报.2007,24(5):149-153页
    [85]郭爱斌,米洁,董晓琴,邓家褆.概念设计集成系统与星座方案探索.北京航空航天大学学报.2007,33(5):613-617页
    [86]姚寿文,王晓龙.液力减速器叶栅系统优化及制动动力学仿真.机械设计.2007,24(12):21-23,42页
    [87]石秀华,孟祥众,杜向党,等.基于多岛遗传算法的振动控制传感器优化配置.振动、测试与诊断.2008,28(1):62-65页
    [88]Huang H-Y, Wang D-Y. Static and dynamic collaborative optimization of ship hull structure. Journal of Marine Science and Application.2009,8(1): 77-82P
    [89]Chen B, Xu X, Cai G-B. Single- and Multi-objective optimization of scramjet components using genetic algorithms based on a parabolized navier-stokes solver. American Institute of Aeronautics and Astronautics Inc. AIAA/ASME/SAE/ASEE 42nd Joint Propulsion Conference, Sacramento, CA, United states,2006:3651-3668P
    [90]徐亚栋,钱林方.复合材料身管热—结构耦合分析与优化.弹道学报.2006,18(2):31-35页
    [91]王婧超,李立州,岳珠峰.涡轮叶片的多学科设计优化系统.航空动力学报.2007,22(1):23-29页
    [92]吴先宇,罗世彬,陈小前,王振国.基于响应面模型的二维高超声速进气道优化.宇航学报.2007,28(5):1127-1132页
    [93]Wu Y-H, Fan Q-M, Lu C-L, Xu C. Research of transmission optimization design based on collaborative optimization. Proceedings of International Conference on Intelligent Computation Technology and Automation, Changsha, Hunan, China,2008. Piscataway, NJ, United States:IEEE, 1253-1257P
    [94]郑赟韬,童晓艳,蔡国飙,尘军.液体火箭发动机系统设计仿真与优化.北京航空航天大学学报.2006,32(1):40-45页
    [95]王红州,刘勇,张呈林.无铰旋翼直升机悬停气弹稳定性优化实现.直升机技术.2007(3):25-29页
    [96]Gayzik F S, Hoth J J, Stitzel J D. A comparative study of optimization techniques for tuning a finite element model of the lung to biomechanical data. Biomedical Sciences Instrumentation.2007,43:212-217P
    [97]陈玉春,王晓锋,屠秋野,张宏,蔡元虎.多用途战斗机/涡扇发动机一体化循环参数优化.航空学报.2008,29(3):554-561页
    [98]马英,何麟书,段勇.基于多学科设计优化弹道导弹概念设计研究.计算机集成制造系统.2007,13(12):2289-2293页
    [99]孟祥众,石秀华,杜向党.基于遗传算法的振动主动控制优化方法研究.计算机测量和控制.2008,16(1):74-77页
    [100]王明真.轻型火炮大架的优化设计.南京理工大学硕士学位论文.2005:38-67页
    [101]何贵鑫.200km/h交流传动机车车体轻量化优化设计.北京交通大学硕士学位论文.2008:52-67页
    [102]操安喜,崔维成.基于响应面模型和遗传算法的载人潜水器耐压球壳优化设计.2005年船舶结构力学学术会议中国造船工程学会学术论文集,舟山,2005:332-339页
    [103]Guo J, Chiu F-C, Chen C-C, Ho Y-S. Determining the bodily motion of a biomimetic underwater vehicle under oscillating propulsion. Proceedings of 2003 IEEE International Conference on Robotics and Automation, Taipei, Taiwan, China,2003:983-988P
    [104]王其.水下无人作战平台主体外形低阻低噪综合优化设计.西北工业大学硕士学位论文.2003:30-50页
    [105]刘蔚.多学科设计优化方法在7000米载人潜水器总体设计中的应用.上海交通大学博士学位论文.2007:146-159页
    [106]Adjami M, Shafieefar M. Hydrodynamic shape optimization of semi-submersibles using a genetic algorithm. Journal of Marine Science and Technology.2008,16(2):109-122P
    [107]操安喜,崔维成.潜水器多学科设计中的多目标协同优化方法.船舶力学.2008,12(2):295-304页
    [108]江帆,黄鹏.Fluent高级应用与实例分析.清华大学出版社.2008,19页
    [109]李万平.计算流体力学.华中科技大学出版社.2004,175-180页
    [110]王福军.计算流体动力学分析——CFD软件原理与应用.清华大学出版社.2004:118 31-54 66页
    [111]张兆顺,崔桂香,许春晓.湍流理论与模拟.清华大学出版社.2005:23页
    [112]Yakhot V, Orzag S A. Renormalization group analysis of turbulence:basic theory. Journal of Scientific Computing,1986(1):3-11P
    [113]陶文铨.数值传热学.第二版.西安交通大学出版社,2005:357页
    [114]Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Transfer.1972,15:1787-1806P
    [115]Wilcox D C. Turbulence Modeling for CFD. DCW Industries Inc.,1994: 84-87P
    [116]Menter F R. Two equation eddy viscosity turbulence models for engineering applications. AIAA Journal.1994,32:1598-1605P
    [117]Douglas J F, Gasiorek J M, Swaffield J A. Fluid Mechanics. Pitman Publishing Limited.1979:312P
    [118]韩占忠,王敬,兰小平.FLUENT--流体工程仿真技术与实例应用.北京理工大学出版社,2004:129页
    [119]劭世明,赵连恩,朱念昌.船舶阻力.国防工业出版社,1995:210页
    [120]阎超,钱翼稷,连祺祥.粘性流体力学.北京航空航天大学出版社.2005:50页
    [121]Loth E. Drag of non-spherical solid particles of regular and irregular shape. Powder Technology,2008,182(3):342-353P
    [122]Shih T H, Liou W W, Shabir Z G, Yang Z, Zhu J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Computes and Fluids, 1995,24(3):227-238P
    [123]何献忠,刘玉桐,金小海.优化设计及其应用.北京工业学院出版社.1986:5页
    [124]陶全心,李著璟.结构优化设计方法.清华大学出版社,1985:4-5页
    [125]谢祚水.结构优化设计概论.国防工业出版社,1997:4-6页
    [126]申培萍.全局优化方法.科学出版社,2006:17-37页
    [127]Ge R. A filled function method for finding a global minimizer of a function of several variables. Mathematical Programming,1990,46:191-204P
    [128]刑文训,谢金星.现代优化计算方法.第2版.清华大学出版社,2005:77-8151-54 113-118页
    [129]张光澄,王文娟,韩会磊,张雷.非线性最优化计算方法.高等教育出版社,2005:350-352 346-347页
    [130]周明,孙树栋.遗传算法原理及应用.国防工业出版社,1999:4 32-60页
    [131]玄光男,程润伟.遗传算法与工程优化.清华大学出版社,2004:4-6页
    [132]何漫丽.水下自航行器水动力学特性数值计算与试验研究.天津大学硕士学位论文,2005:42-43页
    [133]宋保维,李福新.回转体最小阻力外形优化设计.水动力学研究与进展:A辑,1994,9(5):523-530页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700