基于纳米分子筛的界面聚合反渗透膜制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先利用水热合成法制备了两种具有水分子扩散孔道的纳米分子筛,探索在不同界面聚合反应相中添加这种无机纳米颗粒,建立了含纳米无机多孔颗粒的超薄反渗透复合膜制备方法,探明了分子筛杂化膜的成膜机理;将不同分子筛添加到界面聚合单体相中制备聚酰胺杂化膜,并获得了无机分子筛性质对反渗透杂化膜结构及分离性能影响的统一规律;比较不同种类分子筛杂化膜的化学稳定性及对有机物体系的分离性能;在此基础上,根据界面聚合反应机理,采用硅烷偶联剂对分子筛进行改性,获得无机颗粒与聚合物基体相容性良好的均相纳米复合膜。上述研究结果为高性能分子筛杂化膜指出了研究方向,主要结论如下:
     (1)纳米分子筛的制备。为了避免高温煅烧去模板剂所造成的分子筛聚集,选用与分子筛颗粒表面具有相互作用力的聚乙烯醇与分子筛共混成膜后再进行煅烧。聚乙烯醇经高温煅烧后完全分解,其分解温度较高,可以很好地保持煅烧过程中分子筛颗粒之间的间隔状态,从而缓解煅烧后分子筛强烈团聚的问题。聚乙烯醇浓度为2wt%时可以获得分散良好、粒径在50-70 nm左右的纳米分子筛颗粒。
     (2)分子筛杂化膜成膜机理研究。在界面聚合反应过程中添加NaA型纳米分子筛制备分子筛/聚酰胺反渗透复合膜。通过比较分子筛添加在水相或者油相中所成膜的结构及分离性能变化规律,探明了含分子筛杂化膜的成膜机理。当分子筛添加在油相,分子筛上的羟基与酰氯基团发生反应,在分子筛周围形成紧密的聚酰胺基质,之后向外围扩散聚合成膜,因此分子筛与聚酰胺膜结合紧密;当分子筛添加在水相时,分子筛沉积在底膜表面,与油相接触后,形成的初生态膜覆盖在分子筛上,分子筛周围存在一定的空隙。因此,分子筛添加在油相利于复合膜分离性能的提高,当油相中分子筛含量为0.1 wt%时,杂化膜的水通量为纯聚酰胺的两倍,同时截留率提高到了98%以上。
     (3)分子筛种类对膜结构与性能的影响。通过添加不同种类分子筛考察膜结构及分离性能的变化,添加NaA型分子筛后导致膜表面更加粗糙,添加相同大小的MFI型分子筛,特别是Silicalite-1,所制备膜表面则相对较光滑。主要原因是由于不同的分子筛其水合化热焓不同,导致成膜过程中分子筛放热量有较大差异,其中NaA型分子筛放热量大,有助于局部反应加快,使得膜表面结构更粗糙。对于MFI型分子筛,当分子筛中Si/Al比增加,分子筛对膜结构的影响程度变小,添加全硅型Silicalite-1分子筛后,膜形貌较光滑。
     分离结果表明,影响分子筛填充膜通量的关键因素是分子筛的孔道大小及孔道结构。当分子筛含量为0.1wt%时,杂化膜的水通量大小次序为:NaA     (4)分子筛化学稳定性对膜性能的影响。通过调整料液的pH值,考察了NaA型和Silicalite-1型分子筛杂化膜的酸耐受性,结果表明,由于NaA分子筛的耐酸性差,在处理酸性料液时,NaA分子筛晶体结构塌陷,导致膜性能急剧下降,因此不宜使用NaA型分子筛杂化膜,而添加全硅型的分子筛可以提高反渗透膜的耐酸性。对于含氯化钙的料液,纯聚酰胺膜和Silicalite-1分子筛杂化膜的分离性能较稳定,但是NaA型分子筛填充膜的分离性能会明显下降,主要原因是由于分子筛中的Na+与Ca2+发生离子交换导致分子筛结构破坏。
     (5)改性分子筛在膜内分散性的研究。为了提高分子筛在膜内的分散性,研究了分子筛表面改性对膜结构和性能的影响。采用APTES改性分子筛后,其在正己烷中的分散性得到较好的改善,在成膜过程中,分子筛表面氨基可以参与界面聚合反应,分子筛表面所接枝的有机基团也增加了无机分子筛与有机聚合物基质之间的相容性,因此,所制备的复合膜结构更加均一光滑,分子筛在膜内的分散性更好。膜的通量和截留率均有所增加,并且随着分子筛含量增加,这种变化愈明显。
     通过本论文的研究,探明了纳米分子筛杂化反渗透复合膜的成膜机理,制备出了分散性良好的杂化膜,获得了分子筛种类对膜结构和性能影响关系,为后续更高性能分子筛杂化膜制备研究奠定了基础。
Up to now, thin-film nanocomposite (TFN) RO membranes have large potential for improving desalination. In particular, the addition of zeolite nanocrystals (A type) into polyamide has proven to be an effective method to tune the properties of polymer membranes. Therefore, in our study, zeolite-polyamide thin film nanocomposite (TFN) reverse osmosis membranes are fabricated by interfacial polymerization of amine and acid chloride monomers in the presence of zeolite nanocrystals.
     The NaA and MFI type zeolite nanopaticle were successfully prepared. The membrane formation mechanism was proposed, and effect of zeolite crystal structure of zeolites on membrane structure and transport properties was also investigated. Then, the chemical stability and application of TFN membrane was studied. Also the improved dispersion of inorganic nanoparticles in the polyamide matrix was successfully obtained.
     Firstly, a simple method for synthesis zeolite nanoparticles was proposed. Just one kind of water soluble polymer PVA was used to blending with the zeolite colloidal nanocrystals, as a temporary barrier to isolate as-synthesized nanocrystals during template removal, without chemical reaction, the dicomposed temperature of PVA was about 520℃, and the proper concentration of PVA solution was 2 wt%. This method would promote the industrially application of zeolite nanocrystals, also there was no report about this in the literature.
     Then, the effects of introducing the NaA zeolite nanocrystals via the aqueous phase or the organic phase on the membrane morphology, surface properties and desalination performance were investigated. When zeolite was added into the aqueous phase, zeolite was covered by the incipient layer of polyamide membrane at the beginning of polymerization, and then polyamide layer would be extended to the support membrane following slow polymerization. And at the bottom layer, there were macrovoids between the polyamide and zeolite because the zeolite surface adsorbed too much water to occur polymerization reaction. For TFN membrane with zeolite in organic phase, the polyamide layer was first formed on the surface as dense core, and then extended from the zeolite surface to other zone, which is as claimed as literature. In addition, NaA in organic phase will be hydrated and release heat when the organic phase contact with aqueous phase, higher reaction temperature may increase MPD diffusivity through incipient membrane, and the NaA zeolite will be enclosed in polyamide very well and the aggregate pores were eliminated by the cross-linked groups. Both the flux and salt rejection increased clearly with the increase of the zeolite loading in organic phase. Therefore, the zeolite should be added in the organic phase.
     In order to investigate the effect of zeolite properties such as zeolite particle and zeolite type on membrane structure and transport properties, TFN membranes were synthesized through adding NaA zeolite and MFI type zeolite with different Si/Al ratios. The hydration enthalpy and water diffusion coefficient of MFI zeolite were calculated. The surface structure of TFN membrane was relative to the hydration enthalpy of zeolite, and surface of TFN membrane became relative smoother when Silicalite-1 zeolite was used, which has lower hydration enthalpy. The flux of the TFN membrane was determined by the pore diameter and pore structure. The increased order of flux was:Silicalte-1>ZSM-5>NaA, which is the same as the order of water diffusion coefficient. The cross-linked degree of TFN membrane incresead at the order:NaA>ZSM-5>Silicalite-1, and the salt rejection of the TFN membranes were higher than that of the polyamide membrane. For the Silicalite-1 type zeolte loaded reverse osmosis membrane, the flux increased obove 60 L/m2.h with only a little sacrifice of rejection, which was 3-times of the flux for polyamide membrane.
     The MFI type zeolite was firstly introduced to the TFN membrane, not only the flux of the membrane increased, but also the other properties was enhanced, such as acid-resistance, ion exchange properties, chlorine resistance and separation performance for the organic matter. In our study, the acetic acid was used to detect the acid-resistance of TFN membrane. After immersed in the acid solution, the structure of NaA zeolite was completely destroyed, and the polyamide/NaA membrane showed that flux increased while salt rejection decreased. However, the separation performance of the polyamide and polyamide/Silicalite-1 membranes was steady. Then, the TFN membranes were used to treat the NaCl and CaCl2 mixed solution. Ion exchange would occurre in NaA zeolite, but not in Silicalite-1 zeolite, thus the TFN membrane loaded with Silicalite-1 zeolite showed steady separation performance. So, it has large potential to enhance the chemical stability by adding Silicalite-1 zeolite, and the membrane could be widely applied.
     As mentioned above, as the zeolite nanoparticle should be added in the organic phase, producing a better organic-inorganic desalination membrane has become quite a challenge, because inorganic materials were hard to well disperse within thin polymer membrane films. Therefore, surface modification of zeolite with silane coupling agents had been proposed to improve the dispersibility of zeolite and interfacial strength in order to enhance the separation performance. The dispersibility of zeolite in the organic phase was improved obviously and subsequently the separation performance of the TFN also was enhanced.
     In conclusion, TFN membrane loaded with Silicalite-1 zeolite was found with higher separation performace, the flux of the membrane has a three-times increase, at the same time, the salt rejection also increased. In addition, the chemical stability of the membrane was largely improved. The novel membrane has large potential for industrial application.
引文
[1]Matsuura T. Progress in membrane science and technology for seawater desalination-a review[J]. Desalination,2001,134:47-54.
    [2]Bart VB. Desalination by distillation by distillation and by reverse osmosis-trends towards the future [J]. Membrane Technology,2003,2:6-9.
    [3]Li D, Wang H. Recent developments in reverse osmosis desalination membranes[J]. Journal of Materials Chemistry,2010,20:4551-4566.
    [4]Fry LM, Mihelcic JR, Watkins DW. Water and nonwater-related challenges of achieving global sanitation coverage [J]. Environmental Science Technology, 2008,42:4298-4304.
    [5]Reid CE, Breton EJ. Water and ion flow across cellulosic membranes [J]. Journal of Applied Polymer Science,1959,1:133-138.
    [6]Loeb S, Sourirajan S. Sea Water Demineralization by Means of an Osmotic Membrane [J]. Advances in Chemistry Series,1963,38:117-123.
    [7]Richter JW, Hoehn HH. Permselective, aromatic, nitrogen-contiaining polymeric membranes. US Patent 3567632,1971.
    [8]Khedr MG. Development of reverse osmosis desalination membranes composition and configuration:future prospects [J]. Desalination,2002,153:295-304.
    [9]IDA Newsletter,2006,9-10.
    [10]The International Desalination and Water Reuse Quarterly,2006,16:10-22.
    [11]Urairi M, Tsuru T, Nakao S, Kimura S. Bipolar reverse-osmosis membrane for separating monovalent and divalent ions [J]. Journal of Membrane Science,1992, 70(2-3):153-162.
    [12]Xu P, Drewes JE, Bellona C, Amy G, Kim TU, Adam M, Heberer T. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications [J]. Water Environment Research,2005,77:40-48.
    [13]俞三传,高从增.膜技术在海水淡化和综合利用中的新进展[J].海洋通报,2001,(1):83-87.
    [14]Qin G, Liu C K, Richman N H, Moncur J E T. Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology:a pilot study on Coconut Island, Hawaii [J]. Aquacultural Engineering,2005,2:365-78.
    [15]朱小莎,和慧勇,罗奖合.反渗透技术在我国电厂中的应用总结[J].热力发电,1997,06:38-43.
    [16]Yoon Y, Lueptow RM. Reverse osmosis membrane rejection for ersatz space mission wastewaters[J]. Water Research,2005,39:3298-3308.
    [17]Casani S, Hansen TB, Christensen J, Knochel S. Comparison of methods for assessing reverse osmosis membrane treatment of shrimp process water [J]. Journal of Food Protection,2005,68:801-807.
    [18]韩芸,高旭阔,王志盈,杨永哲,王晓昌,王蜀溢,李勇勤,常剑勇.城市污水回用于工业生产过程中的除盐与除硬度问题的研究[J].给水排水,2003,10:55-58.
    [19]Lee KP, Arnot TC, Mattia D. A review of reverse osmosis membrane materials for desalination-Development to date and future potential [J]. Journal of Membrane Science,2011,370:1-22.
    [20]Cadotte JE. Interfacially synthesized reverse osmosis membrane. US Patent 4277344,1981-06-07.
    [21]Larson RE, Cadotte JE, Petersen RJ. The FT-30 sea-water reverse-osmosis membrane:element test results [J]. Desalination,1981,38:473-483.
    [22]Fancis PS. Fabrication and evalution of new ultrathin reverse osmosis membranes. NTIS Report No. PB-177083, available from National Technical Information Service, U.S. Department of Commerce Springfield, VA22161 (1966-02).
    [23]Ghosh AK, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes [J]. Journal of Membrane Science,2009,336:140-148.
    [24]Kim HI, Kim SS. Plasma treatment of polypropylene and polysulfone supports for thin film composite reverse osmosis membrane [J]. Journal of Membrane Science,2006,286:193-201.
    [25]Kim ES, Kim YJ, Deng BL. Preparation and characterization of polyamide thin-film composite (TFC) membranes on plasma-modified polyvinylidene fluoride (PVDF) [J]. Journal of Membrane Science,2009,344:71-81.
    [26]Wei J, Jian X, Wu C, Zhang S, Yan C. Influence of polymer structure on thermal stability of composite membranes[J]. Journal of Membrane Science,2005,256: 116-121.
    [27]Wu CR, Zhang SH, Yang DL, Wei J, Yan C, Jian XG. Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane [J]. Journal of Membrane Science,2006,279: 238-245.
    [28]Wu CR, Zhang SH, Yang DL, Jian XG. Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane [J]. Journal of Membrane Science,2009,326:429-434.
    [29]Asim KG, Hoek EMV. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes [J]. Journal of Membrane Science,2009,336:140-148.
    [30]Asim KG, Jeong BH, Huang XF, Hoek EMV. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties [J]. Journal of Membrane Science,2008,311:34-45.
    [31]Rao AP, Joshi SV, Trivedi JJ, Devmurari CV, Shah VJ. Structure-performance correlation of polyamide thin film composite membranes:effect of coating conditions on film formation [J]. Journal of Membrane Science,2003,211: 13-24.
    [32]Koo JY, Nowon K. Composite polyamide reverse osmosis membrane and method of producing the same. US Patent,6015495,2000-01-18.
    [33]Hiroyuki Y, Hiromitsu T, Yoshitaka M. Verfahren zur herstellung von verzweigten polycarbonatcn. Deutsches Patent,2626776A1.1976-06-15.
    [34]Masahiko H, Yoshihiro M, Yoshiyasu K. The relationship between polymer molecular structure of RO membrane skin layers and their RO performances [J]. Journal of Membrane Science,1997,123(2):151-156.
    [35]Cadotte JE. Reverse osmosis membrane. U S Patent 4039440,1977-08-02.
    [36]Cadotte JE, King RS, Majerle RJ, Petersen RJ. Interfacial synthesis in the preparation of reverse osmosis membrane [J]. Journal of Macromolecular Science,1981, A-15:727-755.
    [37]Bartels CR. A surface science investigation of composite membranes [J]. Journal of Membrane Science,1989,45:225-245.
    [38]Kamiyama YN, Yoshioka KM, Nakagome K. New thin-film composite reverse osmosis membranes and spiral wound modules [J]. Desalination,1984,51:79-92.
    [39]Parrini P. Polypiperazinamides:new polymers useful for membrane process [J]. Desalination,1983,48:67-78.
    [40]Cadotte JE. Interfacially synthesized reverse osmosis membrane. US Patent 4277344,1981-06-07.
    [41]Darton EG, Turner AG. Operating experiences in a sea-water reverse-osmosis plant in gibraltar [J]. Desalination,1991,82(1-3):51-69.
    [42]Uemura T, Himeshima Y, Kurihara M. Interfacially synthesized reverse osmosis membrane [J]. US Patent 4761234,1988-08-02.
    [43]Sundet SA. Production of composite membranes. US Patent 4529646, 1985-06-15.
    [44]Sundet SA, Arthur SD, Campos D, Eckman TJ, Brown RG. Aromatic/cycloaliphatic polyamide membrane[J]. Desalination,1987,64: 259-269.
    [45]Chen G, Li SH, Zhang XS, Zhang SB. Novel thin-film composite membranes with improved water flux from sulfonated cardo poly(arylene ether sulfone) bearing pendant amino groups [J]. Journal of Membrane Science,2008,310: 102-109.
    [46]Li L, Zhang SD, Zhang XS, Zheng GD. Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine [J]. Journal of Membrane Science,2008,315:20-27.
    [47]Li L, Zhang SB, Zhang XS, Zheng GD. Polyamide thin film composite membranes prepared from 3,40,5-biphenyl triacyl chloride,3,30,5,50-biphenyl tetraacyl chloride and m-phenylenediamine [J]. Journal of Membrane Science, 2007,289:258-267.
    [48]Kim CK, Kim JH, Roh IJ. The changes of membrane performance with polyamide molecular structure in the reverse osmosis process [J]. Journal of Membrane Science,2000,165(2):189-199.
    [49]Zhou Y, Yu SC, Liu MH, Gao CJ. Polyamide thin film composite membrane prepared from m-phenylenediamine and m-Phenylenediamine-5-sulfonic Acid. ICOM2005,2005.8, Seoul in Korea.
    [50]俞三传,周勇,刘立芬,高从堦.5-氧甲酰氯-异酞酰氯制备新工艺.200410017732.8.
    [51]Hirose M, Ito H, Tanaka K. Osmosis membrane. US Patent,5989426. 1999-11-23.
    [52]吴宗策,蔡志奇,赵小阳等.低污染复合反渗透膜:中国CN200610200816.4[P].2008-02-27.
    [53]吴宗策,蔡志奇,刘霞等.低污染复合反渗透膜的生产方法:中国CN200610051205.8[P].2007.03-07.
    [54]Tang CY, Kwon YN, Leckie JO. Probing the nano-and micro-seales of reverse osmosis membranes-A comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-IR and streaming potential measurements [J]. Journal of Membrane Science,2007,287: 146-156.
    [55]Wilbert MC, Pellegrino J, Zydney A. Bench-scale testing of surfactant-modified reverse osmosis/nanofiltration membranes [J]. Desalination,1998,115(1):15-32.
    [56]Lonie JS, Pirmau LCL. Effects of polyether-polyamide block copolymer coating on performance aad fouling of reverse osmosis membranes [J]. Journal of Membrane Science,2006,80:762-770.
    [57]Li QL, Xu ZH, Pinnaul. Fouling ofreverse osmosis membranes by biopolymers in wastewater Sccondary emuent:role of membrane surface propenies and initial permeate flux [J]. Journal of Membrane Science,2007,290:173-181.
    [58]Steinle DE, Zedda M, Plumlce MH, Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on rcverse osmosis rejection of seven nitrosoalklyamines, including NDMA [J]. Water Research, 2007,41:3959-3967.
    [59]Kim S, Hock EMV. Interactions controlling biopolymer fouling of reverse osmosis membranes[J]. Dasalination,2007,202:33-342.
    [60]Zhou Y, Yu SC, Gao CJ, Feng XS. Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance [J]. Separation and Purifacation Technolog,2009,66: 287-294.
    [61]黄维菊,魏星.膜分离技术概论[M].北京:国防工业出版社,2008:31-32.
    [62]Kulkarni A, Muldlerjee D, Oill WN. Flux enhancement by hydrophilization of thin film composite reverse osmosis membranes [J]. Journal of Membrane Science,1996,114:39-50.
    [63]Mukherjce D, Kulkami A, Gill WN. Chemical treatment for improved performance of reverse osmosis membranes [J]. Desalination,1996,104: 239-249.
    [64]吴宗策,赵小阳,何耀华等.一种耐氧化复合反渗透膜:中国,CN200610051219. X[P].2006-09-19.
    [65]赵小阳,何耀华,吴宗策等.耐氧化复合反渗透膜:中国,CN200610051200.5[P].2008-02-27.
    [66]Richard UI, Marinas BJ. Mechanistic interpretation of solute permeation through a fully aromatic polyamide reverse osmosis membrane [J]. Journal of Membrane Science,1997,123(2):267-280.
    [67]Fibiger R, Colucci F. Rejection enhancing coatings for reverse osmosis membranes. US Patent,6015495.1989-05-08.
    [68]Hirose M, Tomomi O, Masaaki A. Highly permeable composite reverse osmosis membrane. US Patent,6171497.2001-01-09.
    [69]Cadotte JE, Racchini H. Treatment of composite polyamide membranes with compatible oxidants. US Patent, 4960518.1990-10-02.
    [70]Freger V, Gilron J, Belfer S. TFC polyamide membranes modified by grafting of hydrophilie polymers:an FT-IR/AFM/TEM study [J]. Journal of Membrane Science,2002,209:283-292.
    [71]Belfer S, Gtlron J, Purinson Y. Effect of surface modification in preventing fouling of commercial SWRO membranes at the Eilat seawater desalination pilot plant [J]. Desalinafion,2001,139:169-176.
    [72]Gilron J, Belfer S, Vaisanen P. Effects of surface modification on antifouling and performance properties of reverse osmosis membranes [J]. Desalination,2001, 140:167-179.
    [73]Reddy AVR, Tfivedi JJ, Devmmari CV. Fouling resistant membranes in desalination and recovery [J]. Desalination,2005,183:301-306.
    [74]Kang G, Liu M, Lin B, Cao Y, Yuan Q. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol) [J]. Polymer,2007,48:1165-1170.
    [75]Buch PR, Mohan DJ, Reddy AVR. Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes [J]. Journal of Membrane Science,2008,309:36-44.
    [76]Kung GD, Liu M, Lin B. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol) [J]. Polymer,2007,48:1165-1170.
    [77]Yu S, L ZH, Chen ZH, Liu XS, Liu MH, Gao CJ. Surface modification of thin-film composite polyamide reverse osmosis membranes by coating N-isopropylacrylamide-co-acrylic acid copolymers for improved membrane properties [J]. Journal of Membrane Science,2011,371:293-306.
    [78]Abhijit S, Peter IC, Tracy Z Adrian M, Kenneth JB, Joseph L. Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes [J]. Journal of Membrane Science,2010,349:421-428.
    [79]Liu LF, Yu SC, Zhou Y, Gao CJ. Study on a novel polyamide-urea reverse osmosis composite membrane (ICICMPD):Ⅰ. Preparation and characterization of ICIC-MPD membrane[J]. Journal of Membrane Science,2006,281:88-94.
    [80]Wei X, Wang Z, Chen J, Wang J, Wang S. A novel method of surface modification on thin-film-composite reverse osmosis membrane by grafting hydantoin derivative [J]. Journal of Membrane Science,2010,346:152-162.
    [81]Freger V, Gilron J, Belfer S. TFC polyamide membranes modified by grafting of hydrophilic polymers:an FT-IR/AFM/TEM study [J]. Journal of Membrane Science,2002,209:283-292.
    [82]Kabanov VY, Kudryavtsev VN. Modification of polymers by radiation graft polymerization (state of the art and trends) [J]. High Energy Chemistry,2003,37: 1-5.
    [83]Kwak SY, Jung SG, Kim SH. Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic polyamide thin films [J]. Environmental Science Technology,2001,35: 4334-4340.
    [84]Koo JY, Kim N. Composite polyamide reverse osmosis membrane and method of producing the same. Patent Application,2000, No.6015495.
    [85]Hirose M, Ikeda K. Method of producing high permeable composite reverse osmosis membrane. Patent Application,1996, No.5576057.
    [86]Koo JY, Yoon YS. Composite polyamide reverse osmosis membrane and method of producing the same. Patent Application,2000, No.6063278.
    [87]Sung HK, Seung YK, Takenori S. Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane [J]. Environmental Science Technology, 2005,39:1764-1770.
    [88]Kong CL, Kanezashi M, Yamomoto T, Shintani T, Tsuru T. Controlled synthesis of high performance polyamide membrane with dense layer for water desalination [J]. Journal of Membrane Science,2010,362:76-80.
    [89]汤蓓蓓,徐铜文,武培怡.界面聚合法制备复合膜[J].化学进展,2007,19(9):1428-1434.
    [90]吴礼光,周勇,张林,陈欢林,高从揩.反渗透复合膜功能材料研究进展[J].化学进展,2008,20(7/8):1216-1222.
    [91]邬迪华,朱碧文,俞三传,反渗透复合膜的表面特性及表面改性[J].水处理 技术,2009,35(5):11-20.
    [92]Kang G, Liu M, Lin B, Cao Y, Yuan Q. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol) [J]. Polymer,2007,48:1165-1172.
    [93]Wavhal DS, Fisher ER. Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling [J]. Langmuir,2003,19:79-85.
    [94]Nowon K, Dong HS, Lee YT. Effect of silane coupling agents on the performance of RO membranes [J]. Journal of Membrane Science,2007,300: 224-231.
    [95]Qiu S, Wu LG, Zhang L, Chen HL. Gao CJ. Preparation of reverse osmosis composite membrane with high flux by interfacial polymerization of MPD and TMC [J]. Journal of Applied Polymer Science,2009,112:2066-2072.
    [96]Lin J, Murad S. A computer simulation study of the separation of aqueous solutions using thin zeolite membranes [J]. Molecular Physics,2001,99: 1175-1182.
    [97]Murad S, Powles JG. A computer simulation of the classic experiment on osmosis and osmotic pressure [J]. The Journal of Chemical Physics,1993,99:7271-7272.
    [98]Flanigen EM, Bennett JM, Grose RW. Silicalite, a new hydrophobic crystalline silica molecular sieve [J]. Nature,1978,271(9):512-516.
    [99]Murad S, Molecular dynamics simulations of osmosis and reverse osmosis in solutions [J]. Adsorption,1996,2:95-101.
    [100]Kumakiri I, Yamaguchi T, Nakao S, Application of a zeolite:a membrane to reverse osmosis process [J]. Journal of Chemical Engineering of Japan,2000,33: 333-336.
    [101]Lin J, Murad S. A computer simulation study of the separation of aqueous solutions using thin zeolite membranes [J]. Journal of Molecular Physics,2001, 99:1175-1181.
    [102]Malekpour A, Millani MR, Kheirkhah M. Synthesis and characterization of a NaA zeolite membrane and its applications for desalination of radioactive solutions [J]. Desalination,2008,225:199-208.
    [103]Li LX, Liu N, McPherson B, Lee R. Influence of counter ions on the reverse osmosis through MFI zeolite membranes:implications for produced water desalination [J]. Desalination,2008,228:217-225.
    [104]Li LX, Dong JH, Nenoff TM, Lee R. Desalination by reverse osmosis using MFI zeolite membranes[J]. Journal of Membrane Science,2004,243:401-404.
    [105]Kazemimoghadam M, Mohammadi T. Synthesis of MFI zeolite membranes for water desalination [J]. Desalination,2007,206:547-553.
    [106]Li LX, Dong JH, Nenoff TM. Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis [J]. Separation and Purifacation Technology,2007,53:42-48.
    [107]Duke MC, Brien-Abraham JO, Milne N, Zhu B, Lin JYS. Seawater desalination performance of MFI type membranes made by secondary growth [J]. Separation and Purifacation Technology,2009,68:343-350.
    [108]Li LX, Liu N, McPherson B, Lee R. Enhanced water permeation of reverse osmosis through MFI-Type zeolite membranes with high aluminum contents [J]. Industrial and Engineering Chemistry Research,2007,46:1584-1589.
    [109]Liu N, Li LX, McPherson B, Lee R. Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes [J]. Journal of Membrane Science,2008,325:357-361.
    [110]Qu XY, Dong H, Zhou ZJ, Zhang L, Chen HL. Pervaporation separation of xylene isomers by hybrid membranes of PAAS filled with silane-modified zeolite [J]. Industrial and Engineering Chemistry Research,2010,49: 7504-7514.
    [111]Jeong BH, Hoek EMV, Yan YS, Subramani A, Huang XF, Hurwitz G, Ghosh AK. Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes [J]. Journal of Membrane Science,2007,294:1-7.
    [112]Mary LL, Asim KG, Anna J, Huang XF, William H, Yang Y, Hoek EMV. Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes [J]. Langmuir,2009,25(17):10139-10145.
    [113]Lind ML, Jeong BH, Subramani A, Huang X, Hoek EMV. Effect of mobile cation on zeolite-poly amide thin film nanocomposite membranes [J]. Journal of Materials Research,2009,24:1624-1631.
    [114]Mar YL, Daniel ES, Nguyen TV, Hoek EMV. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance [J]. Environmental Science and Technology,2010,44:8230-8235.
    [115]Kong CL, Shintani T, Toshinori T. "Pre-seeding"-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification [J.] New Journal of Chemistry,2010,34:2101-2104.
    [116]Park KT, Kim SG, Chun BH, Bang J, Kim SH. Sulfonated poly(arylene ether sulfone) thin-film composite reverse osmosis membrane containing SiO2 nanoparticles [J]. Desalination and water treatment,2010,15:69-75.
    [117]Singh PS, Aswal VKJ. Characterization of physical structure of silica nanoparticles encapsulated in polymeric structure of polyamide films [J]. Journal of Colloid Interface Science,2008,326(1):176-185.
    [118]Ghanshyam LJ, Singh PS. Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties [J]. Journal of Membrane Science,2009, 328:257-267.
    [119]Ghanshyam LJ, Vinod KA, Singh PS. SANS study to probe nanoparticle dispersion in nanocomposite membranes of aromatic polyamide and functionalized silica nanoparticles [J]. Journal of Colloid Interface Science, 2010,351:304-314.
    [120]Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth [J]. Water Research,2008,42:3066-3074.
    [121]Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI. Silver nanoparticle-decorated porous ceramic composite for water treatment [J]. Journal of Membrane Science,2009,331:50-56.
    [122]Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BRP. Silver nanoparticles immobilized on thin film composite polyamide membrane:characterization, nanofiltration, antifouling properties [J]. Advanced Technology,2007,18(7): 562-568.
    [123]Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI. Silver nanoparticle-decorated porous ceramic composite for water treatment [J]. Journal of Membrane Science,2009,331:50-56.
    [124]Kim SH, Kwak SY, Sohn BH, Park TH. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem [J]. Journal of Membrane Science,2003, 211:157-165.
    [125]Kwak SY, Kim SH, Kim SS. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal antifouling.1. Preparation and characterization of TiO2 nanoparticle self assembled aromatic polyamide thin-film-composite (TFC) membrane [J]. Environmental Science Technology,2001,35:2388-2394.
    [126]Lee HS, Kim SJ, Kim JH, Min JP, Ryul B. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles [J]. Desalination,2008,219:48-56.
    [127]Madaoni S S, Ghaemi N. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation [J]. Journal of Membrane Science,2007,303:221-233.
    [128]Majumder M, Zhan X, Andrews R, Hinds BJ. Voltage gated carbon nanotube membranes [J]. Langmuir,2007,23:8624-8631.
    [129]Corry B. Designing carbon nanotube membranes for efficient water desalination [J]. The Journal of Physical Chemistry B,2007,112:1427-1434.
    [130]Suk ME, Raghunathan AV, Aluru NR., Fast reverse osmosis using boron nitride and carbon nanotubes[J]. Applied Physics Letters,2008,92:120-133.
    [131]Ratto TV, Holt JK, Szmodis AW. Membranes with Embedded Nanotubes for Selective Permeability. Patent Application,2010, No.20100025330.
    [132]Agre P. Membrane water transport and aquaporins:looking back [J]. Biology of the Cell,2005,97:355-356.
    [133]Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z [J]. Pans,2007,104:20719-20724.
    [134]Peirez AG, Stibius KB, Vissing T, Nielsen CH, Mouritsen OG. Biomimetic triblock copolymer membrane arrays:a stable template for functional membrane proteins [J]. Langmuir,2009,25:10447-10450.
    [135]Jensen PH, Keller D, Nielsen CH. Membrane for Filtering of Water. Patent Application,2010, No. EP 1885477.
    [136]Li NN. Separation science and technology in the 21st century-from an industrial perspective of energy, sustainability and globalization.2009 AIChE Annual Meeting, Nashville, TN,2009, Nov.8-13.
    [137]Jin WQ, Toutianoush A, Tieke B. Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes [J]. Langmuir, 2003,19:2550-2553.
    [138]Tieke B, Ackern F, Krasemann L, Toutianoush A. Ultrathin self-assembled polyelectrolyte multilayer membranes [J]. The European Physical Journal E, 2001,5:29-39.
    [139]Zhou M, Nemade P R, Lu X, Zeng X, Hatakeyama E S, Richard D N, Gin D L. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly [J]. The Journal of American Chemical Society,2007,129:9574-9575.
    [140]Park HB, Freeman BD, Zhang ZB, Sankir M, McGrath JE. Highly chlorine-tolerant polymers for desalination [J]. Angewandte Chemie International Edition in English,2008,120:6108-6113.
    [141]Li XF, Fustin CA, Vankelecom IFJ. Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties [J]. Journal of Materials Chemistry,2010,20:4333-4339.
    [142]Pervaporation study of aqueous ethol solution through zeolite-incorporated multilayer poly(vinyl alcohol) membranes:Effect of zeolites [J]. Journal of Membrane Science,276 (2006) 260-271.
    [143]Tai SC, Raj R. Zeolite filled P84 co-polyimidemembranes for dehydration of isopropanol through pervaporation process [J]. Chemical Engineering Science, 2006,61:6816-6825.
    [144]Jia MD, Peinemann KV, Behling RD. Preparation and characterization of thin-film zeolite-PDMS composite membranes [J]. Journal of Membrane Science,1992,73:119-124.
    [145]Kittur AA, Kariduraganavar MY, Toti US, Ramesh K, Aminabhavi TM. Pervaporation separation of water-isopropanol mixtures using ZSM-5 zeolite incorporated poly(vinyl alcohol) membranes [J]. Journal of Applied Polymer Science,2003,90:2441-2448.
    [146]Kittur AA, Kulkarni SS, Aralaguppi MI, Kariduraganavar MY. Preparation and characterization of novel pervaporation membranes for the separation of water-isopropanol mixtures using chitosan and NaY zeolite [J]. Journal of Membrane Science,2005,247:75-82.
    [147]Sun HL, Lu LY, Chen X, Jiang ZY. Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes [J]. Separation and Purification Technology,2008,58:429-436.
    [148]Mallikarjunagouda BP, Tejraj MA. Pervaporation separation of toluene/alcohol mixtures using silicalite zeolite embedded chitosan mixed matrix membranes [J]. Separation and Purification Technology,2008,62:128-136.
    [149]Lue SJ, Liaw T. Separation of xylene mixtures using polyurethane-zeolite composite membranes [J]. Desalination,2006,193:137-143.
    [150]Liu YL, Su YH, Lee KR, Lai JY. Crosslinked organic-inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol-water mixtures with a long-term stability [J]. Journal of Membrane Science,2005,251:233-238.
    [151]Liu YL, Su YH, Lee KR, Lai JY. Crosslinked organic-inorganic hybrid chitosan membranes for pervaporation dehydration of isopropanol-water mixtures with a long-term stability [J]. Journal of Membrane Science,2005,251:233-238.
    [152]Liu YL, Su YH, Lai JY. In situ crosslinking of chitosan and formation of chitosan-silica hybrid membranes with using g-glycidoxypropyltrimethoxy-silane as acrosslinking agent [J]. Polymer,2004,45:6831-6837.
    [153]Huang Z, Su JF, Su XQ. Preparation and permeation characterization of β-zeolite-incorporated composite membranes [J]. Journal of Applied Polymer Science,2009,112:9-18.
    [154]Zhou HL, Yi S, Chen XG, Yi SL, Wan YH. Modifacation of silicalite-1 by vinyltrimethoxysilane (VTMS) and preparation of silicalite-1 filled polydimethylsiloxane (PDMS) hybrid pervaporation membranes [J]. Separation and Purification Technology,2010,75:286-294.
    [155]Yi SL, Su Y, Wan YH. Preparation and characterization of vinyltriethoxysilane (VTES) modified silicalite-1/PDMS hybrid pervaporation membrane and its application in ethanol separation from dilute aqueous solution [J]. Journal of Membrane Science,2010,360:341-351.
    [156]Wu H, Zheng B, Zheng XH, Wang JT, Yuan WK, Jiang ZY Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell[J]. Journal of Power Sources,2007,173:842-852.
    [157]Berry MB, Libby BE, Rose K. Incorporation of zeolites into composite matrices [J]. Microporous and Mesoporous Materials,2000,39:205-217.
    [158]Vankelecom IFJ, Van den Broeck S, Merckx E. Silylation To Improve Incorporation of Zeolites in Polyimide Films [J]. Journal of Physical Chemistry, 1996,100:3753-3758.
    [159]Monique S, Elisabeth G, Duran JO. Colloidal functionalized calcined zeolite nanocrystals [J]. Journal of Materials Chemistry,2004,14:1347-1351.
    [160]Yang XY, Feng YF, Tian G, Du YC. Design and size control of uniform zeolite nanocrystals synthesized in adjustable confined voids formed by recyclable monodisperse polymer spheres [J]. Angewandte of Chemical International Edition of English,2005,44:2563-2568.
    [161]Yao JF, Wang HT, Ratinac KR, Ringer SP. Formation of colloidal hydroxy-sodalite nanocrystals by the direct transformation of silicalite nanocrystals [J]. Chemistry of Materials,2006,18,1394-1396.
    [162]Wang HT, Huang LM, Wang ZB. Anupam Mitra, Yushan Yan, Hierarchical z zeolite structures with designed shape by gel-casting of colloidal nanocrystal suspensions [J]. Chemical Communications,2001,1364-1365.
    [163]王水利,葛岭梅,杨建利.纳米分子筛的合成及其影响因素[J].纳米加工工艺,2005,2(3):34-38.
    [164]何驰剑,何红运.纳米分子筛合成的影响因素[J].化学进展,2005,17(1):64-68.
    [165]Wang HT, Wang ZB, Yan YS. Colloidal suspensions of template-removed zeolite nanocrystals [J]. Chemical Communications,2000, (23):2333-2334.
    [166]Svetlana M, Norman HO, Valentin V, Thomas B. Mechanism of zeolite A nanocrystal growth from colloids at room temperature [J]. Science,1999,283: 958-960.
    [167]Fialips CI, Carey JW, Bish DL. Hydration-dehydration behavior and thermodynamics of chabazite [J]. Geochimica Cosmochimica Acta,2005,69: 2293-2308.
    [168]Drebushchak VA, Naumov VN, Nogteva VV, Belitsky IA, Paukov IE. Low-temperature heat capacity of heulandite:comparison with clinoptilolite [J]. Thermochimica Acta,2000,348:33-40.
    [169]Holland TJB. Dependance of entropy on volume for silicate and oxide minerals: A review and a predictive model [J]. Ametican Mineral,1989,74:5-13.
    [170]Mathieu R, Vieillard P. A predictive model for the enthalpies of formation of zeolites [J]. Microporous Mesoporous Materials,2010,132:335-351.
    [171]Ogorodova LP, Melchakova LV, Kiseleva I, Belitskii IA. Thermodynamic properties of natural erionite from calorimetric data [J]. Journal of Thermal Analysis and Calorimetry,2001,56:56-59.
    [172]Petrova N, Mizota T, Fujiwara K. Hydration heats of zeolites for evaluation of heat exchangers [J]. Journal of Thermal Analysis and Calorimetry,2001,64: 157-166.
    [173]Paukov IE, Belitskii IA. Heat capacity and thermodynamic functions of the natural zeolite ferrierite from 7 to 320 K [J]. Geokhim,2000,38:111-114.
    [174]Neuhoff PS, Kroeker S, Du LS, Fridriksson T, Stebbins JF. Order/disorder in natrolite group zeolites:a Si-29 and Al-27 MAS NMR study [J]. American Mineral,2002,87:1307-1320.
    [175]Mercury L, Vieillard P, Tardy Y. Thermodynamics of ice polymorphs and "Ice-like" water in hydrates and hydroxides [J]. Applied Geochemistry,2001, 16:161-181.
    [176]Philippe V. A predictive model for the entropies and heat capacities of zeolites [J]. European Jounal of Mineral,2010,22:823-836.
    [177]Meral UA, Ahunbay MG, Yurtsever M, Ayse ES. Molecular dynamics simulation of water diffusion in MFI-Type zeolites [J]. Journal of Physical Chemistry B,2009,113:8073-8079.
    [178]Wu JY, Liu QL, Xiong Y, Zhu AM, Chen Y. Molecular simulation of water/alcohol mixtures adsorption and diffusion in zeolite 4A membranes [J]. Journal of Physical Chemistry B,2009,113:4267-4274.
    [179]Serpe G, Chaupart N. Aging of polyamide 11 in acid solution [J]. Polymer,1997, 38:1911-1917.
    [180]Wui SA. Menachem Elimelech, Fatty acid fouling of reverse osmosis membranes:Implications for wastewater reclamation [J]. Water Research,2008, 42:4393-44033.
    [181]Jukka T, Samatha P, Andreas W, Marianne N. Long-term acid resistance and selectivity of NF membranes in very acidic conditions [J]. Journal of Membrane Science,2004,240:11-18.
    [182]Xu X, Kirkpatrick RJ. NaCl interaction with interfacially polymerized polyamide films of reverse osmosis membranes:A solid-state 23Na NMR study [J]. Journal of Membrane Science,2006,280:226-233.
    [183]Samantha P, Marianne N, Aldo B, Gustavo C. Stability of NF membranes under extreme acidic conditions [J]. Journal of Membrane Science,2004,239:91-103.
    [184]王光华,董发勤,张宝述.分子筛离子交换的研究现状及发展趋势[J].中国非金属矿工业导刊,2007,2:18-21.
    [185]Gomez M, Garralon G, Plaza F, Vilchez R, Hontoria E, Gomez MA. Rejection of endocrine disrupting compounds (bisphenol A, bisphenol F and triethyleneglycol dimethacrylate) by membrane technologies [J]. Desalination, 2007,212:79-91.
    浙江大学博士学位论文 主要参考文献
    [186]李剑,胡瑞,靖晶.介孔材料化学改性研究进展[J].贵州化工,2004,29(4):10-13.
    [187]Plueddemann EP. Silane Coupling Agents [M]. Plenum Press:New York,1991.
    [188]Carvalho WA, Wallau M, Schuchardt U. Iron and copper immobilised on mesoporous MCM-41 molecular sieves as catalysts for the oxidation of cyclohexane [J]. Journal of Molecular Catalyst A:Chemistry,1999,144:91-97.
    [189]Maciel GE, Ellis P D, Bell AT. NMR Techniques in Catalysis [M]. Marcel Dekker:New York,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700