坡缕石/聚丙烯酰胺杂化物的合成、性质与絮凝应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前无机-有机杂化物的研究重点主要集中于结构材料、电磁材料和膜材料,本文采用聚合物—粘土法合成了一种水溶性杂化物(絮凝剂)用于废水处理。
     对天然矿物坡缕石(palygorskite,PGS)进行酸活化,增加内表面积及活性。酸活化处理的坡缕石(APGS)与氯化乙醇胺(EAC1)反应得到氯化乙醇胺改性破缕石(APGS-EAC1),与高价铈盐Ce~(4+)组成氧化还原非均相引发体系,引发丙烯酰胺单体在坡缕石晶体的纳米孔道间聚合得到了坡缕石/聚丙烯酰胺(PGS/PAM)无机-有机杂化物。采用~1H-NMR,FTIR,粘度法和电导法对合成的杂化物进行了结构表征,结果表明杂化物中存在PGS~((?)⊕)NH_3R离子键合作用。实验考察了APGS-EAC1用量、聚合反应时间和单体浓度对杂化物特性粘数的影响,初步探讨了反应动力学。
     研究了PGS/PAM的水溶液性质。发现杂化物粘度行为具有聚电解质效应,并且受杂化物特性粘数、改性坡缕石的含量、外加盐(NaCl)浓度和溶液pH值等因素的影响。杂化物电导具有弱电解质的电离行为,电离度与杂化物特性粘数、改性坡缕石含量密切相关。考察了杂化物的SEC谱图与实验中的注射浓度的关系,在较低的注射浓度下呈现不光滑的多峰分布,暗示杂化物的分子可能包含星形结构。
     考察了改性坡缕石含量、杂化物特性粘数对其絮凝效果的影响,给出了杂化絮凝剂的絮凝模型。由PGS/PAM杂化絮凝剂分别处理高岭土和氧化铁红两种配制废水,发现杂化絮凝剂的絮凝效果明显优于纯PAM絮凝剂。将杂化絮凝剂用于处理实际废水,效果也非常明显。
Recently, inorganic-organic polymer hybrids have caught a great deal of attention from many researchers. The addition of inorganic materials, especially inorganic materials with nano-scale, to organic polymer endows these organic materials many unique physical and chemical properties. So inorganic-organic polymer hybrids have been utilized extensively in structural materials, electronic or optical materials, and membrane materials, but only a few efforts have been made on the syntheses of water-soluble polymers and few study has been made on solution properties of those. In this thesis, a water-soluble hybrid, palygorskite-polyacrylamide was synthesized by polymer-clay method, and this hybrid was used as flocculent in water-treatment.
    First, a natural mineral, palygorskite(PGS) was acid activated by HC1 solution, and then acid activated palygorskite (APGS) reacted with ethanolamine hydrochloride (EACl), and the modified palygorskite (APGS-EACl) was obtained. Acrylamide was initiated by heterogeneous redox initiator system, composed of reductive agent APGS-EACl together with oxidant Ce4+, and polymerization occurred in the inner surface of nano-scale tunnel of PGS crystal. The palygorskite/polyacrylamide (PGS/PAM) hybrid obtained was characterized by H-NMR, FTIR, viscosimetry and specific conductivity method. It can be interpreted in terms of ion bond structure (PGSeeNH3R) in PGS/PAM hybrid. The influence of dosage of APGS-EACl, polymerization time, and monomer concentration on the of the PGS/PAM hybrid was investigated, and it is also found that the of the hybrid increases with increasing reaction time differing from conventional free-radical polymerization.
    Dilute solution behavior of water-soluble PGS/PAM hybrid have been investigated by specific conductivity method, viscometry, and size exclusion chromatography (SEC). It was found that the polyelectrolyte behavior and specific conductivity of hybrids in deionized water at low concentration region depend strongly on its degree of ionization, which is firmly connected to the content of APGS-EACl and the intrinsic viscosity. The SEC chromatograms of PGS/PAM hybrid not only display the polyelectrolyte behavior but also reveal unregulated peak. All results indicate that PGS/PAM hybrid is a weak polyelectrolyte, i.e., an ionized hybrid, and probably a star-like ionized hybrid in which the PGS particle acts as a core and the chains of PAM act as arms, according to the SEC chromatograms.
    Flocculating effect of PGS/PAM hybrid was better than that of pure PAM for both 0.25wt% kaolin suspension and 0.5wt% hematite suspension, respectively. Finally, PGS/PAM hybrid flocculent was also applied in treating real waster water. A new flocculating model for PGS/PAM hybrid flocculent was proposed.
引文
1. Okada, A.; Usuld, A. The chemistry of polymer-clay hybrids, Mater. Sci. Eng. 1995, C3, 109-115.
    2. Kagan, C.; Mitzi, D.B.; Dimitrakopoulos, C.D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors, Science 1999, 286, 945-947.
    3. Novak, B.M. Hybrid nanocomposite materials-between inorganic glasses and organic polymers, Adv. Mater. 1993, 5, 422-433.
    4. Zoppi, R.A.; de Castro, C.R.; Yoshida, I.V.R; Nunes, S.P. Hybrids of SiO_2 and poly (amide6-b-ethylene oxide), Polymer 1997, 38, 5705-5712.
    5. Ogoshi, T.; Chujo, Y. Synthesis of organic-inorganic polymer hybrids by means of host-guest interaction utilizing cyclodextrin, Macromolecules 2003, 36, 654-660.
    6. Ogoshi, T.; Chujo, Y. Organic-inorganic polymer hybrids using polyoxazoline initiated by functionalized silsesquioxane, Macromolecules 2003, 36, 867-875.
    7. Kim, K.M.; Chujo, Y. Liquid-crystalline organic-inorganic hybrid polymers with functionalized silsesquioxanes J. Polym. Sci., PartA, Polym. Chem. 2001, 39(22), 4035-4043.
    8. Ma J.S.; Qi Z.N.; Hu Y.L. Synthesis and characterization of polypropylene/clay nanocomposites, J. Appl. Polym. Sci. 2001, 82(14), 3611-3617.
    9. Lee, S.S.; Kim, J. Preparation of the polymer-clay nanocomposites in exfoliated state by interface stabilization, J. Polym. Sci. PartB: Polym. Phys. 2004, 42(2), 246-252.
    10. Wei L.M.; Tang, T.; Huang, B.T. Synthesis and characterization of polyethylene/clay-silica nanocomposites: A montmorillonite/silica-hybrid-supported catalyst and in situ polymerization, J. Polym. Sci. PartB: Polym. Chem. 2004, 42(4), 941-949.
    11. Alan, D.W.; Havard J.P. Developments in ionoic polymers-2, Elsevier applied science publishers: London and New York, 1983, p78.
    12. Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposite: preparation, properties and uses of a new class of materials, Mater. Sci. Eng., R: Reports 2000, 28, 1-63.
    13. LeBaron, P.C.; Wang, Z.; Pinnavaia, T.J. Polymer-layered silicate nanocomposites: An overview, Appl. Clay Sci. 1999, 15, 11-29.
    14. Solomon, D.H.; Loft, B.C. Reactions catalyzed by minerals. PartⅢ. The mechanism of spontaneous interlamellar polymerizations in aluminosilicates, J. Appl. Polym. Sci. 1968, 12, 1253-1262.
    15. Pinnavaia, T.J. Intercalated clay catalysts, Science 1983, 220, 365-371.
    16. Jeon H.G.; Jung, H.T.; Lee, S.W.; Hudson, S.D. Morphology of polymer silicate nanocomposites. High density polyethylene mad a nitrile, Polym. Bull 1998, 41,107-113.
    
    
    17. Ogata, N.; Jimenez, G.; Kawai, H.; Ogihara, T. Structure and thermal/mechanical properties of poly(L-lactide)-clay blend, J. Polym. Sci.: Part B: Polym. Phys. 1997, 35, 389-396.
    18. Wu J.; Lerner, M.M. Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers, Chem. Mater. 1993, 5, 835-838.
    19. Lagaly, G. Introduction: from clay mineral polymer interactions to clay mineral polymer nanocomposites, Appl. Clay Sci. 1999, 15, 1-9.
    20. Eastman, M.P.; Bain, E.; Porter, T.L.; Manygoats, K.; Whitehorse, R.; Parnell, R.A.; Hagerman, M.E. The formation of poly(methyl-methacrylate) on transition metal-exchanged hectorite, Appl. Clay Sci. 1999, 15, 173-185.
    21. Fukushima, Y.; Okada, A.; Kawasumi, M.; Kurauchi, T.; Kamigaito, O. Swelling behavior of montmorillonite by poly-6-amide, Clay Miner. 1988, 23, 27-34.
    22. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Synthesis of nylon-6 clay hybrid, J. Mater. Res. 1993, 8, 1179-1183.
    23. Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Krauchi, T.; Kamigaito, O. Swelling behavior of montmorillonite cation exchanged for o-amino acid by e-caprolactam, J. Mater. Res. 1993, 8, 1174-1178.
    24. Vaia, R.A.; Giannelis, E.P. Lattice of polymer melt intercalation in organically-modified layered silicates, Macromolecules 1997, 30, 7990-7999.
    25. Vaia, R.A.; Jandt, K.D.; Kramer, E.J.; Giannelis, E.P. Kinetics of polymer melt intercalation, Macromolecules 1995, 28, 8080-8085.
    26. Carrado, K.A.; Xu, L.Q. In-situ synthesis of polymer—clay nanocomposites from silicate gels, Chem. Mater. 1998, 10, 1440-1445.
    27. Fernandez M.E.; Ascencio, J.A.; Mendoza-Anaya, D.; Rodriguez Lugo V.; Jose-Yacaman, M. Experimental and theoretical studies of palygorskite clays, J. Mater. Sci. 1999, 34, 5243-5255.
    28. Viseras, C.; Lopez-Galindo, A. Pharmaceutical applications of some spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies, Appl. Clay Sci. 1999, 14, 69-82.
    29. de Fuentes, I. E.; Viseras, C.A.; Ubiali, D.; Terreni, M.; Alcantara, A. R. Different phyllosilicates as supports for lipase immobilization, J. Mol. Catal. B: Enzym. 2001, 11, 657-663.
    30. Rodriguez R.F.; Ramirez S.A.; Lopez G.J.D.; Valenzuela C.; Zurita H.L. Activation of a sepiolite with dilute solution of HNO_3 and subsequent heat treatments. Ⅱ. Development of porosity. Clay Miner. 1981, 16, 315-323.
    31. Gonzalez F.; Pesquera C.; Benito Ⅰ. Mechanism of acid activation of magnesic palygorskite, Clays Clay Miner. 1989, 37, 258-262.
    32. Corma A.; Mifsud A.; Sanz E. Influence of the chemical composition and textural characteristics of palygorskite on the acid leaching of octahedral cations, Clay
    
    Miner. 1987, 22, 225-232.
    33. Abdui-Latif, N.; Weaver C.E. Kinetics of acid-dissolution of palygorskite (attapulgite) and sepiolite, Clays Clay Miner. 1969, 17, 169-178.
    34.冯启明,周玉林,郑自立,坡缕石粘土的硅烷偶联剂表面改性,研究矿产综合利用,1996,6,38-41.
    35.王彦华,雷家珩,袁启华,烷基铵盐改性坡缕石的结构与表面性质,非金属矿,1999,22(3),15—17.
    36. Rong, J.F.; Li, H.Q.; Jing, Z.H.; Hong, X.Y.; Sheng, M. Novel organic/inorganic nanocomposite of polyethylene. Ⅰ. Preparation via in situ polymerization approach, J. Appl. Polym. Sci. 2001, 82, 1829-1837.
    37.郝红英,崔子文,郝红元,水处理中絮凝剂的研究应用现状,华北工学院学报,1999,20(2),137-140.
    38.甘光奉,甘莉,高分子絮凝剂研究的进展,工业水处理1999,19(2),6-7.
    39.汤鸿霄,无机高分子絮凝剂的基础研究,环境化学1990,9(3),1-12.
    40. Breslow, D.S.; Kutner, A. Polymers and copolymers of sodium ethylenesulfonate, J. Polym. Sci. 1958, 27, 295-312.
    41.中国化工产品大全(下册),化学工业出版社:北京,1990,p1099.
    42.化工百科全书(第一卷),化学工业出版社:北京,1990,p883.
    43.常青,冯永成,有机高分子絮凝剂PDADMA的研制,工业处理1996,16(6),14-15.
    44. CN 1051366A.
    45. Fanta, G.F.; Burr, R.C.; Russell, C.R.; Rist, C.E.; Graft copolymers of starch with mineral acid salts of dimethylaminoethyl methacrylate. Preparation and testing as flocculating agents, J. Appl. Polym. Sci. 1971, 15(8), 1889-1902.
    46. Chan, W.C.; Chiang C.Y. Flocculation of clay suspensions with water-insoluble starch grafting acrylamide/sodium allylsulfonated copolymer powder, J. Appl. Polym. Sci. 1995, 58(10), 1721-1726.
    47. Karmakar, N. C.; Rath, S. K.; Sastry, B. S.; Singh R. P., Investigation on flocculation characteristics of polysaccharide-based graft copolymers in coal fines suspension, J. Appl. Polym. Sci. 1998, 70(13), 2619-2625.
    48.汤心虎,黄秀微,刘佩璇,刘梅,无机/有机复合絮凝剂对印染废水脱色的研究,水处理技术2001,27(5),267-270.
    49.杨骛远,钱锦文,方明晖,杨典勇,沈之荃,Al_2(SO_4)_3-CPAM复合絮凝剂在造纸脱墨废水中的应用,水处理技术2003,29(2),99-101.
    50.杨骛远,钱锦文,沈之荃,赵兴军,氢氧化铝-聚丙烯酰胺杂化复合絮凝剂的合成与表征,高分子材料科学与工程,accepted.
    51.王猛,钱锦文,郑宝庆,杨骛远,蒋唯峰,方佐,叶瑛,坡缕石/聚丙烯酰胺无机-有机杂化絮凝剂的合成、表征与应用,高等学校化学学报accepted.
    52. Barrios, M.S.; Gonzalez, L.V.F.; Rodriguez, M.A.V.; Pozas, J.M.M. Acid activation of a palygorskite with HCl: development of physico-chemical, textural and surface properties. Appl. Clay Sci. 1995, 10, 247-258.
    
    
    53.钱锦文,杜志强,一个适用于Huggins常数K’较大的新的一点法特性粘数方程,高分子学报 1988,2,113-119.
    54. Qian, J.W.; Qi, G.R.; Cheng, R.S. Association of ethylene-vinyl acetate copolymer in dilute solutions-I. Solvent, concentration and annealing temperature effect, Eur. Polym. J. 1997, 33, 1263-1265.
    55. Corma A.; Mifsud A.; Sanz E. Influence of the chemical composition and textural characteristics of octahedral cations, Clay Miner. 1987, 22, 225-231.
    56. Flory, P. J. Principles of Polymer Chemistry, Cornell University Press: New York, 1953, p365.
    57.宋功保,刘福生,曹永革,坡缕石的红外光谱研究,岩石学报 1999,15(3),469-474.
    58. Frost R.L.; Locos O.B.; Ruan H.D.; Kloprogge J.T. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites, Vibrational Spectroscopy 2001, 27, 1-13.
    59. Tant M.R.; Wilkes G.L. An overview of the viscous and viscoelastic behavior of ionomers in bulk and solution, J. Macromol. Sci.-Rev. Macromol. Chem. Phys. 1988, C28(1), 1-63.
    60. Wu, J.; Wang, Y.; Hara, M.; Granville, M.; Jerome, R. J. Salt-free polyelectrolyte behavior of polystyrene-based telechelic ionomers in a polar solvent. 1. Viscosity and low-angle light scattering studies, Macromolecules 1994, 27, 1195-1200.
    61. Lundberg; R.D.; Phillips, R.R. Solution behavior of metal sulfonate ionomers. Ⅱ. Effect of solvents, J. Polym. Sci., Polym. Phys. Ed. 1980, 20, 1143-1154.
    62. Hara, M.; Wu, J.; Lee, A. H. Effect of intra-and intermolecular interactions on solution properties of sulfonated polystyrene ionomers, Macromolecules 1988,21, 2214-2218.
    63. Peiffer, D.G.; Lundberg, R.D. Solution properties of ion-containing polymers in polar solvents, J. Polym. Sci., Polym. Chem. Ed., 1984, 22, 1757-1773.
    64. Hara, M.; Wu, J. Low-angle light scattering study of polyelectrolyte behavior of ionomers in polar solvent, Macromolecules 1986, 19, 2887-2888.
    65. Thomas W.M.; Wang D.W. Encyclopedia of Polymer Science and Engineering, 2nd ed, Vol.1 (Mark H.E; Gaylord N.G.; Bikales N.M. eds.) , New York: John Wiley & Sons, 1985, p169.
    66. Shawki, S.M.; Hamielec, A.E. Estimation of transfer constants in the aqueous solution polymerization of acrylamide with potassium persulfate initiator, J. Appl. Polym. Sci. 1979, 23, 3341-3354.
    67. Hara, M.; Wu, J.; Lee, A.H. Solution properties of ionomers. 2. Simple salt effect, Macromolecules 1989, 22, 754-757.
    68. Muller, G.; Laine, J.R; Fenyo, J.C. High-molecular-weight hydrolyzed polyacrylarnides. I. Characterization. Effect of salts on the conformational properties, J. Polym. Sci. 1979, 17, 659-672.
    69. Bromberg, J. P. Physical Chemistry, 2nd edition, Allyn and Bacon: Boston, 1984,
    
    p309.
    70. Subban, R.H.Y.; Arof, A.K.; Radhakrishna, S. Polymer batteries with chitosan electrolyte mixed with sodium perchlorate, Mater. Sci. Eng. 1996, B38, 156-160.
    71. Bohdaneeky, M.; Kovar, J. Viscosity of polymer solution, Elsevier Scientific Publishing Company: Amsterdam-Oxford-New York, 1982, p109.
    72. Wu, J.; Wang, Y.; Hara, M.; Granville, M.; Jerome, R.J. Salt-free polyelectrolyte behavior of polystyrene-based telechelic ionomers in a polar solvent. I. ViscOsity and low-angel light scattering studies, Macromolecules 1994, 27, 1195-1200.
    73. Davidson, R.L. Handbook of Water-Soluble Gum and Resins; McGraw-Hill: New York, 1980, p16-2.
    74. Brandrup, J.; Immergut, E.H. Polymer Handbook, 3rd edition, Wiley: New York, 1989, pVIIS.
    75. Huheey, J.E. Inorganic Chemistry: Principles of Structure and Reactivity, 3rd edition, the American Chemical Society: Cambridge, 1983, p263.
    76. Janca, J. Concentration effects in gel permeation chromatography.Ⅰ. Polymer solution properties, J. Chromatg. 1977, 134, 263-272.
    77. Janca, J.; Pokorny, S. Concentration effects in gel permeation chromatography.Ⅱ. Viscosity phenomena in the interstitial volume, J. Chromatg. 1978, 148, 31-36.
    78. Rudin, A.; Wagner. R.A. Solvent and concentration dependence of hydrodynamic volume and GPC elution volumes, J. Appl. Polym. Sci. 1976, 20, 1483-1490.
    79. Boni, K.A.; Sliemers, F.A.; Stickney, P.B. Development of gel permeation chromatography for polymer characterization. Ⅰ. Operational variables, J. Polym. Sci. A2 1968, 6, 1567-1578.
    80. Lopez, D.; Cendoya, I.; Tortes, F.; Tejada, J.; Mijangos C. Preparation and characterization of poly(vinyl alcohol)-based magnetic nanocomposites. 1. Thermal and mechanical properties, J. Appl. Polym. Sci. 2001, 82(13), 3215-3222.
    81. Chang, J.H.; An Y.U. Nanocomposites of polyurethane with various organoclays: Thermomechanical properties, morphology, and gas permeability, J. Polym. Sci., Part B: Polym. Phys. 2002, 40(7), 670-677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700