中国群死群伤火灾数据插补及快速损失评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火在人类发展的进程中扮演着及其重要的角色。它既推动社会发展人类进步,也给人类带来创伤。自改革开放以来,我国进入了经济高速发展阶段,社会各类生产生活活动频率大幅增加,同时社会财富迅速积累,这使得火灾起数和火灾造成的经济损失都呈现出了上升趋势。其中,造成较大人员伤亡的群死群伤火灾更引起了公众的广泛关注。群死群伤火灾,尤其是特别重大的群死群伤火灾,往往需要多部门协同处理,超出了常规管理方式的应对处置范畴。本文针对中国群死群伤火灾,研究其应急处置过程中亟待解决的数据插补和快速损失评估等相关内容,解决群死群伤火灾应急处置工作面临的核心问题,为其提供理论支撑和评估体系。
     针对群死群伤火灾的数据缺失问题,提出了基于主成分回归的数值型数据插补方法和基于多重对应分析的语义型数据插补方法。为对两种方法进行考察,设计了不同缺失率和不同事故等级的两组实验,分别以均方根误差和正确率做为判断准则。将前者的实验结果与均值插补、众值插补、K均值聚类插补、模糊C均值聚类插补和K最近邻插补等5种常用的数值型数据插补方法进行比较,将后者的实验结果与众值插补、多项逻辑回归插补和径向基函数神经网络插补等3种常用的语义型数据插补方法进行了比较。结果表明,基于主成分回归的数值型数据插补方法在低缺失率和高事故等级情况下均有较好表现;基于多重对应分析的语义型数据插补方法在不同缺失率和不同事故等级情况下对场所和原因的插补效果优十其它参比方法。而在综合考虑不同属性缺失率和不同事故等级重要性的情况下,两种方法的表现均优于其它参比方法。
     针对群死群伤火灾快速损失评估需求,基于网络分析法构建了从火灾造成的结果角度出发的结果指标和从火灾发生的情景角度出发的情景指标。前者考虑了死亡人数、受伤人数、过火面积和财产损失等4个属性,后者包括了时间、场所和原因3个属性集合的18个属性。计算了两种指标的指标值,利用结果指标从火灾造成的结果角度进行损失评估,并通过探求情景指标与结果指标之间的关系,利用情景指标从火灾发生的情景角度进行损失评估。通过比较网络分析法与多项逻辑回归、多层感知器神经网络和径向基函数神经网络等3种方法对不同等级事故的分级正确率,发现网络分析法对较高等级事故的分级正确率更高,考虑事故等级重要性的综合正确率更高,对不同等级事故的分级结果更保守。同时,较高等级案例的结果指标值和情景指标值间的相关关系也被定量揭示。基于结果指标和情景指标对群死群伤火灾造成的损失进行评估,需要的输入前期易获取,得到的输出保守可接受,能够满足快速损失评估的需要。
     考虑对于社会脆弱性的两个维度,对于灾害的暴露程度和抵御恢复能力,从社会经济状况、人口状况以及基础设施和生命线等状况三个角度收集了38个基础指标。采用z-score函数将数据标准化,对经过再调整的数据采用主成分分析进行降维并提取7个主成分(解释了83.9%的数据方差),采用加权求和模型将7个主成分合成,最终得到社会脆弱性指标。利用得到的社会脆弱性指标,分析了中国2004年至2010年31个省级行政区的社会脆弱性时空分布特征。结果显示社会脆弱性呈现出东西部高北中南部低的空间特征,东西部地区相对较高的社会脆弱性呈现出不同的形成模式:东部(如山东、安徽、江苏、河南和江西等)源自于社会经济的不平衡发展,西部(如西藏、四川、云南、贵州、甘肃和青海等)源自于社会经济发展的相对落后;呈现出逐年降低相互趋近的时间特征,逐年降低具有较好的线性趋势,可以用于预测未来短期年份的社会脆弱性值,既规避了数据获取问题,又简化了计算过程。对社会脆弱性指标进行了敏感性分析,结果显示社会脆弱性指标对空间尺度的变化较为敏感,而对时间尺度的变化表现出一定的稳定性。
     基于结果指标和社会脆弱性指标计算加和结果指标和标准化社会脆弱性指标,提出简单的区域快速损失评估方法。利用得到的区域损失指标对中国2004年至2010年31个省级行政区的综合损失情况进行了评估及分级。以4个加和结果指标为输出,以7个主成分得分为输入,进一步提出基于数据包络分析的区域快速损失评估方法,利用得到的综合技术效率对中国2004年至2010年31个省级行政区的综合损失情况进行了评估及分级。对两种方法的结果进行了比较,认为简单的区域快速损失评估方法,其结果主要受加和结果指标的影响,适用于需强调损失结果的情况;基于数据包络分析的区域快速损失评估方法规避了对损失结果和承灾体社会脆弱性两者内在关系的假设,能够处理多输入多输出,考虑因素更为全面,对因素间内在关系的处理更为合理,得到的结果更为保守,更能体现损失结果与社会脆弱性对承灾体的综合影响。
Fire plays an important role in the development of human being. It promotes the society development and human progress, but creates disasters as well. Since the reform and open, the economy of China develops rapidly, resulting in the rise of activity frequency of production and living, the accumulation of social wealth, and the increase of fire numbers and losses. Thereinto, the high casualty fires which cause huge number of deaths and injuries draw the public attention especially. The process of high casualty fires requires the cooperation of multiple departments, which is beyond the scope of general risk management. Focusing on the high casualty fires, the data imputation and rapid loss assessment are studied, in order to solve the essential problems of emergency management of high casualty fires and provide theoretical foundation and assessment system.
     To tackle the data missing problem of high casualty fires, a principle component regression based numerical data imputation method and a multiple correspondence analysis based categorical data imputation method were proposed. Experiments of different missing rates and accident levels were designed and root mean squared error and correct rate were used to evaluate these2methods, respectively. The former method was compared with mean, mode, k-means cluster, fuzzy c-means cluster, and k-nearest neighbor imputation methods, and the latter method was compared with mode, multinomial logistic regression, and radial basis function network imputation methods. The results show that the former method performs better under low missing rate and high accident level, the latter method performs better for the attributes of place and cause under different missing rates and accident levels, and these two proposed methods perform the best when the missing rate and accident level are both under consideration.
     To realize the rapid loss assessment for high casualty fires, a consequence index from the view of fire consequence and a situation index from the view of fire situation were constructed basing on the analytic network process. The fomer index includes the attributes of death, injury, burned area, and property loss, and the latter index includes18attributes of3clusters of time, place, and cause. Two indexes were calculated and the consequence index was used for loss assessment from the aspect of fire consequence, and the situation index was used for loss assessment from the aspect of fire situation basing on the relationship between the2indexes. The correct rates of classification for different accident levels were compared between the proposed method and multinomial logistic regression, multi-layer perceptron network and radial basis function network. It is indicated that the results of the proposed method has a higher correct rate and is more conservative. Basing on the consequence index and situation index, the rapid loss assessment is realized with easily acquired input and conservative acceptable output.
     Considering the aspects of exposure and resistance&recovery,38basic indexes of status of socioeconomic, demographic, and infrastructure&lifeline were collected. Data were standardized with z-score function and adjusted. Seven principle components were extracted by principle component analysis, and the social vulnerability index was synthesized by weighted addictive model. By analyzing the social vulnerability index, the time and space distributions of social vulnerability were revealed. The results show that the social vulnerability is high for the east and west, and low for the north, middle, and south by space, and the formation model of the high social vulnaerabilty of east and west are different:it is resulted from the unbalanced development for the east (e.g. Shandong, Anhui, Jiangsu, Henan, and Jiangxi) and the slow development for the west (e.g. Xizang, Sichuan, Yunnan, Guizhou, Gansu, and Qinghai); is decreasing and approaching each other by time, and the good linear trend can be used for forcasting to tackle the data collection problem and simplify the calculation process. The sensitivity analysis shows that the social vulnerability index is sensitive to the change in space scale, and stable to the change in time scale.
     The summation of consequence index and the standardization of social vulnerability index were calculated basing on the consequence index and social vulnerability index, and a simple area rapid loss assessment method was proposed. With the results of area loss index, the comprehensive loss status was assessed and graded for all provincial administrative region of China from2004to2010. Furthermore, a data envelopment analysis based area rapid loss assessment method was proposed basing on the4inputs of summation of consequence index and7outputs of7principle component scores. The assessment and grading were conducted as well. These two methods were compared and the results show that the former one is mainly affected by the results of summation of consequence index, and is believed to be suitable for assessments where the losses should be emphasized; the latter one avoid the assumption of the relationship between loss consequence and social vulnerability, is capable of handle multi inputs and outputs, assess from a more comprehensive aspect, give more sonservative results, and is more suitable and applicabel for assessments where both the losses and the social vulnerability should be considered evenly.
引文
Ambrogi F, Biganzoli E, Boracchi P.2005. Multiple correspondence analysis in S-Plus. Computer Methods and Programs in Biomedicine,79:161-167.
    Ammann WJ.2006. Risk concept, integral risk management and risk governance//Ammann WJ, Dannenmann S, Vulliet L. Risk 21 Coping with Risk Due to Natural Hazards in the 21st Century. London:Taylor & Francis Group,3-24.
    Anderson MB.2000. Vulnerability to disaster and sustainable development:a general framework for assessing vulnerability//Pielke R, Jr., Pielke R, Sr. Storms. Vol 1. London:Routledge,11-25.
    Banker RD, Charnes A, Cooper WW.1984. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science,30(9):1078-1092.
    Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ.2006. Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Climate Dynamics,26:489-511.
    Blaikie P, Cannon T, Davis I, Wisner B.1994. At risk:natural hazards, people's vulnerability, and disasters. London:Routledge.
    Blender R, Fraedrich K, Sienz F.2008. Extreme event return times in long-term memory processes near 1/f. Nonlinear Processes in Geophysics,15(4):557-565.
    Bolin R, Stanford L.1991. Shelter, housing and recovery:a comparison of US disasters. Disasters 15(1):24-34.
    Bolin R,2007. Class, ethnicity, and disaster vulnerability//Rodriguez H, Quarantelli EL, Dynes R. Handbook of Disaster Research. New York:Springer,113-129.
    Borden K.A, Schmidtlein MC, Emrich CT, Piergorsch WW, Cutter SL.2007. Vulnerability of US cities to environmental hazards. Journal of Homeland Security and Emergency Management, 4(2):Article 5.
    Brouwer R.2006. Do stated preference methods stand the test of time? A test of the stability of contingent values and models for health risks when facing an extreme event. Ecological Economics,60:399-406.
    Burton 1, Kates RW, White GF.1993. The environment as hazard.2nd ed. New York:Guildford.
    Byrnes P, Freeman M, Kauffman D.1997. Performance measurement and financial incentives for community behavioral health services provision. International Journal of Public Administration,2:221-235.
    Caballero D, Giroud F, Picard C, Xanthopoulos G.2004. A "wall-less" laboratory for wildland fire sciences and technologies in the Euro-Mediterranean region-deliverable D-10-01-Wildland-Urban interface management:a state of the art, EUFIRELAB/Euro-Mediterranean wildland fire laboratory,28.
    Charnes A, Cooper WW, Rhodes E.1978. Measuring the efficiency of decision making units. Central European Journal of Operations Research,2(6):429-444.
    Chien BC, Lu CF, Hsu SJ.2006. Handling incomplete categorical data for supervised learning. Lecture Notes in Computer Science,4031:1318-1328.
    Coburn AW, Spence RJS, Pmomonis A.1994. Vulnerability and risk assessment. Disaster management training program. UNDP/DHA,70.
    Costa JCGD, Almeida RMVR, Infantosia AFC, Suassuna JHR.2008. A heuristic index for selecting similar categories in multiple correspondence analysis applied to living donor kidney transplantation. Computer Methods and Programs in Biomedicine,90:217-229.
    Cova TJ, Church RL.1997. Modeling community evacuation vulnerability using GIS. International Journal of Geographical Information Science,11:763-84.
    Cutter SL, Boruff BJ, Shirley WL.2003. Social vulnerability to environmental hazards. Social Science Quarterly,84(1):242-261.
    Cutter SL, Emrich CT.2006. Moral hazard, social catastrophe:the changing face of vulnerability along the hurricane coasts. Annals, American Academy of Political and Social Science,604: 102-112.
    Cutter SL, Mitchell JT, Scott MS.2000. Revealing the vulnerability of people and places:a case study of Georgetown county, south Carolina. Annals of the Association of American Geographers,90(4):713-37.
    Cutter SL.2001. A research agenda for vulnerability science and environmental hazards. IHDP Update (Newsletter of the IHDP),2:8-9.
    De La Cruz-Reyna S.1996. Long-term probabilistic analysis of future explosive eruptions// Scarpa R, Tilling RI. Monitoring and Mitigation of Volcano Hazards. New York:Springer-Verlag Berlin Heidelberg,599-629.
    Dempster P, Rubin DB.1983. Incomplete data in sample surveys//Madow WG, Olkin I, Rubin DB. Sample Surveys. I1. Theory and Annotated Bibliography. "New York:Academic Press.
    D'Ercole R.1996. Representation cartographiques des facteurs de vulnerability des populations exposes a une menace volcanique. Application a la region du volcan cotopaxi (Equateur). Bulletin de 1'IFEA,25(3):479-507.
    D'Ercole R.1998. Approches de la vulnerability et perspectives pour une meilleure logique de reduction du risque. Pangea,29(39):20-28.
    Di Nuovo AG.2011. Missing data analysis with fuzzy c-means:a study of its application in a psychological scenario. Expert Systems with Applications,38:6793-6797.
    Dietrich J, Trepte S, Wang Y, Schumann AH, Voss F, Hesser FB, Denhard M.2008. Combination of different types of ensembles for the adaptive simulation of probabilistic flood forecasts: hindcasts for the Mulde 2002 extreme event. Nonlinear Processes in Geophysics,15(2):275-286.
    Dyson RG, Allen R, Camanho AS, Podinovski VV, Sarrico CS, Shale EA.2001. Pitfalls and protocols in DEA. European Journal of Operations Research,132(2):245-259.
    El Adlouni S, Bobee B, Ouarda TBMJ.2008. On the tails of extreme event distributions in hydrology. Journal of Hydrology 355,16-33.
    Enarson E, Morrow B.1998. The gendered terrain of disaster. New York:Praeger.
    Enarson E, Scanlon J.1999. Gender patterns in flood evacuation:a case study in Canada's red river valley. Applied Behavioral Science Review,7(2):103-24.
    Ertugrul I, Karakaglu N.2008. Comparison of fuzzy AHP and fuzzy TOPSIS methods for facility location selection. International Journal of Advanced Manufacturing Technology,39: 783-795.
    Fare R, Grosskopf S, Lovell CAK, Pasurka C.1989. Multilateral productivity comparisons when some outputs are undesirable:a nonparametric approach. Review of Economics and Statistics, 71:90-98.
    Federal Emergency Management Agency.1990. Definitions of Terms. Washington, DC:FEMA.
    Feng XD, Wu S, Liu YC.2011. Imputing missing values for mixed numeric and categorical attributes based on incomplete data hierarchical clustering. Lecture Notes in Artificial Intelligence 7091,414-424.
    Fothergill A.1996. Gender, risk, and disaster. International Journal of Mass,14(1):33-56.
    Golany, B, Roll, Y.1989. An application procedure for DEA. Omega-International Journal of Management Science,17:237-250.
    Greenacre MJ.1989. Theory and applications of correspondence analysis,3rd ed. London: Academic Press.
    Griffiths PG, Magirl CS, Webb RH, Pytlak E, Troch PA, Lyon SW.2009. Spatial distribution and frequency of precipitation during an extreme event:July 2006 mesoscale convective complexes and floods in southeastern Arizona. Water Resources Research,45:Article W07419.
    Hallerberg S, Kantz H.2008. Influence of the event magnitude on the predictability of an extreme event. Physical Review E,77:Article 011108.
    Hasofer AM, Thomas I.2006. Analysis of fatalities and injuries in building fire statistics. Fire Safety Journal,41:2-14.
    Haynes K, Handmer J, McAneney J, Tibbits A, Coates L.2010. Australian bushfire fatalities 1900-2008:exploring trends in relation to the'prepare, stay and defend or leave early'policy. Environmental Science & Policy,13:185-194.
    Heinz Center for Science, Economics, and the Environment.2000. The hidden costs of coastal hazards:implications for risk assessment and mitigation. Covello, Cal.:Island Press.
    Hewitt K.1983. The idea of calamity in a technocratic age//Hewitt K. Interpretations of calamity from the viewpoint of human ecology. London:Allen & Unwin.
    Hewitt K.1997. Regions of risk:a geographical introduction to disasters. UK:Longman.
    Hron K, Tempi M, Filzmoser P.2010. Imputation of missing values for compositional data using classical and robust methods. Computational Statistics & Data Analysis,54:3095-3107.
    Hruschka ER, Hruschka ER, Ebecken NFF.2004. Towards efficient imputation by nearest-neighbors:a clustering-based approach. Lecture Notes in Computer Science,3339:513-525.
    Hua ZS, Bian YW, Liang L.2007. Eco-efficiency analysis of paper mills along the Huai River:an extended DEA approach. Omega-International Journal of Management Science,35(5):578-587.
    Jones B, Andrey J.2007. Vulnerability index construction:methodological choices and their influences on identifying vulnerable neighborhoods. International Journal of Emergency Management,4(2):269-295.
    Kaciak E, Louviere J.1990. Multiple correspondence analysis of multiple choice experiment data. Journal of Marketing Research,27:455-465.
    Kasperson JX, Kasperson RE, Turner BL.1995. Regions at risk:comparisons of threatened environments. Tokyo:United Nations University Press.
    Koopmans TC.1951. Analysis of production as an efficient combination of activities//Koopmans TC. Activity Analysis of Production and Allocation. New York:Wiley,33-97.
    Laska S, Morrow BH.2006. Social vulnerabilities and hurricane Katrina:an unnatural disaster in New Orleans. Marine Technology Society Journal,40(4):16-26.
    Lee CC.2009. Analysis of overall technical efficiency, pure technical efficiency and scale efficiency in the medium-sized audit firms. Expert System with Application,36(8):11156-11171.
    Lin YS.2004. Life risk analysis in residential building fires. Journal of Fire Sciences,22:491-504.
    Lu WM, Lo SF.2007. A closer look at the economic-environmental disparities for regional development in China. European Journal of Operations Research,183(2):882-894.
    Mantzavelas A, Apostolopoulou I, Lazaridou T, Partozis T, Lampin C, Long M, Jappiot M.2008. Literature review and synopsis of the methodologies to estimate vulnerability. Deliverable D5.2-5 of the integrated project "fire paradox", project no. FP6-018505. European Commission.13.
    Marques SC, Azeiteiro UM, Martinho F, Pardal MA.2007. Climate variability and planktonic communities:The effect of an extreme event (severe drought) in a southern European estuary. Estuarine, Coastal and Shelf Science,73:725-734.
    Maskrey A.1989. Disaster mitigation:a community based approach. Oxford, Oxfam.
    Mileti D.1999. Disasters by design:a reassessment of natural hazards in the United States. Washington, DC:Joseph Henry Press.
    Mitchell JK.1999. Crucibles of hazard:mega-cities and disasters in transition. Tokyo:United Nations University Press.
    Montain-Domenach J.2005. Regulation and responsibility in case of natural extreme event, the precautionary principle. Houille Blanche-Revue Internationale De L Eau,2:33-36.
    Morrow BH, Phillips B.1999. What's gender'got to do with it'? International Journal of Mass Emergencies and Disasters,17(1):5-11.
    Morrow BH.1999. Identifying and mapping community vulnerability. Disasters,23(1):11-18.
    National Research Council.2006. Facing hazards and disasters:understanding human dimensions. Washington, DC:Joseph Henry Press.
    Ngo EB.2001. When disasters and age collide:reviewing vulnerability of the elderly. Natural Hazards Review,2(2):80-89.
    Ni JR, Liu R2, Wai OWH, Borthwick AGL, Ge XD.2006. Rapid zonation of abrupt mass movement hazard:part I. general principles. Geomorphology,80:214-225.
    Novosyolov A, Satchkov D.2010. Portfolio crash testing:making sense of extreme event exposures. Journal of Risk Model Validation,4(3):53-67.
    O'Brien P, Mileti D.1992. Citizen participation in emergency response following the Loma Prieta earthquake. International Journal of Mass Emergencies and Disasters,10:71-89.
    Oggioni G, Riccardi R, Toninelli R.2011. Eco-efficiency of the world cement industry:a data envelopment analysis. Energy Policy,39(5):2842-2854.
    Peacock W, Morrow BH, Gladwin H.1997. Hurricane Andrew and the reshaping of Miami: ethnicity, gender, and the socio-political ecology of disasters. Gainesville:University Press of Florida.
    Peacock W.2000. Hurricane Andrew and the reshaping of Miami:ethnicity, gender, and the socio- political ecology of disasters. Miami:Florida International University, International Hurricane Center.
    Pearce L.2000. An integrated approach for community hazard, impact, risk and vulnerability analysis:HIRV:[Ph.D.]. Canada:University of British Cohimbia.
    Petrucci CJ.2009. A primer for social worker researchers on how to conduct a multinomial logistic regression. Journal of Social Service Research,35:193-205.
    Planas-Cuchi E, Montiel H, Casal J.1997. A survey of the origin, type and consequences of fire accidents in process plants and in the transportation of hazardous materials. Process Safety and Environmental Protection,75:3-8.
    Platt R.1995. Lifelines:an emergency management priority for the united states in the 1990s. Disasters,15:172-76.
    Platt R.1999. Disasters and democracy:the politics of extreme natural events. Washington, DC: Island Press.
    Powers MR.2002. "Leapfrogging" the variance:The financial management of extreme-event risk. Global Risk Management:Financial, Operational, and Insurance Strategies,3:39-58.
    Puente S.1999. Social vulnerability to disaster in Mexico city//Mitchell J K. Crucibles of hazard: mega-cities and disasters in transition. Tokyo:United Nations University Press,295-334
    Putnam RD.2000. Bowling alone:collapse and revival of the American community. New York: Simon & Schuster.
    Raghunathan TE.2004. What do we do with missing data? Some options for analysis of incomplete data. Annual Review of Public Health,25:99-117.
    Ralph FM, Sukovich E, Reynolds D, Dettinger M, Weagle S, Clark W, Neiman PJ.2010. Assessment of extreme quantitative precipitation forecasts and development of regional extreme event thresholds using data from HMT-2006 and COOP observers. Journal of Hydrometeorology,11(6):1286-1304.
    Rey-del-Castillo P, Cardenosa J.2012. Fuzzy min-max neural networks for categorical data: application to missing data imputation. Neural Computing & Applications,21:1349-1362.
    Ronza A, Munoz M, Carol S, Casal J.2006. Consequences of major accidents:assessing the number of injured people. Journal of Hazardous Materials,133:46-52.
    Rosen C, Larsson M, Jeppsson U, Yuan Z.2002. A framework for extreme-event control in wastewater treatment. Water Science and Technology,45:299-308.
    Roth P.1994. Missing data:a conceptual review for applied psychologists. Personnel Psychology, 47:537-560.
    Rubin DB.1976. Inference and missing data. Biometrika,63:581-592.
    Saaty TL.1980. The analytic hierarchy process. New York:McGraw-Hill.
    Saaty TL.1996. Decision making with dependence and feedback:the analytic network process. PA:RWS Publications.
    Saaty TL.2001. Decision making with the analytic network process (ANP) and its'super-decisions'software:the national missile defense (NMD) example. Berne:1SAHP Conference Presentation.
    Saaty TL.2005. Theory and applications of the analytic network process:decision making with benefits, opportunities, costs, and risks. PA:RWS Publications.
    Schafer JL, Graham JW.2002. Missing data:our view of the state of the art. Psychological Methods,7:147-177.
    Scheel H.2001. Undesirable outputs in efficiency valuations. European Journal of Operations Research,132(2):400-410.
    Schneider T.2006. Risk aversion-a delicate issue in risk assessment//Ammann WJ, Dannenmann S, Vulliet L. Risk 21 Coping with Risk Due to Natural Hazards in the 21st Century. London:Taylor & Francis Group,59-66.
    Seiford LM, Zhu J.2002. Modeling undesirable factors in efficiency evaluation. European Journal of Operations Research,142:16-20.
    Sentas P, Angelis L.2006. Categorical missing data imputation for software cost estimation by multinomial logistic regression. The Journal of Systems and Software,79:404-414.
    Smith C, Lawson N.2012. Identifying extreme event climate thresholds for greater Manchester, UK:examining the past to prepare for the future. Meteorological Applications,19:26-35.
    Song QB, Shepperd M.2006. A new imputation method for small software project data sets. Journal of Systems and Software,80:51-62.
    Song WG, Zhang HP, Chen T, Fan WC.2003. Power-law distribution of city fires. Fire Safety Journal,38:453-465.
    Su XY, Greiner R, Khoshgoftaar TM, Napolitano A.2011. Using classifier-based nominal imputation to improve machine learning//Huang JZ, Cao L, Srivastava J. PAKDD 2011, Part I. Lecture Notes in Artificial Intelligence,6634:124-135.
    Telesca L, Song WG.2011. Time-scaling properties of city fires. Chaos, Solitons & Fractals,44: 558-568.
    Tierney KJ.2007. From the margins to the mainstream? Disaster research at the crossroads. Annual Review of Sociology,33:503-525.
    Tierney KJ, Lindell MK, Perry RW.2001. Facing the unexpected:disaster preparedness and response in the United States. Washington, DC:Joseph Henry Press.
    Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altman RB. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics,17(6):520-525.
    Twala B.2009. An empirical comparison of techniques for handling incomplete data using decision trees. Applied Artificial Intelligence,23:373-405.
    United Nations Disaster Relief Office.1991. Mitigating natural disasters:phenomena, effects and options:a manual for policy makers and planners. New York:United Nations.
    United Nations.2002. Living with risk:a global review of disaster reduction initiatives. Geneva: ADRC, ISDR, UN, WMO.
    Van Laarhoven PJM, Pedrycz W.1983. A fuzzy extension of Saaty's priority theory. Fuzzy Set System,11:229-241.
    Vigneau E, Bertrand D, Qannari M.1996. Application of latent root regression for calibration in near-infrared spectroscopy. Comparison with principal component regression and partial least squares. Chemometrics and Intelligent Laboratory Systems,35:231-238.
    Wang JH, Xie S, Sun JH.2011. Self-organized criticality judgment and extreme statistics analysis of major urban fires. Chinese Science Bulletin,56:567-572.
    Webb GR, Tierney KJ, Dahlhamer JM.2000. Business and disasters:empirical patterns and unanswered questions. Natural Hazards Review,1 (2):83-90.
    Wisner B.2000. From 'acts of god' to 'water wars':the urgent analytical and policy role of political ecology in mitigating losses from flood:a view from South Africa and Central America//Parker DJ. Floods. Vol 1. London:Routledge.
    Wisner B.2001. Risk and the neoliberal state:why post-mitch lessons didn't reduce El Salvador's earthquake losses. Disasters,25(3):251-268.
    Wold S, Esbensen K, Geladi P.1987. Principal component analysis. Chemometrics and Intelligent Laboratory Systems,2:37-52.
    Wu JH, Song QB, Shen JY.2007. A novel association rule mining based missing nominal data imputation method. Proceedings of 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing,3:244-249.
    Wu LZ, Duan Y, Jing R, Dong FJ, Duan YY.2006. Research on city fire self-organized criticality. Progress in Safety Science and Technology,6:975-978.
    Yilmaz AS, Oezer Z.2009. Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks. Expert Systems with Applications,36:9767-9775.
    Zimmerman HJ.1996. Fuzzy set theory and its applications,3rd ed. Boston:Kluwer Academic Publishers.
    陈锦春,王爱民,汪丰.2007.突发公共卫生事件应急机制与评估体系建设.中国检验检疫,2:25-26.
    陈仕鸿,刘晓庆.2011.基于离散型Hopfield神经网络的台风灾情评估模型.自然灾害学报,20(5):47-52.
    陈仕鸿,隋广军,唐丹玲.2012.一种台风灾情综合评估模型及应用.灾害学,27(2):87-91.
    池天河,张新,韩承德,方金云.2004.洪水灾害快速评估关键技术研究.长江科学院院报,21(4):39-42.
    窦爱霞,工晓青,丁香,袁小祥,工龙,董彦芳,金鼎坚.2012.遥感震害快速定量评估方法及其在玉树地震中的应用.灾害学,27(3):75-80.
    方建,徐伟,史培军.2011.台风灾害快速评估信息系统设计与开发.北京师范大学学报(自然科学版),47(5):517-521.
    傅泽强.2001.草原火灾灾情评估方法的研究.内蒙古气象,3:36-39.
    郭铁男.2005.我国火灾形势与消防科学技术的发展.消防科学与技术,24(6):663-673.
    郭小东,李宁,苏经宇.2011.基于集对分析理论的洪水灾情综合评估方法.中国安全生产科学技术,7(10):51-55.
    韩智勇,翁文国,张维,杨列勋.2009.重大研究计划“非常规突发事件应急管理研究”的科学背景、目标与组织管理.中国科学基金,4:215-220.
    侯兰功.2006.泥石流灾情评估研究综述.地质灾害与环境保护,17(1):45-49.
    黄顺祥,胡非,李昕,陈海平,钱毅新.2004.反化学恐怖危害评估.北京大学学报(自然科学版),40(1):121-128.
    黄涛珍,上晓东.2003.BP神经网络在洪涝灾损失快速评估中的应用.河海大学学报(自然科学版),31(4):457-460.
    贾衍立,门马,沈涛.2011.基于泥石流预测与快速评估系统的防灾减灾解决方案.中国防汛抗旱,21(3):76-77.
    姜学鹏,徐志胜.2005.我国火灾损失的时间趋势分析及动态预测.消防科学与技术,24(4):412-414.
    金晓媚,刘金韬.1998.地质灾害灾情评估系统.水文地质工程地质,3:30-32.
    兰月新,邓新元,马民.2011.群体性事件网络舆情安全评估指标体系构建.情报探索,168:37-39.
    李克均,冯丽云,时松和,施学忠.2007.多重对应分析及其在工作满意度研究中的应用.中国卫生统计,24(1):19-21.
    李天祺,赵振东,余世舟.2012.城市危险源爆炸灾害应急损失评估研究.安全与环境学报, 12(1):260-264.
    刘静,刘阳.2006.火灾损失的灰色模糊预测方法.中国公共安全(学术版),5:62--65.
    刘双庆,邱虎,王晓青.2010.一种基于宏观经济指标的地震灾害快速评估方法及实现.灾害学,25(3):16-20.
    刘霞,严晓,刘世宏.2011.非常规突发事件的性质和特征探析.北京航空航天大学学报(社会科学版),24(3):13-17.
    娄伟平,陈海燕,邱新法,杨祥珠,赵慧娟.2010.基于粒子群优化神经网络的台风灾情定量评估.自然灾害学报,19(4):135-140.
    卢国显.2011.网络群体性事件风险评估初探.中国人民公安大学学报(社会科学版),3:133-137.
    冉海潮,孙丽华,郭英军,赵江浩.2005.一种城市火灾损失预测评估方法.河北科技大学学报,26(4):326-329.
    沈敏,熊光练,方为民,郭燕,杜玉开.2008.突发公共卫生事件损失评估指标及其影响因素.中国公共卫生,24(2):220-221.
    史培军.2002.三论灾害研究的理论与实践.自然灾害学报,1(3):1-9.
    孙彩虹.2011.恐怖主义犯罪风险评估探究.中州学刊,183:95-97.
    汤晓萌,王小乐.2012.论群体性事件的风险识别与风险评估.科技创业月刊,4:68-69.
    王海芝.2009.北京景区泥石流灾害灾情评估模型的建立与应用.城市地质,4(4):31-33.
    王振,刘茂.2006.定量风险分析在恐怖袭击风险评估中的应用.中国公共安全·学术版,7:18-22.
    吴立新,李志锋,王植,李金平,刘纯波.2010.地震灾情快速评估方法和应用:以玉树地震为例.科技导报,28(24):38-43.
    肖新才,丁鹏,陈纯,刘远,王鸣.2012.第16届亚运会突发公共卫生事件风险识别与评估.现代预防医学,39(10):2467-2470.
    徐国栋,方伟华,史培军,袁艺.2008.汶川地震损失快速评估.地震工程与工程振动,28(6):74-83.
    徐庆娟,刘合香.2012.基于灰色关联分析的区域热带气旋灾情评估.广西师范学院学报:自然科学版,29(1):45-50.
    薛澜.2010.中国应急管理系统的演变.行政管理改革,8:22-24.
    晏凤桐.2003.地震灾情的快速评估.地震研究,26(4):382-387.
    杨永强.2008.试论自动喷水火火系统在控制群死群伤火灾事故中的关键作用.武警学院学报,24(12):32-34.
    曾小红,毕海普,司鹄.2011.化工园区泄漏事故安全风险评估模式.中国安全科学学报,21(2):165-170.
    张松柏,田东风,伍钧.2006.核恐怖事件相对风险评估的简易概率方法.核动力工程,27(6):74-81.
    张汉江,兰彬,李风.2006.建筑火灾风险及财产损失评估技术进展.中国安全科学学报,16(5):37-41.
    章博,陈国明.2009.基于CFD的毒气泄漏中毒定量评估.安全与环境学报,9(2):158-160.
    章绳止,黄祥,刘也华,王辉.2003.建立突发公共卫生事件综合评估体系.上海预防医学杂志,15(10):486-488.
    中华人民共和国国务院.2007.安全生产事故报告和调查处理条例.[2011-06-12].http://www.gov.cn/gongbao/content/2007/content_632082.htm.
    周利敏.2012.从自然脆弱性到社会脆弱性:灾害研究的范式转型.思想战线,38(2):11-15.
    周新刚.2001.建筑火灾预期损失评估.消防科学与技术,5:14,42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700