黔—渝地区新元古代伊迪卡拉纪陡山沱期宏体生物群
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宏体生物广泛地生活于扬子地区伊迪卡拉纪陡山沱期古海洋中,描述了产自渝东南和黔东北伊迪卡拉系陡山沱组的宏体生物(包括宏体植物、后生动物和遗迹化石)共30属,23种,4个不明固着器,其中包括4个新属,5个新种,2个新修正属和1个新修正种。渝东南陡山沱期早期宏体生物群可与华北地区青白口期中-晚期Longfenshania植物群可进行比较,而与陡山沱期晚期宏体生物群有较大的区别,它表明了早期的宏体生物能够穿越过“雪球事件”。黔东北陡山沱期晚期瓮会生物群不但含鄂西庙河生物群和皖南蓝田植物群的分子,也有南澳大利亚伊迪卡拉生物群和俄罗斯White Sea生物群的分子,而且有别于其它伊迪卡拉期生物群。瓮会生物群中宏体植物已有组织、器官和功能的明显分化,并出现了原始的维管植物Wenghuiphyton。瓮会生物中宏体后生动物有海绵类、栉水母类、刺胞类和三叶类等两胚层辐射对称动物以及环节类和可能的软体类等三胚层两侧对称动物。瓮会生物群生活于的温暖清澈、相对平静、有一定含氧量、光照充分、富有无机营养盐、并具正常盐度的浅海环境,其基底为富含水份的粥性基底,且生物群的生活周期与周期性的洋流事件存在一定的相关性。瓮会生物群在空间上可分为“挺立群落”、“沉积表层群落”和“水体上层群落”,而构成了一个原始而相对完整的生态系统。在时间纵向上可依次分为Globusphyton , Sectoralga-Longifuniculum , Cucullus , Beltanelliformis ,Baculiphyca-Gesinella等5个群落,反映出生物群落与环境的相关性以及宏体后生动物与植物之间的相关性和规律性。陡山沱期的宏体藻类多分枝并直立固着于海底,提高了光合作用的效率,增加了海中水体中的含氧量,不仅改善了环境,为依赖一定氧而生活、生长和繁殖的后生动物给予了必要的支持,而且作为生态系统中的必要基础,为宏体后生动物的快速发展和演化提供了一个新的食物源。在生命演化的早期,生态系统的演化主要表现为生物从被动地接受环境因子到对环境因子需求的竞争,从依赖环境到参与对环境的改造,生物的环境空间分布从二维到三维,生物的能量传递方式从生物体外到体内。伊迪卡拉纪陡山沱期晚期“原始立体生态系统”的出现,生物在三维空间中开始了对环境因子需求的竞争和生物体内能量传递的食物链结构,同时增强了参与和对环境演化的贡献力度,是生物迅速演化和其后寒武纪生命大辐射的重要转折。另外,扬子地区在陡山沱期晚期是地震构造运动的活跃期,地震构造活动可引起磷等无机营养盐和海水温度的升高,而有利于多细胞生物的起源和发展。伊迪卡拉纪陡山沱期是Rodinia超大陆裂离的重要地质时期,是化学、气候和环境变化的剧烈时期和磷质聚集时期,也是多细胞生物起源和发展的重要转折时期。
The macro-organisms lived widely in the Yangtze Sea during the Doushantouian of the Ediacaran. The macro-organisms, including macro-plants, metazoans and trace fossils, 30 species of 23 genera and 4 macroalgal holdfasts, which are collected from Southeast Zhongqing and Northwest Guizhou, are described herein. The macro-biota of the early Doushantuoan from Southeast Zhongqing can compare with the Longfenshania Flora in the middle-late Qingbaikouian in North China, but differs from the late Doushantuoan biotas. It indicates that the macroscopic organisms were able to go through and had gone through the Snowball Event. The Wenghui Biota of the late Doushantuoan in Northeast Guizhou not only contains some elements of the Miaohe Biota from West Hubei, the Lantian Flora from South Anhui, the Ediacara Funa from South Australia, and the White Sea Biota from Russia, but also has its own characters to distinguish other Ediacaran biotas. The macro-plants in the Wenghui Biota have born the differentiation of tissue, organ, and their functions, and had emerged a primordial vascular plant Wenghuiphyton. The metazoans in the Wenghui Biota had radiate symmetrical animals, including Porifera, Ctenophora, Cnidaria, and Trilobozoas, and bilateral symmetrical animals, including Annelida and possible Mollusca. This biota lived in a shallow sea environment with warm-water, low-energy, poor-oxygen, enough-sunlight, rich-nutrition, well-balanced salt, and soupground. The life cycle of this biota was relationship with the seasonal events of ocean currents. In living space, the Wenghui Biota can be redivided into“Upright Community”,“Depositional Surface Community”, and“Super-water Community”, to form a primordial tri-dimension ecosystem. On the section, the Wenghui Biota can be redivided into Globusphyton,Sectoralga-Longifuniculum,Cucullus,Beltanelliformis,and Baculiphyca- Gesinella Communities, from below to above. The change and evolution of these communities show the relation the biota and microenvironment, and indicates the relationship macro-plants with metazoans. The numerous macro-plants during the Doushantuoian were branching and semi-floated and erected on seafloor. They advanced the photosynthetic efficiency and increase oxygen in water to improve in environment for metazoans; and they served as a primary producer in the paleoecosystem to provide an alternative and new food of metazoan. In the early life evolution, the evolution of ecosystem mainly exhibited the development what was from passive accepters to active competitors in life demands for environment factors, from dependence on to reform in the environment, from two-dimension to three-dimension in the spatial distribution, and from outside to inside of organism in the style of energy transformation. The emergence of primordial tri-dimension ecosystem in the late Doushantuoan of the Ediacaran imply that organisms began to compete for environment factors demanded by them, to form a food chain that energy transferred in inner organism body, and to enhanced contribution for environmental evolution. Therefore, the Doushantuoan is a key period in the history of life evolution, and a transition period of the big radiant of life. In addition, the late Doushantuoan was an active period in seismotectonism. The seismotectonism might cause the increase of phosphorous inorganic-salt and seawater warming to help for the origin and development of mulicellular organisms. The Doushantuo Period of the Ediacaran is not only an important epoch of the Rodinia supercontinent cracked and a tempestuous epoch of the chemical, climatic, and environmental changes, but also an important epoch of the mulicellular organismal origin and development.
引文
毕治国,王贤方,朱鸿,等.皖南震旦系.见:中国地质科学院地层古生物论文集编委会编,地层古生物论文集(19).北京:地质出版社, 1987, 27~60
    陈长胜.海洋生态系统动力学与模型.北京:高等教育出版社, 2003, 1-287.
    陈多福,陈光谦,陈先沛.贵州瓮福新元古代陡山沱期磷矿床铅同位素特征及来源探讨.地球化学, 2002, 31(1): 49~54.
    陈均远.动物世界的黎明. 2004,南京:江苏科技出版社, 1~366.
    陈孟莪.中国晚前寒武纪的宏体化石概观.地质科学, 1989, (3): 244-255.
    陈孟莪.震旦纪生命大爆炸——浅论地史早期动物的演化.前寒武纪研究进展, 1999, 22(3): 36~47.
    陈孟莪,萧宗正.峡东区上震旦统陡山沱组发现宏体化石.地质科学, 1991, (4): 317~324.
    陈孟莪,萧宗正.峡东震旦系陡山沱组宏体生物群.古生物学报. 1992, 31(5): 513~529.
    陈孟莪,郑文武.先伊迪卡拉期和淮南生物群.地质科学, 1986, (3): 221~230.
    陈孟莪,陈其英,萧宗正.试论宏体植物的早期演化.地质科学, 2000, 35(1): 1~15.
    陈孟莪,萧宗正,袁训来.晚震旦世的特种生物群落—庙河生物群新知.古生物学报, 1994a, 33(4): 391~403.
    陈孟莪,鲁刚毅,萧宗正.皖南上震旦统蓝田组的宏体藻类化石——蓝田植物群的初步研究.中国科学院地质研究所集刊, 1994b, (7): 252~267.
    丁莲芳,张录易,李勇,等. 1994.扬子地台北缘晚震旦世—早寒武世早期生物群研究.北京:科学技术文献出版社.
    丁莲芳,李勇,胡夏嵩,等.震旦纪庙河生物群.北京:地质出版社, 1996, 62~146.
    杜汝霖.冀西北青白口系Chuaria等化石的发现及其意义.地质论评, 1982, 28(1): 1-7.
    杜汝霖.我国晚前寒武纪宏观藻类研究进展.地质科技通报, 1990, (4): 24~27.
    杜汝霖,李培菊.燕山西段震旦亚界.中国震旦亚界.天津:天津科技出版社, 1980, 341-357.
    杜汝霖,田立富.华北晚前寒武纪藻类化石的一个特殊类型—Longfengshania.河北地质学院学报, 1982, (1): 7-13, 65.
    杜汝霖,田立富.燕山地区青白口纪宏体藻类.石家庄:河北科学技术出版社, 1985a..
    杜汝霖,田立富.燕山青白口系宏观藻类龙凤山藻属的发现和初步研究.地质学报, 1985b, 59(3): 183-190.
    杜汝霖,田立富.中国燕山地区青白口系宏观藻类化石及其地层意义.前寒武纪地质, 1986, (3): 495~511.
    杜汝霖,郑学信,李培菊.冀西北怀来震旦亚界青白口系长龙山组CHUARIA等多种藻类化石的发现及其意义.河北地质学院学报, 1980, (1): 19-27.
    杜汝霖,余耀基,任振纪,等.冀西北青白口系CHUARIA类化石的撕片观察及生物归属.河北地质学院学报, 1983, (2): 37-39.
    杜汝霖,田立富,李汉棒.蓟县长城系高于庄组宏观生物化石的发现.地质学报, 1986, (2): 115~120
    杜远生,韩欣.论震积作用和震积岩.地球科学进展, 2000, 15(4): 389~394.
    杜远生,张传恒,韩欣,等.滇中中元古代昆阳群的地震事件沉积及其地质意义.中国科学D辑,地球科学, 2001, 31(4): 283~289.
    段承华,邢裕盛,杜汝霖,等.中国晚前寒武纪宏观藻类.中国晚前寒武纪古生物.北京:地质出版社, 1985, 68-77.
    冯先岳.地震振动液化变形的研究.内陆地震, 1989, 3(4): 299~307.
    高建华,蔡克勤,杨式溥,等.蓟县长城系中发现最古老的遗迹化石.科学通报, 1993, 38(20): 1891~1895.
    高信曾.植物学:形态、解剖部分.北京:人民教育出版社, 1978, 49~60.
    耿宝印.贵州中志留世羽枝属(新属)的形态和解剖.植物学报, 1986, 28(6): 664~672.
    龚一鸣.重大地史事件、节律及圈层耦合.地学前缘, 1997, 4(3~4): 75~84
    郭建华,王方平,刘贵,等.湘西大庸上震旦统灯影组震裂角砾岩.石油实验地质, 1999, 21(3): 219~224.
    郭庆军,杨卫东,刘丛强,等.贵州瓮安生物群和磷矿形成的沉积地球化学研究.矿物岩石地球化学通报, 2003, 22(3): 202~208.
    郝守刚,王德明,王祺.陆生植物的起源和维管植物的早期演化.北京大学学报(自然科学版), 2002, 38(2): 286~293.
    胡健民,孟庆任,张维吉,等.豫西长城系遗迹化石及其意义.地质论评, 1991, 37(5): 437~444
    胡健民,孟庆任,李文厚.豫西前寒武纪汝阳群蠕虫状遗迹化石.科学通报, 1996, 41(20): 1868~1870
    胡夏嵩.峡东区晚震旦世陡山沱组宏体生物化石生态地层学研究.西安地质学院学报, 1997, 19(3): 9~13.
    华洪,胡云绪,翦万筹.犁沟迹——一类中元代节肢动物爬迹.西北大学学报(自然科学版), 1995, 25(5): 494~496.
    华洪,邱树玉,肖丽君.中元古代长城纪遗迹化石在宁夏贺兰山的发现.西北大学学报, 1993, 23(5): 459~462.
    黄宏伟,杜远生,黄志强,等.广西丹池盆地晚古生代震积岩及其构造意义.地质论评, 2007, 53(5): 577~584.
    李国祥,钱逸.磷酸盐化球状化石研究述评.微体古生物学报, 1999, 16(3): 287~296.
    李星学,周志炎,郭双兴.植物界的发展和演化.北京:科学出版社, 1981, 1~55.
    李勇,秦洪宾,丁莲芳.论遗迹化石的分类和命名.西安地质学院学报, 1996, 18(1): 28~35.
    李勇,张兴亮,郭俊峰,等.贵州瓮安新元古代陡山沱组磷酸盐化管柱状微体化石新材料.古生物学报, 2003, 42(2): 200~207.
    李忠雄,陆永潮,王剑,等.中扬子地区晚震旦世—早寒武世沉积特征及岩相古地理.古地理学报, 2004, 6(2): 151~162.
    刘敏.蓟县中元古代长城纪宏体化石初步研究及有关问题探讨.河北地质学院学报, 1990, 13(4): 309-404.
    刘芊,陈多福,冯东.新元古代帽碳酸盐岩中帐篷状构造的成因.地学前缘, 2007, 14(2): 242~248.
    刘少秒.新元古代Rodinia超大陆的研究进展.前寒武纪研究进展, 2001, 24(6): 116~122.
    刘志礼,杜汝霖. Longfengshania的形态学特征和归属.古生物学报, 1991, 30(1): 106-114.
    罗惠麟,蒋志文,武希彻,等.中国云南晋宁梅树村震旦—寒武系界线层型剖面.昆明:云南人民出版社, 1994, 32~34.
    骆学全.湘西磷块岩的沉积相及沉积模式.岩相古地理, 1993, 13 (3): 33~39.
    梅冥相,高金汉,孟庆芬.从席底构造到第五类原生沉积构造:沉积学中具有重要意义的概念[J].现代地质, 2006, 20(3): 413~422.
    牟南,吴朝东.上扬子地区震旦—寒武纪磷块岩岩石学特征及成因分析.北京大学学报(自然科学版), 2005, 41(4): 551~562.
    彭阳,杨天南,乔秀夫,等.大连上震旦统地震灾变事件研究.地质学报, 2001, 75(2): 221~227. 
    钱迈平,汪迎平,阎永奎.华北古陆东南缘新元古化生物群.北京:地质出版社, 2008, 1~131.
    乔秀夫.中朝板块元古宙板内地震带与盆地格局.地学前缘, 2002, 9(3): 141~149.
    乔秀夫,高林志.华北中新元古代及早古生代地震灾变事件及与Rodinia的关系.科学通报, 2000, 44(16): 1753~1757.
    乔秀夫,高林志.燕辽裂陷中元古代地震与古地理.古地理学报, 2007, 9(4): 337~352.
    乔秀夫,宋天锐,高林志,等.碳酸盐岩振动液化地震序列.地质学报, 1994, 68(1): 16~32.
    乔秀夫,宋天锐,李海兵,等.辽东半岛南部震旦系-下寒武统成因地层.北京:科学出版社, 1996, 1~174.
    乔秀夫,高林志,彭阳.古郯庐带新元古界:灾变,层序,生物.北京:地质出版社, 2001, 1~122.
    乔秀夫,宋天锐,高林志,等.地层中地震记录(古地震).北京:地质出版社, 2006, 1~263.
    秦守荣,朱顺才,谢志强,等,贵州的上前寒武系.见:王砚耕,等,贵州上前寒武系及震旦系—寒武系界线.贵阳:贵州人民出版社, 1984, 37-76.
    桑惕,王立亭.古地理概况.见:谢俊邦等,贵州省区域地质志.北京:地质出版社, 1987, 480-481.
    宋天锐,高健.这些是中国发现的最古老的后生动物痕迹化石吗?科学通报, 1985, 30(12): 826~928
    孙知明,杨振宇,裴军令,等.华南陡山沱古地理环境及“雪球地球”研究新进展.地质通报, 2004, 23(8): 728~731.
    唐烽,高林志.中国“震旦生物群”.地质学报, 1998, 72(3): 193~204.
    唐烽,高林志.北京及邻区青白口纪化石生物相研究.地质论评, 1999, 45(1): 50-58.
    唐烽,尹崇玉,高林志.安徽休宁陡山沱期后生植物化石的新认识.地质学报, 1997, 71(4): 289~296
    唐烽,尹崇玉,柳永清,等.峡东震旦系陡山沱组宏体化石的新发现.科学通报, 2005, 50(23): 2632~2637.
    唐烽,尹崇玉,刘鹏举,等.华南伊迪卡拉纪“庙河生物群”的属性分析.地质学报, 2008, 82(5): 601~611.
    佟彦明,郭成贤,危宇宁.长江三峡东部地区震旦纪事件沉积.古地理学报, 2002, 4(2): 38~45.
    王鸿祯,史晓颖,王训练,等.中国层序地层研究.广州:广东科技出版社, 2000. 3~98.
    王伟,松本良,王海峰,等.长江三峡地区上震旦统稳定同位素异常及地层意义.微体古生物学报, 2002, 19(4): 382~388.
    王砚耕,秦守荣,朱顺才,陈玉林.元古宇.见:谢俊邦,王克贤,韩宝智,贵州省区域地质志.北京:地质出版社, 1987, 26~48.
    王怿,蔡重阳..贵州凤冈兰多维列世晚期管状体及其古植物学意义.微体古生物学报, 1995, 12(1): 1~11.
    王怿,欧阳舒.贵州凤冈早志留世孢子组合的发现及其古植物学意义.古生物学报, 1997, 36(2): 217~237.
    王约,王训练.黔东北新元古代陡山沱期宏体藻类的固着器特征及其沉积环境意义.微体古生物学报, 2006, 23(2): 154~164.
    王约,徐一帆.贵州瓮安埃迪卡拉系陡山沱组上段底部和下段的遗迹化石.现代地质, 2007, 21(3): 469~478.
    王约,徐一帆. 2007.贵州瓮安埃迪卡拉系陡山沱组上段底部和下段的遗迹化石.现代地质, 21(3): 469~478.
    王约,何明华,喻美艺,等.黔东北震旦纪陡山沱晚期庙河型生物群的生态特征及埋藏环境初探.古地理学报, 2005, 7(3): 327~335.
    王约,王训练,黄舜铭.黔东北伊迪卡拉纪陡山沱组的宏体藻类.地球科学, 2007a, 32(6): 828~844.
    王约,王训练,黄舜铭.华南伊迪卡拉系陡山沱组Protoconites的分类位置与生态初探.地球科学, 2007b, 32(Sup.): 41~50.
    王约,王训练,高金汉,等.川北青川地区下寒武统沥青质砾石的发现及其意义.地质通报, 2008, 27(1):149~152.
    王自强,高林志,尹崇玉.峡东地区震旦系等时层序地层格架的建立.中国区域地质, 2001, 20(4): 368~376.
    王自强,尹崇玉,高林志,等.湖北峡东震旦系层型剖面化学地层特征及其国防大学际对比.地质论评, 2002, 48(4): 382~388.
    吴朝东,陈其英.湘西磷块岩的岩石地球化学特征及成因.地质科学, 1999, 34(2): 213~222.
    吴凯,马东升,潘家永,等.贵州瓮安磷矿陡山沱组地层元素地球化学特征[J].华东理工学院学报, 2006, 29(2): 108~114.
    夏文杰,杜森官,徐新煌,等.中国南方震旦纪岩相古地理与成矿作用.北京:地质出版社, 1994, 50~62.
    邢裕盛,毕治国,王贤方.皖南震旦系发现宏体藻类化石.中国地质科学院地质研究所所刊, 1985, 12: 32.
    薛耀松,唐天福,俞从流.贵州晚震旦世陡山沱期具骨骼动物化石的发现及其意义.古生物学报, 1992, 31(5): 530~539.
    薛耀松,周传明,唐天福.瓮安陡山沱组磷块岩中球状绿藻化石繁殖机制的发现.微体古生物学报, 2001, 18(4): 373~378.
    阎玉忠.蓟县串岭沟组微古植群初介.中国地质科学院天津地质矿产研究所所刊, 1985, (12): 137~153.
    阎玉忠.论长城系微化石群的真核生物意义.微体古生物学报, 1993, 10(2): 167~180.
    阎玉忠.中国蓟县团子山组(17亿年)宏体藻类的发现和初步研究.微体古生物学报, 1995, 12(2): 107-126.
    阎玉忠,刘志礼.中国蓟县长城系团山子宏观藻群.古生物学报, 1997, 36(1): 18-42.
    阎玉忠,刘志礼. Sangshuania是真核藻类还中遗迹化石.微体古生物学报, 1998, 15(1): 74-83.
    杨剑,丁莲芳,李勇.湖北秭归庙河震旦系陡山沱组-灯影组界线层内微球粒的发现及意义.成都理工学报学报, 2000, 27(1): 19~22.
    杨式溥.古遗迹学.北京:地质出版社, 1990, 78~160.
    杨式溥,周洪瑞.豫西前寒武纪汝阳群遗迹化石.地质论评, 1995, 41(3): 205~210
    杨式薄,张建平,杨美芳.中国遗迹化石.北京:科学出版社, 2004, 1~262
    殷秀兰,杨天南.胶州—莱阳盆地白垩纪莱阳群中的震积岩及其构造意义讨论.地质论评, 2005, 51(5): 503~506.
    尹崇玉,岳昭,高林志.磷酸盐化原肠胚化石在瓮安陡山沱组磷块岩中的发现.科学通报, 2001, 46(12): 1036~1039.
    尹崇玉,高林志,邢裕盛.贵州瓮安陡山沱期矿化生物群的研究进展和意义.地球学报, 2002, 23(1):47~52.
    尹崇玉,柳永清,高林志,等.震旦(伊迪卡拉)纪早期磷酸盐化生物群:瓮安生物群特征及其环境演化.北京:地质出版社, 2007, 69~79.
    尹磊明,薛耀松,袁训来.中国南方末元古宙陡山沱组中的具刺磷酸盐微体化石.微体古生物学报, 1999, 16(3): 267~274.
    尹磊明,肖书海,袁训来.对贵州瓮安陡山沱磷块岩中针状结构物的新认识.科学通报, 2001, 46(12): 1031~1036.
    袁训来,王启飞,张昀.贵州瓮安磷矿晚前寒武纪陡山沱期的藻类化石.微体古生物学报, 1993, 10(4): 409~420.
    袁训来,李军,陈孟莪.晚前寒武纪后生植物的发现及其化石化石证据.古生物学报, 1995, 34(1): 90~102.
    袁训来,肖书海,尹磊明,等.陡山沱期生物群—早期动物辐射前夕的生命.安徽:中国科学技术大学出版社, 2002, 26~40
    张传恒,武振杰,高林志,等.华北中元古界雾迷山组地震驱动的软沉积物变形构造及其地质意义.中国科学, D辑, 2007, 37(3): 336~343.
    张鹏远.蓟县蓟县系雾迷山组多核体绿藻化石.地质学报, 1979, 53(2): 87-90.
    张启锐,储雪蕾,张同钢,等.从“全球冰川”到“雪球假说”:关于新元古代冰川事件的最新研究.高校地质学报, 2002, 8(2): 473~481.
    张同钢,储雪蕾,陈孟莪,等.新元古代全球冰川事件对早期生物演化的影响.地学前缘(中国地质大学,北京), 2002, 9(3): 49~56.
    张同钢,储雪蕾,张启锐,等.陡山沱期古海水的硫和碳同位素变化.科学通报, 2003, 48(8): 850~855.
    张昀,袁训来.元古宙末多细胞红藻有性生殖结构的发现.中国科学(B辑), 1995, 25(7): 749~754.
    张忠英.关于蓟县雾迷山组“多核体绿藻化石”的讨论.地质论评, 1980, 26(4): 341-342.
    张忠英.龙凤山苔属(新修订)—可能的最早的苔藓植物化石.古生物学报, 1988, 27(4): 416-425.
    赵元龙,陈孟莪,彭进,等.新元古代陡山沱期庙河生物群在贵州江口的发现.科学通报, 2004, 49(18): 1916~1918.
    郑文武.皖北震旦系中Chuaria等化石的发现及其地质意义.中国地质科学院院报,天津地质矿产研究所分刊, 1980, 1(1): 49~69.
    周传明,薛耀松.张俊明.贵州瓮安磷矿上震旦统陡山沱组地层和沉积环境.地层学杂志, 1998, 22(4): 308~314.
    朱士兴,孙淑芳,黄学光,等.燕山常州沟组(约1800Ma)碳质压型化石及其多细胞组织的发现.科学通报, 1999, 44(14): 1552~1557.
    朱为庆,陈孟莪.峡东区上震旦统宏体藻类化石的发现.植物学报, 1984, 26(5): 558~560.
    Allen P A, Hoffman P F. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature, 2005, 433: 123~127.
    Anderson M M, Misra S B. Fossils found in the Precambrian Conception Group of south-eastern Newfoundland. Nature, 1968, 220: 680~681.
    Awramik S M, Schopf J W, Walter M R. Filamentous fossil bacteria from the Archean lof Western Australia. Precambrian Research, 1983, 20: 357~374.
    Ax P. Basic phylogenetic systematization of the Metazoa. In Frenholm B, Bremer K, J?rnvall H (eds.), The Hierarchy of Life. Amsterdam: Elsevier, 1989, 229~246.
    Banks H P. The early history of land plants. In: Drake E T (ed.), Evolution and Environment, Yale University Press, 1968, 73~107.
    Banks H P. The oldest vascular land plants: a note cautions. Rev. Palaeobot. Palynol., 1975, 20: 13~25
    Bassler R S. A supposed jellyfish from the Precambrian of the Grand Canyon. Proceedings of the United States National Museum, 1941, 89: 519~522.
    Bathrust R G C. Genesis of stromatactis cavities between submarine crusts in Palaeozoic carbonate mud buildups. Journal of the Geological Society of London, 1982, 129: 165~181.
    Beukes N J, Klein C. Geochemistry and sedimentology of a facies transitin– from microbanded to granular iron-formation– in the early Proterozoic Transvaal Supergroup, South Africa. Precambrian Research, 1990, 47: 99~139.
    Brasier M, Antcliffe J. Decoding the Ediacaran enigma. Science, 2004, 305: 1115~1117.
    Budd G E, Jensen S. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 2000, 75: 253~295.
    Chen J, Erdtmann B-D. Lower Cambrian fossil Lagerst?tte from Chengjiang, Yunnan, China: Insights for reconstructing early metazoan life. In: Simonetta A M, Conway Morris S (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press, 1991, 57~76.
    Chen J, Oliveri P, Li C W. Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. Proceedings of the National Academy of Sciences USA, 2000, 97: 4457~4462.
    Clemmey H. World’s oldest animal traces. Nature, 1976, 261: 576~578
    Cloud P E. Beginnings of biospheric evoloution and their bigeochemical consequences. Paleobiology, 1976, 2: 351~387.
    Cloud P. World’s oldest animal traces. Nature, 1978, 275(28): 344
    Condon D, Zhu M, Bowring S, et al. U-Pb ages from the Neoproterozoic Toushantuo Formation, China. Science, 2005, 308: 95~98.
    Conway Morris S. The fossil record and the early evolution of the Metazoa. Nature, 1993, 361: 219~225.
    Conway Morris S. Evolution: Bringing molecules into the fold. Cell, 2000a, 100: 1~11.
    Conway Morris S. The Cambrian“explosion”: Slow-fuse or megatonnage? Pnas, 2000b, 97: 4426~4429.
    Cope J W. Precambrian fossil of the Carmarthen area, Dyfed. Nature in Wales, 1983, 1: 11~16.
    Dalziel I W D. Pacific margins of Laurentia and East Antarctica– Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology, 1991, 19: 598~601.
    De C. Possible organisms similar to Ediacaran forms from the Bhander Group, Vindhyan Supergroup, Late Neoproterozoic of India. Journal of Asian Earth Sciences, 2003, 21: 387~395.
    Du Yuansheng, Shi Guangrong, Gong Yiming. Earthquake-controlled event deposits and its tectonic significance from the Middle Permian Wandrawandina Siltstone in the Sydney Basin, Australia. China Science (D), 2005, 48(9): 1337~1346.
    Duan C. Late Precambrian algal megafossils Chuaria and Tawuia in some areas of eastern China. Alcheringa, 1982, 6: 57~68.
    Durham J W. Systematic position of Eldonia ludwigi Walcott. Journal of Paleontology, 1974, 48: 750~755.
    Edwards D S, Davis E C W. Oldest recorded in situ tracheids. Nature, 1976, 263: 494~495.
    Edwards D S. Constraints on Silurian and Early Devonian phytogeographic analysis based on megafossils. In: Mckerrow W S, Scotese C R, (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society, London. Memoir, 1990, 12: 233~242.
    Edwards D S. Early land floras. Syst. Assoc. Spec., 1980, 15: 55~85.
    Erwin D, Valentine J, Jablonski D. The origin of animal body plans: recent fossil finds and new insights into animal development are providing fresh perspectives on the riddle of the explosion of animals during the Early Cambrian. American Scientists, 1997, 85: 126~137
    Faasse, M. A., Bayha, K. M. The ctenophore Mnemiopsis leidyi A. Agassiz 1865 in coastal waters of the Netherlands: an unrecognized invasion? Aquatic Invasions, 2006, 1: 270~277.
    Fairchild I J, Einsele C, Song T. Possible seismic origin of molar tooth structures in Neoproterozoic carbonate ramp deposits north China. Sedimentology, 1997, 44(4): 611~636.
    Faul H. Fossil burrows from the Precambrian Ajibik Quartzite of Michigan. Nature, 1949, 164: 32
    Fedonkin M A. Traces of multicellular animals from the Valdai Series. Izvestiya Akademiya Nauk SSSR, seriia Geologicheskaya, 1976, (4): 129~132 (in Russian).
    Fedonkin M A. The Vendian White Sea biota. Akademiya Nauk SSSR, Trudy, 1981, 342: 1~100.
    Fedonkin M A. Promorphology of the Vendian Radialia. In: Stratigraphy and Paleontology of the Earliest Phanerozoic. Nauka: Moscow, 1984, 30~58 (in Russian).
    Fedonkin M A. Precambrian metazoans: the problems of preservation, systematics and evolution. Philosophical Transactions of the Royal Society of London, 1985a, 311: 27~45.
    Fedonkin M A. Paleochronology of the Vedian Metazon. In: Sokolov BS and Ivanovskiy AB (eds.), The Vendian System, vol. 1, Paleontology. Moscow: Nauka, 1985b, 112~117 (in Russian).
    Fedonkin, M.A., Systematic description of Vendian Metazoa. In: Sokolov, B.S., and Ivanovskij, A.B., (eds.), Vendskaya Sistema, Vol. 1, Paleontology. Moscow: Nauka, 1985c, 70-106 (in Russian).
    Fedonkin M A. Systematic description of Vendian Metazoa. In: Sokolov BS and Ivanovskik AB (eds)., The Vendian System.Vol.1. Paleontology. Berlin: Springer-Verlag, 1990a, 71~120.
    Fedonkin M A. Precambrian Metazoans. In: Briggs DEG and Crowther PR (eds.), Palaeobiology, A Synthesis. Oxford: Blackwell Scientific Publications, 1990b, 17~24.
    Fedokin M A. Runnegar B N. Proterozoic metazoan trace fossils. In: Schopf J W and Klein C (eds.), The Proterozoic Biosphere, A Multidisciplinary Study. London: Cambridge University Press, 1992, 389~395
    Fedonkin M A. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 2003, 7: 9~41.
    Ford T D, Breed W J. The proble-matical Precambrian fossil Chuaria. Palaeontology, 1973, 16: 535~550.
    Gammon P R, McKirdy D M, Smith H D. The timing and environment of tepee formation in a Marinoan cap carbonate. Sedimentary Geology, 2005, 177: 195~208.
    Garrels R M. A model for the deposition of the microbanded Precambrian iron formantions. American Journal of Science, 1987, 287: 81~106.
    Gehling J G. The case for Ediacaran fossil roots to the metazoan tree. Memoirs of the Geological Society of India, 1991, 20: 181~223.
    Germs G J B. Possible new sprigginid worm and a new trace fossil from the Nama Group, South West Africa. Geology, 1973, 1: 69~70.
    Gibson G G, Teeter S A, Fedonkin M A. Ediacaran fossils from the Carolina slate belt, Stanly County, North Carolina. Geology, 1984, 12: 387~390.
    Glaessner M F. Precambrian Colelenterata from Australia, Africa and England. Nature, 1959a, 183: 1472~1473.
    Glaessner M F. The oldest fossil faunas of South Australia. Geologische Rundschau, 1959b, 47: 522-531.
    Glassner M F, Wade M. The Late Precambrian fossils from Ediacara, South Australis. Palaeontology, 1966, 9:599~628.
    Glaessner M F. Early Phanerozoic annelid worms and their geological and biological significance. Journal of the Geological Society, 1976, 132: 259~275.
    Glaessner M F. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa, 1979a, 3: 21~31.
    Glassner M F. Treatise on Invertebrate Paleontology, Part A, Interoduction, Geological Society of America. University of Kansas Press, Lawrence, 1979b, A79~A118.
    Glaessner M F. The dawn of animal life: a biohistorical study. Cambridge: Cambridge University Press, 1984, 43~105.
    Goldberg T, Steruss H, Guo Q-J, et al. Late Neoproterozoic to Early Cambrian sulphur cycle– An isotopic
    investigation of sedimentary rocks from the Yangtze platform. Progress in Natural Science, 2003, 13(12): 946~950.
    Gong Yiming. Behavioral diversity and complexity indicated by metazoan traces at a topological level since Proterozoic. Journal of China University of Geoscience, 2000, 11(3): 312~318
    Grey K, Williams I R. Problematic bedding-plane markings from the Middle Proterozoic Manganese Subgroup, Bangemall Basin, Western Australia. Precambrian Research, 1990, 46: 307~327.
    Harland W B, Rudwick M J S. The Great infra-Cambrian ice age. Science America, 1964, 211: 28~36.
    Hoffman P F. The beak-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. Journal of African Earth Science, 1998, 28: 17~33.
    Hoffman P F, Kaufman A J, Halverson G P. Comings and goings of global glaciation on a Neoproterozoic tropical platform in Namibia. GSA Today, 1998a, 8: 1~9.
    Hoffman P F, Kaufman A J, Halerson G P, et al. A Neoproterozoic snowball earth. Science, 1998b, 281: 1342~1346.
    Hofmann H J. Precambrian fossils, pseudofossils and problematica in Canada. Geological Survey of Canada Bulletin, 1971, 189: 36~39.
    Hofmann H J. The problematic fossil Churaia from the Late Precambrian Uinta Mountain Group, Utah. Precambrian Research, 1977, 4: 1~11.
    Hofmann H J. The mid- Proterozoic Little Dal Macrobiota, Mackenzie Mountains, North-west Canada. Palaeontology, 1985, 28: 331~354.
    Hofmann H J. Proterozoic carbonaceous films. In: Schope J W and Klein C (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge: Cambridge University Press, 1992, 349~357.
    Hormann H J, Chen J. Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian NorthernChina. Can. J. Earth Sci., 1981, 18: 443~447.
    Hyde W T, Crowley T J, Baum S K, et al. Neoproterozoic“snowball Earth”simulations with a coupled climate/ ice-sheet model. Nature, 2000, 405: 425~429.
    Jenkins G S, Smith S R. GCM simulations of snowball Earth conditions during the later Proterozoic. Geophys Research letter, 1999, (26): 2263~2266.
    Jenkins R J F. The enigmatic Ediacaran (late Precambrian) genus Rangea and related forms. Paleobiology, 1985, 11: 336~355.
    Jenkins R J F. The supposed terminal Precambrian extinction events in reation to the Cnidaris. Memoir of the Association of Australian Paleontologists, 1989, 8: 307~317.
    Jenkins R J F. Functional and ecological aspects of Ediacaran assemblages. In: Lipps J H and Signor P W (eds.), Origin and Early Evolution of the Metazoa. New York: Plenum Press, 1992, 131~176.
    Kauffman E G, Steidtmann J R. Are these the oldest metazoan trace fossils? Journal of Paleontology, 1981, 55: 923~947.
    Kauffman E G, Steidtmann J R. Are the oldest metazoan trace fossils? Paleontology, 1982, 55: 49~59.
    Keller B M, Memmer V V, Stepanov V A, et al. New finds of fossils in the Precambrian Valday Series along the Syuzma River. Izverstia Akademii Nauk SSSR, Seriya Geologicheskaya, 1974, 12: 130~134 (in Russian).
    Kennedy M J, Christie B N, Sohl L E. Are proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals? Geology, 2001, 29: 443~446.
    Kirschvink J L. Late Proterozoic low-latitude global glaciation: the Snowball Earth. In: Schopf J W, Klein C (eds.), The Proterozoic Biosphere. Cambridge: Cambridge University Press, 1992, 51~52.
    Knoll A H, Calder S. Microbiotas of the Late Precambrian Ryss? Formation, Nordaustlandet, Svalbard. Palaeontology, 1983, 26: 467~496.
    Knoll A H. Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard. Palaeontology, 1992a, 35: 751~774.
    Knoll A H. The early evolution of Eukaryotes: A Geological perspective. Science, 1992b, 256: 622~627.
    Knoll A H,肖书海. On the age of the Doushantuo Formation.微体古生物学报, 1999, 16(3): 225~236.
    Li C W, Chen J Y, Hua T E. Precambrian sponges with cellular structures. Science, 1998, 279: 879~882.
    Li Z X. New paleomagnetic results from the‘cap dolomite’of the Neoproterozoic Walsh Tittite, northwestern Australia. Precambrian Research, 2000, 100: 359~370.
    Li Z X, Zhang L, Powell C McA. South China in Rodinia: Part of the missing link between Australia– East Antarctic and Lanrentia? Geology, 1995, 23: 407~410.
    Lin L, Zhu M, Knoll A H, et al. Doushantuo embryos preserved inside diapause egg cysts. Nature, 2007, 446: 661~663.
    Liu Baojun, Xu Xiaosong. Atlas of the lithofacies and palaeogeography of south China (Sinian-Triassic). Beijing: Science Press, 1994, 28~33.
    Mathur S M. A new collection of fossils from the Precambrian Vindhyan Supergroup of central India. Current Science, 1983, 52: 363~365.
    Mathur V K, Shanker R. First record of Ediacaran fossils from the Krol Formation of Naini Syncline. Jurnal of the Geological Society of India, 1989, 34: 245~254.
    McCall G J H. The Vendian (Ediacaran) in the geological record: Enigmas in geology’s prelude to the Cambrian explosion. Earth-Science Reviews, 2006, 77: 1~229.
    Meyen S V. Fundamentals of Palaeobotany. New York: Chapman and Hall, 1987, 61~66.
    Mohindra R, Bagati T N. Seismically induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya). Sedimentary Geology, 1996, 101: 69~83.
    Mutti E, Ricci F, Seguret M, et al. Seismoturbidites: a new group of resedimented deposits. Marine Geology, 1984, 55: 103~116.
    Narbonne G M, Hoffmann H J. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 1987, 30: 647~676.
    Noffke N, Gerdes G, Klenke T, et al. Microbially induced sedimentary structures– a new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 2001, 71: 649~656.
    Palij V M. On a new species of cyclomedusae from the Vendian of Podia. Paleontologicheskiy Sbornik Lvovskogo Universiteta, 1969, 6: 114~117.
    Palij V M, Posti E, Fedonkin M A. Soft-bodied Metazoa and animal trace fossils in the Vedian and early Cambrian. In: Menaer V V et al. (eds.), Upper Precambrian and Cambrian Palaeontology of the East-European Platform. Warszawa: Publishing House Wydawnictwa Geologiczne, 1983, 56~94.
    Parizot M, Eriksson P G, Aifa T, et al. Suspected microbial mat-related crack-like sedimentary structures in the Palaeoproterozoic Magaliesberg Formation sandstones, South Africa. Precambrian Research, 2005, 138: 274~296.
    Paul C R. Evolution of primitive echinoderms. In: Hallam A (ed.), Pattern of evolution, as illustrated by the fossil record, Elsevier, Amsterdam, 1977, 123~158.
    Pelüger F. Matground structures and redox facies. Palaos, 1999, 14: 25~39.
    Porter S M, Knoll A H, Affaton P. Chemostratigraphy of Neoproterozoic cap carbonates from the Volta basin, west Africa. Precambrian Reseach, 2004, 130: 99~111.
    Powell C McA, Li Z X, McElhinny M W, et al. Paleomagnetic constraints on the Neoproterozoic Breakup of Rodinia and the Mid-Cambrian Formation of Gondwana. Geology, 1993, 21: 889~892.
    Robison R A. Annelids from the Middle Cambrian Spence Shale of Utah. Journal of Paleontology. 1969, 43: 1169~1173.
    Runnegar B. Oxyen requirements, a biology and phylogenetic significance of the late Precambrian worm Dickinsonia and the evolution of the burrowing habit. Alcheringa, 1982, 6: 223-239.
    Runnegar B. Evolution of the earliest animals. In: Schopf J W (ed.), Major Events in the History of Life. Jones and Bartlett, Boston, MA, 1992, 65~93.
    Runnegar B. Loophole for snowball earth. Nature, 2000, 405: 403~404.
    Runnegar B, Fedonkin M A. Proterozoic metazoan body fossils. In: Schopf J W and Klein C (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. London: Cambridge University Press, 1992. 369~388.
    Schieber J. Microbial mats in terrigenous clastics: the challenge of identification in the rock record. Palaios, 1999, 14: 3~12.
    Schopf J W. The oldest fossils and what they mean. In: Schopf J W (ed.), Major Events in the History of Life. Boston: Jones and Bartlett, 1992, 29~63.
    Schopf J W. The oldest known records of life: Early Archeanstromatolites, microfossils, and organic matter. In: Bengtson S (ed.), Early life on Earth. New York: Columba University Press, 1994, 193~206.
    Schopf J W, Packer B. Early Archean (3.3-billion-3.5-billion-year-old) microfossils from the Warrawoona Group, Australia. Science, 1987, 237: 70~73.
    Seilacher A. Fault-graded bed interpreted as seismites. Sedimentology, 1969, 13(1-2): 155~159.
    Seilacher A. Sedimentary structures tentatively attributed to seismic events. Marine Geology, 1984, 55(1-2): 1~12.
    Seilacher A. Discussion of Precambrian Metazoa. Philosophical Transaction of the Royal Society, London, 1985, A311: 47~48.
    Seilacher A. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia, 1989, 22: 229~239.
    Seilacher A. Vendobontia and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, 1992, 149: 607~613.
    Seilacher A. Biomat-related lifestyles in the Precambrian. Palaios, 1999, 14: 86~93.
    Seilacher A, Bose P K, Pflüger F. Animals more than 1 billion years ago: trace fossil evidence from India. Science, 1998, 282: 80~83
    Shen Y. C-isotope variations and palaeoceanographic changes during the Late Neoproterozoic on the Yangtze Platform, China. Precambrian Research, 2002, 113: 121~133.
    Shinn E A, Lloyd R M, Ginsburg R N. Anatomy of a modern carbonate tidal flat, Andros Islands, Babamas. Journal of Sedimentary Petrology, 1969, 39: 1202~1228.
    Spalleta C, Vai G B. Upper Devonian intraclast parabreccias interpreted as siesmites. Marine Geology, 1984, 55(1-2): 133~144.
    Sprigg R C. Early Cambrian (?) jellyfish from the Flinders Ranges, South Australia. Transctions of the Royal Society of South Australia, 1947, 71: 212~223.
    Steiner M. Die neoproterozoishen Megaalgen Sudchinas. Berliner Geowissrnschaftliche Abhandlungen, 1994, 15(E): 1~146 (in German).
    Steiner M, Erdtmann B-D, Chen J. Preliminary assessment of new Late Sinian (Late Proterozoic) large siphonous and filamentous“megaalgae”from eastern Wulingshan, north-central Hunan, China. Berliner Geowissenschaftliche Abhandlungen, 1992, 3(E): 305~319.
    Summons R E, Powell T G, Boreham C J. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia. III Composition of extractable hydrocarbons. Geochimica et Cosmochimica Acta, 1988, 52: 1747~1763.
    Sun W G. Precambrian medusoids: the Cyclomedusa piexus and Cyclomedusa like pseudofossils. Precambrian Research, 1986, 31: 325~360.
    Sun W G. Palaeontology and biostratigraphy of Late Precambrian macroscopic colonial algae: Chuaria Walcott and Tawuia Hofmann. Palaeontographica Abt. B, 1987, 203: 109~134.
    Sun W G, Wang G X, Zhou B H. Macroscopic worm-like body fossils from the upper Precambrian (900-700Ma), Huainan district, Anhui, China and their stratigraphic and evolutionary significance. Precambrian Research, 1986, 31: 377~403.
    Suresh R, Sundara R T P. Problematic Chuaria, from the Bhima Basin, South India. Precambrian Research, 1983, 31: 78~85.
    Tang F, Yin C Y, Bengtson S, et al., A new discovery of macaroscopic fossils from the Ediacaran Doushantuo Formation in the Yangtze Gorges area. Chinese Science Bulletin, 2006, 51(12): 1487~1493.
    Tang F, Yin C Y, Bengtson S, et al., Octoradiate spiral organisms in the Ediacaran of South China. Acta Geologica Sinica, 2008, 82(1): 27-34.
    Trendall A F, Blockey J G. The iron formations of the Precambrian Hamersley Group, Western Australia. Geological Survey of Western Australia Bulletin, 1970, 119: 1~366.
    Vidal G. Late Precambrian microfossils from the basal sandstone unit of the Visingso Beds, South Sweden. Geologica et Palaeontologica, 1974, 8: 1~14.
    Wade M. Bilateral Precambrian chondrophores from the Ediacara fauna, South Australia. Proceedings of theRoyal Society of Victoria, 1971, 84: 183~188.
    Wade M. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology, 1972, 15: 197~225.
    Walcott C D. Precambrian fossiliferous formations. Bulletin of the Geological Society of America, 1899, 10: 199~244.
    Walcott C D. Middle Cambrian annelids. Amithsonian Miscellaneous Collections, 1911, 57: 109~144.
    Walter C D, Du R, Horodyski R J. Coiled carbonaceous megafossils from the middle Proterozoic of Jixian (Tianjin) and Montana. American Journal of Science, 1990, 290-A: 133~148
    Walter M R, Oehler J H, Oehler D Z. Megascopic algae 1300 million years old from the Belt Supergroup, Montana: a reinterpretation of Walcott’s Helminthidichnites. Journal of Paleontology, 1976, 50(5): 872~881
    Wang Yue, Wang Xunlian. Annelid from the Neoproterozoic Doushantuo Formation in the Northeast Guizhou, China. Acta Geologica Sinica, 2008a, 82(2), 257~265.
    Wang Yue, Wang Xunlian. Macroalgal holdfasts and their interaction with environments from the Neopreoterozoic Doushantuo Formation in Guizhou, South China. Frontiers of Biology in China, 2008b, 3(1): 113~122.
    Wang Yue, Wang Xunlian, Shi Xiaoying. Pioneer organisms after F-F mass extinction in Dushan region, Guizhou Province, and their significance in establishing new ecosystem. Science in China: series D Earth Sciences, 2006, 49(5): 449~460.
    Wang Yue, Wang Xunlian, Huang Yuming. Megascopic Symmetrical Metazoans from the Ediacaran Doushantuo Formation in the Northeastren Guizhou, South China. Journal of China University of Geosciences, 2008, 19(3): 200~206.
    Wray G, Levinton J S, Shapiro L H. Molecular evidence of deep Precambrian divergences among the metazoan phyla. Science, 1996, 274: 568~573.
    Xiao S H, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998a, 391: 553~558.
    Xiao S, Knoll A H, Yuan X. Morphological reconstruction of Miaohephyton bifurcatum, a possible brown alga from the Doushantuo Formation (Neoproterozic), South China, and its implications for stramenopile evolution. Journal of Paleontology, 1998b, 72: 1072~1086.
    Xiao S, Knoll A H. Fossil preservation in the Neoproterozoic Doushantuo Phosporite Lagerstatte, South China. Lethaia, 1999, 32: 219~240.
    Xiao S, Knoll A H. Phosphatized animal embryos fro the Neoproterozoic Doushantuo Formation at Weng’an,Guizhou, South China. Journal of Paleontology, 2000, 74: 767~788.
    Xiao S, Yuan X, Steiner M, et al. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, South china. Journal of Paleontology, 2002, 76: 347~376.
    Xiao S H, Hagadorn J W, Zhou C M, et al. Rare helical spheroidal fossils from the Doushantuo Lagerst?tte: Ediacaran animal embryos come of age? Geology, 2007, 35: 115-118.
    Yang J D, Sun W G, Wang Z Z, et al. Variations in Sr and C isotopes and Ce anomalies in successions from China: Evidence oxygenation of Neoproterozoic seawater? Precambrian Research, 1999, 93: 215~233.
    Yang Ruidong, Mao Jiaren, Zhao Yuanlong. New macroalgal fossils from Middle Cambrian Kaili Biota in Guizhou Province, China. Acta Botanica Sinica, 2001, 43(7): 742~749.
    Yin C Y, Tang F, Liu Y Q, et al. U-Pb zircon age from the base of the Ediararan Doushantuo Formation in the Yangtze Gorges, South China: constraint on the age of Marinoan glaciation. Episodes, 2005, 28: 48~49.
    Yin L, Sun W. Microbiota from the Neoproterozoic Liulaobei Formation in Huainan region, northern Anhui, China. Precambrian Research, 1994, 65: 95~114.
    Yuan X, Hofmann H J. New microfossils from Neoproterozoic (Sinian) Doushantuo Formation, Wengan, Guizhou Province, southwestern China. Alcheringa, 1998, 22: 189~222.
    Yuan X, Li J, Cao R. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia, 1999, 32: 143~155.
    Yuan X, Xiao S, Li J, et al. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian formation in Anhui, South China. Precambrian Research, 2001, 107: 253~363
    Zhang S, Jiang G, Zhang J et al. U-Pb senstitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Contraints on late Neoproterozoic glaciations. Geology, 2005, 33(6): 473~476
    Zhang Y. Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China. Lethaia, 1989, 22: 113~132.
    Zhang Y, Yuan X. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South Chian. Lethaia, 1992, 25: 1~18.
    Zhang Y. Histological study on the Neoproterozoic organism’s fossil remains: Implications for origin of multficellularity and sexuality. In: Wang H et al. (eds), Proceedings of 30th International Geological Congress, 1997, 1: 187~199.
    Zhao Y L, Chen M E, Peng J, et al. Discovery of a Miaohe-type Biota from the Neoproterozoic Doushantuo Formation in Jiangkou County, Guizhou Province, China. Chinese Science Bulletin, 2004, 49: 2224-2226.
    Zhou C M, Tucker R, Xiao S X, et al. New constraints on the ages of Neoproterozoic glaciation in SouthChina. Geology, 2004, 32: 437~440.
    Zhu M Y, Zhao Y L, Chen J Y. Revision of the Cambrian discoidal animals Stellostomites eumorphus and Pararotadiscus guizhouensis from South China. Geobios, 2002, 35: 165~185.
    Zhu Maoyan, Zhang Junming, Stener M, et al. Sinian and early Cambrian stratigraphic frameworks from shallow- to deep-water facies of the Yangtze Platform: an itegrated approach. Progress in Natural Science, 2003, 13(12): 951~960.
    Zhu M, Gehling J G, Xiao S, et al. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 2008, 36: 867-870.
    Zhu S, Chen H. Megascopic multicellular Organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian Area, North China. Science, 1995, 270: 620~622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700