可可西里地区中新世湖相叠层石特征及其古环境意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可可西里盆地中新世发育一系列古湖泊,而高原内陆湖泊沉积易受气候波动的影响,具有典型明暗叠置纹层的叠层石有效地记录了气候振荡信息,对湖相叠层石的研究意义重大。
     本文以沉积学、地层学及古生物学相关理论为指导,针对可可西里盆地中新统五道梁组湖相叠层石岩石学、微生物学特征,运用野外和室内、宏观与微观相结合的方法,以常规显微薄片、扫描电镜观察为基础,结合常量/微量元素、稳定C、O同位素等地化资料,详细描述叠层石宏观、微观结构特征,深入研究叠层石发育期沉积环境特征,并获得可可西里地区高分辨率的气候信息。这对丰富叠层石成因理论和探讨青藏高原隆升都有一定的意义。
     首先利用野外分层描述、室内显微薄片及扫描电镜观察,对可可西里地区1口含叠层石的钻探全取芯井剖面和4条前人实测露头剖面岩石学特征进行详细分析,尤其是各剖面中叠层石灰岩的出露特征;总结了可可西里地区中新世五道梁组主要岩性类型有泥灰岩、泥晶灰岩、叠层石灰岩、颗粒灰岩和膏溶角砾岩。盆地南北向分布的剖面对比显示中新世地层分布厚度极不均匀,呈北厚南薄的横面展布,底部与下伏渐新世雅西措组常呈微角度或平行不整合接触,顶部被剥蚀。
     其次运用宏观与微观相结合对叠层石进行观察,发现叠层石类型极其丰富,有波状、菜花状、椭球状、锥状、球状、柱状以及它们的组合形态,归纳起来主要有以下4种类型:穹隆状叠层石、丘状叠层石、柱状叠层石和层状(波状)叠层石;叠层石明暗纹层保存完整,形态上主要有层带状、波状和柱状,纵剖面上常组合出现;叠置纹层中富屑层有明显的颗粒结构,颗粒类型主要有内碎屑、球粒及少量陆源碎屑;富藻纹层为致密状的高有机质泥晶方解石构成,表现为泥晶结构。根据叠层石结构的差异性,按成因不同,将叠层石划分为骨架叠层石、凝集叠层石和细粒叠层石三种类型。
     再次,详细观察钻探取芯发现剖面纵向上可分辨出三个叠层石发育期,自下而上对应厚度分别为72-103m、22-37m和9-13m,且每个阶段对应环境皆主要为浅湖,仅仅第二次早期沉积为滨湖环境。第一次叠层石形成于构造环境稳定,造叠微生物生活于水下45cm水位至近水表层活动,并以较均一的沉积速率形成纹层;第二次叠层石形成于浅湖环境的极浅水区,且可能周期性的暴露更有利于该类叠层石的出现;第三次叠层石中同沉积的粉砂级陆源碎屑偏多,推测离湖岸更近,更趋于滨湖环境。
     此外,利用微量元素、常量元素,C、O同位素测试,对叠层石样品地球化学特征分析表明:Sr/Ba值从1左右至2.5以上,叠层石湖泊水体盐度可能处于微咸水-咸水条件;Ca/Mg比都在50以上,生物作用干预强烈,浮游生物大量繁殖促使碳酸钙沉淀;Fe/Mn比相对其他岩性较高,Fe~(2+)含量偏高,叠层石发育区水体较浅,还原性更强;叠层石纹层C、O同位素值表现趋同,富藻层和富屑层δ(13)~C值皆为正值,δ(18)~O值为负,富藻纹层的同位素值又明显高于富屑层。碳氧同位素值表明藻纹层形成于蒸发量高、湖泊咸化的冬半年干旱期,而较为湿润的夏半年因风暴频发带来大量的陆源碎屑形成富屑层。在此基础上,构建了叠层石纹层生长模式图及本区叠层石横向展布图。
     最后,联系可可西里地区早中新世干旱的气候背景,分析叠层石沉积期气候曾持续湿润,湖泊降雨量远大于蒸发量,且形成“五道梁古大湖”。推测可可西里地区中新世早-中期海拔高度已超过了2000m,并已超过影响行星风系的临界值,阻挡了来自海洋湿润气流进入内陆,导致气候变干。而叠层石沉积期湖泊气候相对湿润,可能是区域性气候循环的结果。
There were a series of Miocene lakes in the Hoh Xil Basin, while lacustrine sediments in the plateau were vulnerable to climate fluctuation. The paleoclimatic informations were recorded effectively in the typical light and shade folds of the Miocene stromatolites. Thus the study of the lacustrine stromatolite layers is of great significance.
     Based on sedimentological, stratigraphical, palaeontological analysis and related theories, the macroscopic and microcosmic structural characteristics and sedimentary environment of stromatolites were deeply researched. Combining outdoor and indoor, macro and micro investigation, in turn according to the petrological, microbiological characters of Miocene lacustrine stromatolites of Wudaoliang Group in Hoh Xil Basin , high resolution climatic informations in research area were obtained. Thin-section observation, scanning electron microscopy (SEM), major elements/trace element analyses, table C/O isotopeand,etc. were used to study the genetic theory of stromatolites and to discuss the uplift of Qinghai-tibet Plateau.
     Firstly, the petrological features of a major drilling-coring profile and four minor profiles previous measured in Hoh Xil Basin were described in detail according to field strata description, thin-section observation and SEM. The outcrops of stromatolites were especially paid attention. The main lithological types with muddy limestone, micritic limestone, stromatolites, grainstone limestone and anointed dissolve breccia in Wudaoliang Group were also summarized. The comparison of south-north strata showed the strata thickness was extremely uneven. There was a higher thickness in the north and a thinner one in the south. The bottom of Wudaoling Group overlied on the Oligocene Yaxicuo Group with a tiny angles or parallel unconformity, which indicated that the toppest layers of Yaxicuo Group was eroded to a certain degree.
     Secondly, combining the macro and micro structural characteristics, it was found that the stromatolite types were extremely abundant, including wave shape, cauliflower shape, directed asphere shape, cone shape, granlar columnar shape as well as their combination form. While the major three types were seen as vault shape stromatolite, dome shape stromatolite and layer (wavy) stromatolite. The stromatolite layers were well-preserved and were mainly trip-shaped, ripple-shaped and column-shaped. Their combination form were commonly showed in the longitudinal profile. The grains were mainly intraclast, spherulite and a few terrigenous elastic minerals in the grain-rich layers (light layers) , while the algae-rich layers were made of high content of organic matters, displaying micrite structure. The stromatolites in Wudaoliang area might be classified as skeleton, agglutinated and fine grained stromatolites which also implied different genesis.
     Thirdly, based on detailed observation of the drilling core, three zones of stromatolite could be found. Upwards, the corresponding depth of the stromatolites were respectively 72-103m, 22-37m and 9-13m, and the sedimentary facies of each stromatolitelayer was mainly shallow lake or lake shoreline. The first layer of the stromatolites was developed in a stable tectonic setting, and the microbes which made stromatolites lived underwater 45cm to nearly water surface. The stromatolites of second layer grew in the extremely shallow lake and were likely to appear in periodically shallow waters. While there were more terrigenous minerals in the third layer of stromatolites, which was speculated that it developed in the shoreline lake area closer to shore.
     In addition, accorrding to the geochemical analyses including the major elements/trace element,C/O isotope of stromatolites sample, the following character s were showed: the Sr/Ba ratios ranged from 1 to above 2.5 and stromatolites maybe grew in the brackish water– salt water. The Ca/Mg ratios could reach above 50 due to strong biological action and thriving plankton urge carbonate precipitation, while if the Fe/Mn ratio and Fe~(2+) were higher, the stromatolites developed in the shallow water and reducibility was stronger. The C isotope values of the stromatolites had similar characters to the O isotope values. And theδ(13)~C values of grain-rich and algae-rich layers were positive, but theδ(18)~O were negative. Generally, the values of grain-rich layers were higher than the algae-rich layers. These values of C and O isotope indicated that algae-rich layer was developed in drouthy winter of strong evaporation and high salinity. In relatively wetter summer, algae-rich layer was formed due to the storms which brought a lot of terrestrial detritus. Based on the above research, the mode chart about stromatolite layer was built.
     Finally, it was concluded that the climate background was generally of drought during the early Miocene interval in the Hoh Xil region, while it was moist vs each period of stromatolite deposited. The rainfall far exceeded the evaporation so as to a "Wudaoliang Ancient Great Lake" formed. The altitude of Hoh Xil region might have exceeded 2000m in early-middle Miocene. Thus the higher altitude influenced the planetary system of winds, which in turn prevented the moist air into the inland from the ocean and caused the dry climate. But it was relative wet when stromatolite deposited, possibly resulted form the regional climatic circulate.
引文
[1] Arp G,Reimer A,Reitner J.Photo synthesis-induced biofilm calcification and calcium concent rations in phanerozoic oceans[J].Science,2001,292:1701-1704.
    [2] Andreds Lueke等.A Lateglaeial and Holoeene organic carbon isotope record of lacustrine PalaeoProduetivity and climate change derived from varved lake sediments of Lake Holzmaar[J]. Germany.Quaternary science Reviews,2003,22:569—580.
    [3] Arenas C,Casanova J,Pardo G.Stable-isotope characteriza-tion of the Miocene lacustrine systems of Los Monegros(Ebro Basin,Spain):Paleogeographic and paleoclimatic implications[J].Palaeogeography , Palaeoclimatology ,Palaeoecology,1997,128:133-155.
    [4] Awramik S M.Ancient stromatolites and microbial mats ,in Cohen Y,等eds Microbial mats:Stromtolites :New York[J].Liss,1984,1-22.
    [5] Buick R,Dunlop J S R,Goves D I.Stromatolite recognitionin ancient rocks:an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole[J].Western Australia,Alcheringa,1981,5:161-181.
    [6] Burne R V,M oore I S.Microbiolites:organosedimentary deposites of benthic microbial communities[J].Palaios,1987,2(3):241—254.
    [7] Casanova J,Hillaire-Marcel C.Late Holocene hydrological history of Lake Tanganyika , East Africa , from isotopic data on fossil stromatolites[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1992,91:35-48.
    [8] Clift P D,Hodges K V,Heslop D,等.Correlation of Himalayan exhumation rates and Asian monsoon intensity[J].Nature Geoscience,2008,1:875-880.
    [9] Coleman M,Hodges K.Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J].Nature,1995,374:49-52.
    [10] Coward W P,Kidd W S F,潘耘,等.拉萨至格尔木的构造.见:中英青藏高原综合地质考察队.青藏高原地质演化[M].北京:科学出版社,1990:321-347.
    [11] Davies G R.Algal laminated sediments,Gladstone embayment,Shark Bay,Western Australia[J]. Mem.Am.Ass.Petrol.Geo.,1970,13:169-205.
    [12] Davison W.Iron and manganese in lake[J].Earth Science eview,1993,34:119-163
    [13] Donaldson J A.Paleoecology of Conophyton and associated stromatolites in the Precambrian Dismal Lakes and Rae Groups,Canada[M]//Walter M R,ed.Stromatolites Developments in Sedimentology,20. Amsterdam:Elsevier,1970:523-534.
    [14] Drummond C N,Patterson W P,Walker J C G.Climatic forcing of carbon-oxygen istopic covariance in temperate-regionmarl lakes[J].Geology,1995,113:517-533.
    [15] Dupont N G,Hoorn C,Konert M.Tibetan uplift prior to the Eocene-Oligocene climate transition:Evidence from pollen analysis of the Xining Basin[J].Geology,2008,36:987-990
    [16] Dupont N G,Krijgsman W,Langereis C G,等.Tibetan plateau aridification linkedto global cooling at the Eocene-Oligocene transition[J].Nature , 2007 ,445:635-638.
    [17] Ehrlieh H L.Geomicrobiology:its significance for geology[J].Earth-Sci.Rev. 1998,45:45-60.
    [18] Flugel E and Kiessling W.A new look atancient reefs[M].in:Kiessing W,Flifgel E and Golonka J.eds.Phanerozoic Reef Pattems.Soc,Econ.Paleon.Min.Special Publication,2002,72:1-50.
    [19] Garzione C N.Surface uplift of Tibet and Cenozoic global cooling[J].Geology,2008,36:1003-1004.
    [20] Ginsburg R N. Controversies about stromatolitesvice and virtues[M],In:Muller D W,Mc Kenzie J A,Weissert H,eds,Controversies in Modern geology,London:Academic Press,1991,25-36.
    [21] Golubic S.The relationship between blue-gree algae and carbonate deposits[M]//Carr N G,Whitton B A,ed.The biology of blue-gree algae,Chapter21.1973,Blackwell Scientific Publications:434-472.
    [22] Grotzinger J P.Facies and evolution of Precambiran carbonate depostional system:emergence of the modern platform archetype[J]//Crevello P,Read J F,Sarg R,Wison J,eds,Controls on carbonate platform and basin development.SEPM Special Publication,1989,44:79-106.
    [23] Harris N.The elevation history of the Tibetan Plateau and its implications for the Asian monsoon[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2006,241:4-15.
    [24] Harrison T M,Copeland P,Kidd W S F,等. Activation of the Nyainquentanghla shear zone:Implications for uplift of the southern Tibetan plateau[J]. Tectonics,1995,14:658-676.
    [25] Hofmann H J.Attributes of stromatolites[J].Geol.Surv.Can.,1969,68-39,43pp.
    [26] Hufmann H J.Precambrian microflora,Belcher Islands,Canada:Significance and systematics[J].J.Paleontol.,1976,50:1040-1073.
    [27] Jones B F,Bowers C J.Mineralogy and linked chemistryof lake sediments[M]∥LERNMAN A.Lake:chemistry ge-ology physics.New York:Springer-Verlag,1978.
    [28] Jones C.Periodicities in stromatolote lamination from early Protero-zoic Hearen Formation,Green Slave Lake,Canada[J].Palaeoatology,1981,24:231-250.
    [29] Keith M L,Weber J N.Carbon and oxygen isotopic composition of selected limestones and fossils:Geochimica et Cosmochimica Acta,1964,v.28,p.1787-1816.
    [30] Kelts K. , Talbot M.Lacustrine carbonates as geochemical archives of environmental change and bioic/abiotic interactions.In:Tilzer M and Serruya.C.(eds).Ecological Structure and Function in Large Lakes[J].Berlin:Springer-Verlag.1990,288-315.
    [31] Krylow I N.Columnar branching stromatolites of Riphean beds of the southern Uals and their significance for the stratigrahy of the Upper Precambrian[J].Akad.Nauk.SSSR.Geol.Inst.,Tr.1963,69:133pp.
    [32] Laval B,Cady S L,Pollock J C,et a1.Modern freshwater microbialite analogues for ancient dendritic reef struclu[J].Nature,2000,407:626-629
    [33] Lawrence J R,Korber D R,Hoyle B D,et a1.Optical sectioning of microbial biofilm[J].J.Bacterio1,1991,173:6558-6567.
    [34] Liu Z,Wang C,ZhaoX,等.Oligo-Miocene evolution of the Tuotuohe Basin(headwaters of theYangtzeRiver)and its significance for the uplifthistory of the centralTibetan Plateau.Abstracts of the 19th Himalaya-Karakoram-TibetWorkshop,2004,Niseko,Japan.Hima-layan Journal.
    [35] Logan B W,Regak R,Ginsburg R N.Classification and environmental significance of algal stromatolites[J].J.Geol.,1964,72:68-83.
    [36] Lowe D R.Restricted shallow-water sedimentation of early Archean stromatolite and evaporitic strata of the Strelley pool Chert ,Pilbara Block,Western Australia[J].Precambrian Research,1983,19:239-283.
    [37] Lowe D R.Stromatolites 3 , 400-Myr old from the Archean of Western Australia[J].Nature,1980,284:441-443.
    [38] Lowe D R.Abiological origin of described stromatolites older than 3.2 Ga[J].Geology,1994,22:387- 390.
    [39] Miall A.Lithofacies types and verticalprofilemodels in braided river deposits:a summary[J].In:MiallA D.Fluvial Sedimentology.CanSoc PetroGeolMem 5,1978.597-604.
    [40] Miall A.Principles of sedimentary basin analysis.New York:Springer-Verlag,1984.1-668.
    [41] Molnar P,England P,Martinod J.Mantle dynamics,uplift of the Tibetan Plateau,and the Indian monsoon[J]. Reviews of Geophysics,1993,31(4):357-396.
    [42] Molnar P.Mio-Pliocene growth of the Tibetan Plateau and e-volution of East Asian climate[J]. Palaeontologia Electroni-ca,2005,8:1-23.
    [43] Monty C L V.Evolving concepts on the nature and the eco—logical significance of stromatolites . In:Flugel E(ed . ) , Fossil Algae , Recent Results and Developments[J].H eidelberg:Springer Verlag. 1977,15-35.
    [44] Monty C L V.The origin and development of cryptalgal fabrics[C]//Walter M R.Stromatolites,Developments in Sedimentology.Amsterdam:Elsevier Scientific Publ.Co.,1976,20:193-249.
    [45] Morten Stage.Magnetie suseePtibility as carrier of a climatic sigal in chalk[J].Earth and Planetary Science Letters,2001,188:17-27.
    [46] Perry C T.Biofilm-related calcifcation,sediment trapping and constructive micrite enevelopes:a criterion of ancient grass-bed enviornmenst?[J].Sedimentology,1999,46:33-45.
    [47] Playford P E.Environmental controls on the morphology of modern stromatolites at Hamelin Pool,Western Australia[J].Geol,Surv.West Aust.Annu.Rep.,1980,1979:73-77.
    [48] Pratt B R.Stromatolitic framework of carbonate mud mounds[J].J.Sedim.Petrol.,1982,52:1203-1377.
    [49] Preiss W V. Intercontinenta1 Correlations.In:W alter M R(ed.),Stromatolites,Developments in Sedimentology:20.Amsterdam :Elsevier.1976,359-370.
    [50] Quade J,Cerling T,Bowman J.Development of Asian mon- soon revealed by marked ecological shift during the latest Mi-ocene in northern Pakistan[J].Nature,1989,342:163-166.
    [51] Reid R P,Visscher P T,Decho A W,等. The role of microbes in accretion,lamination and early lithification of modern marine stromatolites[J].Nature,2000b,406(6799):989-992.
    [52] Reid R P.MacintyreI G.Microboring versus recystallization:further insight into the micritization process[J].J.Sediment.Res.,20OOb,70:24-28.
    [53] Riding R. Skeletal stromatolites[M].Flugel E,ed. Fossil Algae,Recent Result and Developments. Heidelberg:Springer-Verlag,1977:57-60.
    [54] Riding R. Microbial carbonates:the geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology 47 Supplement 2000 ,1:179-214.
    [55]Riding R.Calcified cyanobacteria[M].Riding R , ed.Calcareous Algae and Stromatolites.Heidelberg:Springer-Verlag,1976:55-87.
    [56] Tapponnier P,Xu Zhiqin,Roger F,等.Oblique stepwise rise and growth of the Tibet plateau[J].Science,2001,294:1671-1677.
    [57] Thouvenyetal.Climate variation in EuroPe over the Past l40kyr dedused from rock magnetism[J],Nature,1994,371:503-506.
    [58] Turner S,Hawkesworth C,Liu J,等.Timing of Tibetan uplift constrained by analysis of volcanic rocks[J].Nature,1993,364:50-54.
    [59] Walcott C D.Cambrian geology and paleontologyⅢ:Precam—brian Algon analgal flora[J].Smithsonian M iscellaneous Collections,1914,67:77-156.
    [60] Walter M R.ed.Stromatolites , Developments in sedimentology[M].Amsterdam:Elsevier,1976:1-790.
    [61] Wang C,Liu Z,Yi H,等.Tertiary crustal shortening and peneplanation in the HohXil region:implications for the tectonic history of thenorthern Tibetan plateau[J].Journal of Asian Earth Sciences,2002,20:211-223.
    [62] Wang C,Zhao X,Liu Z,等.Constraints on the early uplift history of the Tibetan Plateau[J].PNAS,2008,105:4987-4992.
    [63] Woo K S,Khim B K,Yoon H S,等.Cretaceous lacustrine stromatolites in the Gyeongsang Basin(Korea):Records of cyclic change in paleohydrological condition[J].Geosciences Journal,2004,8(2):179-184.
    [64] Wu Z,Patrick J,Wu Z,等.Vast early Miocene lakes of the central Tibetan Plateau[J].GSA Bulletin;2008,120(9-10):1326-1337.
    [65] Yin A,Harrison T M,Reyerson FJ,等.Tertiary structural evolution of the Gangdese thrust system in Southern Tibet[J].Journal of Geophysical Research,1994,99(B9):18175-18201.
    [66]包庆.青藏高原气候动力学的数值模拟研究[D].北京:中国科学院研究生院,2007.
    [67]鲍惠铭.广西阳朔中泥盆统罗氏藻(ROTHPLETZELLA)叠层石[J].微体古生物学报,1992,9(4)397-407.
    [68]蔡雄飞,刘德民,魏启荣,等.古新世—中新世以来青藏高原北缘隆升的特征—来自可可西里盆地的报告[J].地质学报,2008,82(2):194-203.
    [69]曹仁关.云南东部寒武纪和志留纪叠层石[J].中国区域地质,1996,(1):27-31.
    [70]曹瑞骥,薛耀松.巴哈马现代叠层石的生物学及岩石学特征[J].地质学报,1985,3:203-212.
    [71]曹瑞骥,袁训来,肖树海.论锥叠层石群(Conophyton)的形态发生—对苏北新元古代九顶山组一个似锥叠层石的剖析[J].古生物学报,2001,40(3):318-329.
    [72]曹瑞骥,袁训来.中国叠层石研究进展[J].古生物学报,2009,48(3):314-321.
    [73]曹瑞骥,袁训来.叠层石[M].合肥:中国科学技术大学出版社,2006:59-70.
    [74]曹瑞骥.前寒武纪叠层石微构造的初步探讨.见:邱树玉,梁玉左,曹瑞骥,张录易编,晚前寒武纪叠层石及相关矿产[M].西安:西北大学出版社,1999:1-7.
    [75]曹瑞骥.新元古代奇异叠层石和凝块石中可疑的动物活动证据(英文)[J].古生物学报,1999,38(3):291-304.
    [76]陈根一,朱正杰,周兵.湖泊沉积物碳酸盐碳、氧同位素研究进展[J].四川地质学报,2010,30(1):75-78.
    [77]陈敬安,万国江.云南洱海沉积物粒度组成及其环境意义辨识[J].矿物学报,1999,19(2):175-182.
    [78]成都理工学院青藏可可西里石油地质调查队.青藏地区可可西里盆地区域石油地质调杳报告.1997,内部资料.
    [79]迟振卿,闵隆瑞,朱关祥.河北阳原东目连第四纪湖相叠层石[J].中国区域地质,2001,20(2):153-157.
    [80]杜韫华.山东第三纪藻礁.见:范嘉松主编,中国生物礁与油气[M].北京:海洋出版社,1996:275-293.
    [81]郭泽清,钟建华,刘卫红,等.柴西第三纪湖相生物礁储层特征及意义[J].沉积学报,2004,22(3):425-433
    [82]韩作振,陈吉涛,迟乃杰,等.微生物碳酸盐岩研究:回顾与展望[J].海洋地质与第四纪地质,2009,29(4):29-38.
    [83]何道清.碳酸盐岩碳、氧同位素分析激光微取样技术[J].西南石油学院学报,2003,25(1):12-15.
    [84]胡守云,王苏民.呼伦湖湖泊沉积物磁化律变化的环境磁学机制[J].中国科学(D辑),1998,28(4):334-339.
    [85]黄谨等.东太平洋锰结核中叠层石纹层韶律的研究[J].东海海洋.1999,17(3):32-38.
    [86]惠博,伊海生,时志强,等.青藏高原沱沱河盆地渐新世湖相叠层石:韵律纹层记录的古气候条件[J].地质通报,2010,29(1):62-69.
    [87]金玮.青藏高原腹地中新世陆相地层研究[M].成都:成都理工学院.2004.
    [88]李吉均,方小敏,潘保田.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,2001,21(5):381-391.
    [89]李吉均,文世宣,张青松,等.青藏高原隆升的时代、幅度和形式探讨[J].中国科学(B辑),1979,9(6):608-616.
    [90]李明慧,康世昌.青藏高原湖泊沉积物对古气候环境变化的响应[J].盐湖研究,2007,15(1):63-72.
    [91]李荣全,袁宝印.泥河湾地区更新世叠层石的发现[J].地质科学,1992,(1):97-99.
    [92]李玉成,徐永昌,黄宝玉.淡水软体动物壳质氧同位素组成与气候环境[J].沉积学报,1993,11(3):57-63.
    [93]梁玉左,朱士兴,高振家,等.叠层石研究的新进展—微生物岩[J].中国区域地质,1995,(1):57-65.
    [94]梁玉左,朱士兴.叠层石研究的新进展—微生物岩[J].中国区域地质,1995,1:57-65.
    [95]刘椿,刘东生,金增信,等.北京颐和园昆明湖近代沉积物的环境磁学初步研究及意义[J].科学通报,1994,39(21):989-991.
    [96]刘增乾,徐宪,王成善.青藏高原大地构造与形成演化[J].地质专报(构造地质,地质力学),第10号.北京:地质出版社,1990.
    [97]刘志飞,Lachlan K Stewart.图形显示和比较古水流数据的一种软件(PC99):以青藏高原北部可可西里盆地新生代古水流数据为例[J].沉积学报,2002,20(2):354-358.
    [98]刘志飞,王成善,金玮,等.青藏高原沱沱河盆地渐新—中新世沉积环境分析[J].沉积学报,2005,23(2):210-217.
    [99]刘志飞,王成善,金玮.可可西里盆地早渐新世雅西措群爬升沙纹层理及其沉积环境意义[J].沉积学报,2004,22(4):560-565.
    [100]刘志飞,王成善,伊海生,等.可可西里盆地新生代沉积演化历史重建[J].地质学报,2001,75(2):250-258.
    [101]刘志飞,王成善,伊海生,等.青藏高原北部可可西里盆地早新生代沉降史及其高原隆升意义[J].见:陈毓川.中国地质学会80周年学术文集.北京:地质出版社,2002,111-119.
    [102]刘志飞,王成善.可可西里盆地早渐新世雅西措群沉积环境分析及古气候意义[J].沉积学报,2000,18(3):355-361.
    [103]刘志飞,王成善.青藏高原北部可可西里盆地第三纪风火山群沉积环境分析[J].沉积学报,2001,19(1):28-36.
    [104]刘志飞.青藏高原腹地第三纪沉积与高原隆升的关系[D].成都:成都理工学院,1999,未出版.
    [105]闵隆瑞,迟振卿,朱关祥,等.阳原县泥河湾地层中的新发现[J].第四纪研究,1998,(2):183.
    [106]闵隆瑞,迟振卿,朱关祥,等.河北阳原东目连第四纪叠层石古环境分析[J].地质学报,2002,76(4):446-453.
    [107]牟保磊.元素地球化学[M].北京:北京大学出版社,1999:1-227.
    [108]潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,3:224-232.
    [109]潘裕生等.高原岩石圈结构、演化和动力学.见《青藏高原形成演化与发展)),广东科技出版社,1998:1-71.
    [110]钱迈平.中下扬子区海相三叠纪叠层石及其环境演变[J].古生物学报,1995,34(6):731-741.
    [111]孙瑕,伊海生.青藏高原沱沱河盆地中新统五道梁组沉积特征及古环境分析[J].古地理学报,2009,11(1):58-68.
    [112]孙岩,沈安江,徐洋,等.柴达木盆地跃进地区下于柴沟组上段藻丘灰岩储层特征[J].沉积学报,2002,20(1):6l-69.
    [113]田友萍,何复盛.川黔地区地表钙华中发现现代淡水叠层石及藻席[J].2000,46(3):549-555.
    [114]王成善,戴紧根,刘志飞,等.西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J].地学前缘(中国地质大学(北京);北京大学).2009,16(3):1-30.
    [115]王成善,朱利东,刘志飞.青藏高原北部盆地构造沉积演化与高原向北生长过程[J].地球科学进展,2004,19(3):373-381.
    [116]王十峰,伊海生.可可西里盆地第三纪五道梁组地层及沉积学研究[J].青海地质,1999,l:12-18.
    [117]王自强,全秋琦.宜昌峡东地区的现代叠层石[J].地质科学,1982,l7(4):403—406.
    [118]温志峰,钟建华,刘云田,等.柴达木盆地中新世叠层石沉积特征及其环境和构造意义[J].地质科学,2005a,40(4) :547-557
    [119]温志峰,钟建华,李勇,等.叠层石成因和形成条件的研究综述[J].高校地质学报,2004a,10(3):418-428.
    [120]温志峰,钟建华,李勇,等.柴达木盆地中新世叠层石成因与古环境研究[J].西北地质,2005b,28(2):40-48.
    [121]温志峰,钟建华,王冠民,等..柴达木盆地古近纪—新近纪湖相叠层石与藻礁的沉积组合特征与意义[J].地质学报,2004b,79(4):444-453.
    [122]吴珍汉,胡道功,吴中海,等.青藏高原中段活动断层及诱发地质灾害[M].北京:地质出版社,2005:1-385.
    [123]吴珍汉,吴中海,胡道功,等.青藏高原渐新世晚期隆升的地质证据[J].地质学报,2007a,81(5):577-587.
    [124]吴珍汉,吴中海,胡道功,等.青藏高原腹地中新世早期古大湖的特征及其构造意义[J].地质通报,2006a,25(7):782-791.
    [125]吴珍汉,吴中海,胡道功,等.青藏高原古大湖与夷平面的关系及高原面形成演化过程[J].现代地质,2009,23(6):993-1002.
    [126]吴珍汉,吴中海,叶培盛,等.青藏高原晚新生代孢粉组合与古环境演化[J].中国地质,2006b,33(5):966-979.
    [127]吴珍汉,赵逊,叶培盛,等.根据湖相沉积碳氧同位素估算青藏高原古海拔高度[J].地质学报,2007b,81(9):1277-1288.
    [128]西藏自治区地质矿产局.西藏自治区区域地质志[M].北京:地质出版社.1993.
    [129]夏正楷,韩军青.泥河湾盆地虎头梁湖相叠层石的生态环境分析[J].第四纪研究,1998,(4):344-350.
    [130]夏正楷,张昀,杨德军,陈铁梅,杨全,胡艳秋.泥河湾层中叠层石的发现及其古环境意义[J].中国科学(B),1993,23(8):874-879.
    [131]肖序常,李延栋等.喜马拉雅岩石圈构造演化总论[M].北京:地质出版社,1988,l-236.
    [132]阎同生,孙黎明,邸明慧,等.河北省头泉叠层石与古地理探讨[J].地理与地理信息科学.2006,22(4):108-111.
    [133]杨红梅.青藏高原通天河盆地中新世早期五道梁组沉积特征及高原隆升的关系[D].北京:中国地质大学.2009.
    [134]姚檀栋,刘晓东,王宁练,等.青藏高原地区的气候变化幅度问题[J].科学通报,2000,45(1):98-l06.
    [135]伊海生,Zhao Xixi,林金辉,等.藏北乌兰乌拉湖地区第三纪陆相红层古地磁研究的初步结果及地质意义[J].地球学报,2004,25(6):633-638.
    [136]伊海生,林金辉,王成善,等.藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常[J].成都理工学院学报,2002.29(5):473-480.
    [137]伊海生,林金辉,周恳恳,等.可可西里地区中新世湖相叠层石成因及其古气候意义[J].矿物岩石,2008(3):108-113.
    [138]伊海生,林金辉,周恳恳,等.青藏高原北部新生代湖相碳酸盐岩的碳氧同位素特征及古环境意义[J].古地理学报,2007,9(3):303-312.
    [139]伊海生,林金辉,周恳恳,等.藏北沱沱河盆地含油气性研究[M].成都:成都理工大学,2006.
    [140]伊海生,彭平安.藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常[J].成都理工学院学报,2002,29(5):473-480.
    [141]伊海生,时志强,惠博,等.湖相叠层石纹层的碳氧同位素特征及其生长节律的古环境意义[J].地学前缘,2009,16(6):168-176.
    [142]伊海生,时志强,朱印堂,等.利用泥质岩硼含量重建过去湖泊古盐度和湖面变化历史[J].湖泊科学,2009,21(1):79-85.
    [143]伊海生,张小青,朱迎堂.羌塘地区中部湖泊岩芯记录的第四纪湖面变化及气候意义[J].地学前缘,2006,13(5):300-307.
    [144]张以茀,郑健康.青海可可西里及邻区地质概况[M].北京:地质出版社.1994.
    [145]张以茀.青海可可西里地区地质演化[M].1996,北京:科学出版社.
    [146]张昀,Copper P.地球早期生物圈的形成于演化[M]//穆西南主编.古生物学研究的新理论新假说.北京:地质出版社.1993:161-180.
    [147]张昀.前寒武纪生命演化与化石记录[M].北京:北京大学出版社.1989:1-211.
    [148]赵震.叠层石.见:冯增昭主编,中国沉积学[M].北京:石油工业出版社,1994:3O2-3l5
    [149]周恳恳,伊海生,林金辉.可可西里盆地中新统五道梁群湖相碳酸盐岩岩石学特征与沉积环境分析[J].沉积与特提斯地质,2007(1):25-31.
    [150]周恳恳.青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[D].成都:成都理工大学沉积地质研究院,2007.
    [151]朱浩然.山东滨县下第三系沙河街组的藻类化石[J].古生物学报.1979,l8(4):327-344
    [152]朱立平,王君波,陈玲,等.藏南沉错湖泊沉积多指标揭示的2万年来环境变化[J].地理学报,2004,59(4):514-524.
    [153]朱士兴,张录易.中国叠层石[M].天津:天津大学出版社,1993:1-250.
    [154]谭富文,王剑,王小龙,等.西藏羌塘盆地—中国油气资源战略选区的首选日标[J].沉积与特提斯地质,2002,l:16-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700