聚偏氟乙烯吸附功能膜的研制及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚偏氟乙烯(Polyvinylidene fluoride,PVDF)膜材料具有优良的热稳定性、化学稳定性以及良好的机械性能,近年来,已被广泛应用于化工、环保、食品、医药和生化等诸多领域。同时,其化学键能高,疏水性强,对蛋白质存在强烈的吸附作用,且具有较好的生物相容性,因此被认为是生物医学分析领域极具发展前景的生物医用材料。
     本论文以PVDF作为成膜材料,从蒸汽相诱导法和浸没沉淀法入手,研制高蛋白吸附量的PVDF吸附功能膜,考察各种因素对膜结构和性能的影响;通过对PVDF表面的改性,调控膜表面的亲疏水性,以拓展其在电泳转印、快速诊断、斑点印迹等领域的应用;并将氨基酸接枝到PVDF中空纤维膜的表面制成亲和吸附膜,用于脱除内毒素,获得较好的实验结果。同时运用分子动力学模拟的方法,探讨了牛血清蛋白在不同晶型的PVDF表面的吸附作用及机理。本论文的主要研究内容如下:
     (1)蒸汽相诱导法制备PVDF微孔膜
     通过蒸汽相诱导法制备了网络状结构对称且无皮层的PVDF膜,考察了蒸汽相的组成、温度、湿度、添加剂的类型对膜结构和性能的影响。研究发现,蒸汽相环境的变化对膜结构有着重要的影响,在蒸发气氛中添加了溶剂DMAC,可以减慢传质速率,使分相时间延长,所成膜的下表面皮层消失,呈现多孔形貌;温度较低,湿度较高时,质量传递速率下降,膜孔的联通性更好,孔隙率上升。以LiCl为添加剂的膜ML表面为开放式的网络结构,同时具有较小的孔径(1.24μm)和较大的孔隙率(86.1%),所以具有较大的蛋白吸附量160μg/cm2。
     (2)浸没沉淀法制备PVDF微孔膜
     在浸没沉淀法制备PVDF微孔膜的过程中,选择TEP为溶剂,从热力学和动力学两方面考察了铸膜液和凝固浴的组成、温度、添加剂的类型等对膜结构、晶型和性能的影响。结果表明,TEP凝胶浴的浓度能直接改变成膜机理,随着TEP浓度的上升,液液分相过程由瞬时分相过渡到延迟分相,皮层逐渐消失,可获得网络状无皮层对称结构的膜,该膜比表面积大,蛋白固载能力强;TEP凝胶浴的浓度的上升和温度的下降都可以使结晶速度变慢,使PVDF倾向于形成p型的晶体,而极性的β型PVDF具有更多活性吸附位点,有利于蛋白的吸附;以乙醇作为添加剂的膜M34结构均一,孔径分布均匀,在1μm左右。同时膜M34的强度、宏观形貌及蛋白吸附量(194μg/cm2)均在一个较理想的水平
     (3)PVDF膜吸附功能膜用于免疫检测领域
     将制备的PVDF膜、PVDF改性膜及PVDF/NC共混膜分别应用于电泳印迹、胶体金快速免疫层析(GICA)、免疫斑点印迹等三个领域。通过研究发现:不对称结构的PVDF膜由于其表面具有致密的皮层,蛋白吸附能力非常弱,无法转印蛋白。而结构对称无皮层的膜M34由于蛋白固载量大(194μg/cm2),与商品膜进行对比,转印效果好,是免疫印迹和生化分析领域的优良用膜;将膜M34经表面亲水化改性后,层析性能明显上升,应用在DOA类和hCG类快速诊断试剂时C/T线出现时间较快(T线50秒内,C线200秒内),并且显色状态较强(T线强度G6~G9,C线强度G7-G9);将共混膜应用于免疫斑点印迹,通过调节共混聚合物的种类以及共混比例,制备出网络状、结构均匀的PVDF/NC共混膜M90,其显色效果明显优于商品的NC膜。
     (4)以L-丝氨酸(Ser)为配基制备PVDF中空纤维亲和膜
     通过对PVDF中空纤维膜基质进行改性,将丝氨酸配基键合到膜上,制备成PVDF-Ser亲和膜用于人、动物血液中内毒素的脱除。结果表明,PVDF-Ser对人血浆中内毒素的脱除效率高,清除率为48.3%,同时具有较为理想的血液相容性,总蛋白的损失率为14.9%,白蛋白恢复率为92.6%;放大的PVDF-Ser亲和膜组件用于实验猪的全血灌流实验,结果显示该亲和膜可以有效的脱除动物体内的内毒素,能够很好的降低肿瘤坏死因子(TNF-a),和白细胞介素(IL-6)的浓度,抑制炎症反应的发生。
     (5)BSA与α和β晶型的PVDF表面相互作用的分子动力学模拟
     采用MD模拟的方法讨论了蛋白质BSA与a和p晶型的PVDF之间的相互作用。由MD模拟得到BSA分别与α和β型PVDF之间的静电相互作用、范德华相互作用和总的相互作用能的大小。结果表明,β型PVDF与BSA的静电相互作用和范德华相互作用均比α型强,总的相互作用能比α型高了约200KJ/mol.BSA在β型表面参与吸附的基团比α型表面多了四个,分别为ASP85,SER465, GLU490,TYR492.正是由于β型表面呈极性,参与吸附的氨基酸基团密度高于α型,同时β型与BSA的相互作用能也更大,所以β型PVDF对蛋白质的固载能力更强。
Poly(vinylidene fluoride) membranes have been developed for a variety of fields, such as chemical and environmental engineering, food, medicine and biochemistry, due to their thermostability, chemical resistance and good mechanical property. Compared with the other materials, PVDF has the further advantage of being capable for use in protein blotting because of its high protein-binding capacity and biocompatibility. It is considered to be a very promising biomaterial in the field of biomedical analysis.
     In this study, functional PVDF membranes for adsorption were prepared by vapor induced phase separation and immersion precipitation. The effects of various membrane formation parameters on their morphologies and property were investigated. Then, the applications were expanded after surface modified of these membranes. The adsorption dynamics simulation of Bovine Serum Albumin (BSA) onα-type andβ-type PVDF crystal surface were further studied.
     Mainly research of the thesis is focuses on the following aspects.
     (1) Preparation of symmetric network PVDF membranes for protein adsorption via vapor induced phase separation
     PVDF membranes for protein adsorption were prepared by vapor induced phase separation from PVDF/N,N-dimethyl acetamide (DMAC)/ water system. The effects of evaporation atmosphere, temperature and humidity during the preparation of the membranes on their morphologies were investigated by SEM. With low temperature and high humidity, polymer crystallization mechanism dominated the membrane formation process, and the casting solution formed membranes with symmetric morphologies in the vapor phase containing 0.79% DMAC. The effect of additives on the membrane structure and performance was also investigated. The results of adsorption experiment showed that the binding capacity of Bovine Serum Albumin (BSA) increased with the appearance of circular network morphology and the decrease of mean pore size of the membrane. With the addition of LiCl to the casting solution, the obtained membrane can adsorb BSA up to 160μg/cm2.
     (2) Preparation of symmetric network PVDF membranes for protein adsorption via immersion precipitation
     Symmetric network PVDF membranes without dense skin layer were prepared by immersion precipitation in a water/TEP/PVDF system to improve protein adsorption. In order to investigate the effects of different membrane morphologies and PVDF crystal types on protein-binding capacity, different dope, baths and preparation condition were used to modify the membrane structure and performance. By comparing the effect of TEP content in the bath on membrane morphology, it was found that the TEP in the bath hindered the phase-separation kinetics. As a result, the casting dope slowly entered the phase-separation boundaries, leading to the so-called delayed-type demixing. The porosity of PVDF membranes increased along with the increase of TEP content in the bath. For a slow crystallization process(higher TEP bath content and lower temperature of bath), crystallization was expected to take place at a lower rate such that PVDF chains had enough time to arrange themselves intoβ-type. Theβ-type PVDF crystal was polar because of it all-trans arrangement. It tended to adsorb BSA through hydrogen bonding or electrostatic force between the weak-negative F and the weak-positive H atoms. And the protein remained bound with more points of attachment. Thus, the interaction of electrostatic force between a-type and BSA is smaller than that withβ-type. M34 improved the adsorption of protein up to 194μg/cm2.
     (3) The application of functional adsorption PVDF membranes
     PVDF merbranes prepared in this work were used for Western-blot, Colloidal gold enhanced immunochromatography assay and Dot-blot. It was found that the asymmetric PVDF membrane can not be used in Western-blot due to its asymmetric structure with a skin layer and weak protein binding capacity. Proteins on the sodium dodecyl sulfate polyacrylamide gel electrophoresis gels were successfully electro-blotted onto M34. Compared with commercial PVDF membranes, it was feasible for the PVDF membranes M34 prepared in this work be used for Western-blot; Hydrophilic surface modification of membrane M34 was performed by 1%STP treatment. Then used in colloidal gold enhanced immunochromatography assay, which had a good chromatographic property (T line< 50s, C line< 200s) and strong color development(T line:G6-G9, C line:G7-G9); The PVDF/NC blend membrane M90 was successfully used in Dot-blotting as the solid membrane. The brown dot can be seen on the membrane when the positive sample was used. Compared with commercial NC membranes, the effect of color development was stronger.
     (4) PVDF-Ser affinity membrane
     We firstly used L-serine (Ser) as ligands separately, PVDF hollow-fiber membrane as the bare membrane,1,6-hexanediamine as the spacer arm to make new types of affinity membrane for endotoxin removal from human plasma. For human plasma sample, the clearance efficiency of lab-made PVDF-Ser affinity membrane module could reach 48.3% at lml/min velocity. The endotoxin adsorption capability was 0.027EU/cm2 with little effect on other biochemical indicators, the loss of total protein (including the various types of enzyme) was 14.9% and the recovery rate of albumin is 92.4%; Then, amplified lab-made PVDF-Ser affinity membrane modules were used in animal experiments. The results showed that PVDF-Ser affinity membrane has good blood compatibility and the amplified module could effectively remove endotoxin from domestic pig, it could reduce concentrations of tumor necrosis factor(TNF-a) and interleukin(IL-6), thereby the inflammatory reaction was inhabited.
     (5) The adsorption dynamics simulation of BSA onα-type andβ-type PVDF crystal surface
     The adsorption dynamics of BSA on a-type andβ-type PVDF crystal surface were studied in detail. It was showed that electrostatic and VDW interaction between β-type PVDF crystal and BSA was 200KJ/mol stronger than a-type PVDF crystal. There are four types of residues (ASP 85, SER 465, GLU 490, TYR 492) which participated in the adsorption of BSA onto theβ-type PVDF crystal, but they were not participated onto the a-type. The combine of more residues participated in adsorption and larger interaction energy betweenβ-type PVDF crystal and BSA made the protein binding capacity ofβ-type PVDF crystal was larger than a-type.
引文
[1]许振良,陈桂娥.高孔隙率聚偏氟乙烯中空纤维超滤膜的研究.膜科学与技术.2000;20(4):10-13.
    [2]李健生,翁霁.聚偏氟乙烯中空纤维膜的研制.水处理技术.2001;27(1):12-15.
    [3]吕晓龙.聚偏氟乙烯中空纤维多孔膜制法及产品.中国专利,CN 1203119A,2003.
    [4]吕晓龙,胡成松.高性能聚偏氟乙烯中空纤维膜纺制.纺织学报.1999;20(4):240-242.
    [5]卓震.聚偏二氟乙烯(PVDF)特性及其在过程工业中应用.腐蚀科学与防护技术.2004;16(2):118-120.
    [6]Guell C, Davis RH. Membrane fouling during microfiltration of protein mixtures. Journal of Membrane Science.1996;119(2):269-284.
    [7]Bottino A, Capannelli G, Monticelli O, Piaggio P. Poly (vinylidene fluoride) with improved functionalization for membrane production. Journal of membrane Science. 2000; 166(1):23-29.
    [8]Stephan AM, Nahm KS, Anbu Kulandainathan M, Ravi G, Wilson J. Poly (vinylidene fluoride-hexafluoropropylene)(PVdF-HFP) based composite electrolytes for lithium batteries. European Polymer Journal.2006;42(8):1728-1734.
    [9]Li K. Designing asymmetric PVDF hollow fibres for soluble gas removal. Chemical Engineering & Technology.2002;25(2):203-206.
    [10]Eckerskorn C, Lottspeich F. Structural characterization of blotting membranes and the influence of membrane parameters for electroblotting and subsequent amino acid sequence analysis of proteins. Electrophoresis.1993; 14(1):831-838.
    [11]Kurien BT, Scofield RH. Western blotting. Methods.2006;38(4):283-293.
    [12]Kurien BT, Scofield RH. Protein blotting:a review. Journal of immunological methods.2003;274(1-2):1-15.
    [13]Nokihara K. Procedures leading to primary structure determination of proteins in complex mixtures by gel electrophoresis and modem micro-scale analyses. Analytica chimica acta.1998;372(1-2):21-32.
    [14]Zhao YH, Qian YL, Pang DX, Zhu BK, Xu YY. Porous membranes modified by hyperbranched polymers Ⅱ:Effect of the arm length of amphiphilic hyperbranched-star polymers on the hydrophilicity and protein resistance of poly (vinylidene fluoride) membranes. Journal of Membrane Science.2007;304(1-2): 138-147.
    [15]Loeb S, Sourirajan S. Sea water demineralization by means of an osmotic membrane. Advances in Chemistry, Saline Water Conversion-Ⅱ,1962;38:117-132.
    [16]Mulder M., Basic principles of membrane technology,2nd Ed., Netherlands: Kluwer Academic Publishers,1998.
    [17]Du Pasquier A, Warren PC, Culver D, Gozdz AS, Amatucci GG, Tarascon JM. Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ionics.2000;135(1-4):249-257.
    [18]Castro AJ. Methods for making microporous products. US Patent 4,247,498, 1981.
    [19]Lloyd DR, Kinzer KE, Tseng HS. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. Journal of Membrane Science.1990;52(3):239-261.
    [20]Ji GL, Zhu BK, Cui ZY, Zhang CF, Xu YY. PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery. Polymer.2007;48(21):6415-6425.
    [21]Cha BJ, Yang JM. Preparation of poly (vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process. Journal of membrane science.2007;291(1-2):191-198.
    [22]Sun H, Liu S, Ge B, Xing L, Chen H. Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. Journal of Membrane Science.2007;295(1-2):2-10.
    [23]Matsuyama H, Teramoto M, Nakatani R, Maki T. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. I. Phase diagram and mass transfer process. Journal of Applied Polymer Science.1999;74(1):159-170.
    [24]Matsuyama H, Teramoto M, Nakatani R, Maki T. Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. Ⅱ. Membrane morphology. Journal of Applied Polymer Science.1999;74(1):171-178.
    [25]Wang X, Zhang L, Sun D, An Q, Chen H. Effect of coagulation bath temperature on formation mechanism of poly (vinylidene fluoride) membrane. Journal of Applied Polymer Science.2008;110(3):1656-1663.
    [26]Cheng LP. Effect of temperature on the formation of microporous PVDF membranes by precipitation from 1-octanol/DMF/PVDF and water/DMF/PVDF systems. Macromolecules.1999;32(20):6668-6674.
    [27]Zhang M, Zhang AQ, Zhu BK, Du CH, Xu YY. Polymorphism in porous poly (vinylidene fluoride) membranes formed via immersion precipitation process. Journal of Membrane Science.2008;319(1-2):169-175.
    [28]Cohen C, Tanny GB, Prager S. Diffusion-controlled formation of porous structures in ternary polymer systems. Journal of Polymer Science:Polymer Physics Edition.1979;17(3):477-489.
    [29]Zeman LJ, Zydeney AL. Microfiltration and ultrafiltration. New York:Marcel Dekker.Inc.1996.50-91.
    [30]Machado PST, Habert AC, Borges CP. Membrane formation mechanism based on precipitation kinetics and membrane morphology:flat and hollow fiber polysulfone membranes. Journal of Membrane Science.1999;155(2):171-183.
    [31]王连军,李恕广.PES制膜体系亚层形成机理的研究.膜科学与技术.2001;21(1):4-10.
    [32]Young TH, Lin DJ, Gau JJ, Chuang WY, Cheng LP. Morphology of crystalline Nylon-610 membranes prepared by the immersion-precipitation process:competition between crystallization and liquid-liquid phase separation. Polymer. 1999;40(18):5011-5021.
    [33]Young TH, Cheng LP, Lin DJ, Fane L, Chuang WY. Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer.1999;40(19):5315-5323.
    [34]Strathmann H, Scheible P, Baker RW. A rationale for the preparation of Loeb-Sourirajan-type cellulose acetate membranes. Journal of Applied Polymer Science.1971;15(4):811-828.
    [35]俞三传.高从增.浸入沉淀相转化法制膜,膜科学与技术,2000;20(5):36-41.
    [36]邢力,网络状结构PVDF微孔膜的制备及蛋白质转印,[硕士学位论文]:浙江大学,2007.
    [37]Kelley FN, Bueche F. Viscosity and glass temperature relations for polymer-diluent systems. Journal of polymer science.1961;50(154):549-556.
    [38]Burghardt WR, Yilmaz L, McHugh AJ. Glass transition, crystallization and thermoreversible gelation in ternary PPO solutions; relationship to asymmetric membrane formation. Polymer.1987;28(12):2085-2092.
    [39]Yeow ML, Liu YT, Li K. Morphological study of poly (vinylidene fluoride) asymmetric membranes:effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Science.2004;92(3):1782-1789.
    [40]Bottino A, Camera-Roda G, Capannelli G, Munari S. The formation of microporous polyvinylidene difluoride membranes by phase separation. Journal of membrane science.1991;57(1):1-20.
    [41]Ortiz de Zarate JM. Characterization of membrane distillation membranes prepared by phase inversion. Desalination.1995;100(1-3):139-148.
    [42]Atchariyawut S, Feng C, Wang R, Jiraratananon R, Liang DT. Effect of membrane structure on mass-transfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers. Journal of Membrane Science. 2006;285(1-2):272-281.
    [43]Cha BJ, Yang JM. Effect of high-temperature spinning and PVP additive on the properties of PVDF hollow fiber membranes for microfiltration. Macromolecular Research.2006;14(6):596-602.
    [44]Yeow ML, Liu YT, Li K. Morphological study of poly (vinylidene fluoride) asymmetric membranes:effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Science.2004;92(3):l782-1789.
    [45]Khayet M, Feng CY, Khulbe KC, Matsuura T. Study on the effect of a non-solvent additive on the morphology and performance of ultrafiltration hollow-fiber membranes. Desalination.2002;148(1-3):321-327.
    [46]Zhao YH, Zhu BK, Ma XT, Xu YY. Porous membranes modified by hyperbranched polymers::I. Preparation and characterization of PVDF membrane using hyperbranched polyglycerol as additive. Journal of Membrane Science. 2007;290(1-2):222-229.
    [47]Shih HC, Yeh YS, Yasuda H. Morphology of microporous poly (vinylidene fluoride) membranes studied by gas permeation and scanning electron microscopy. Journal of membrane science.1990;50(3):299-317.
    [48]Chabot S, Roy C, Chowdhury G, Matsuura T. Development of poly (vinylidene fluoride) hollow-fiber membranes for the treatment of water/organic vapor mixtures. Journal of Applied Polymer Science.1997;65(7):1263-1270.
    [49]Kunst B. A light-scattering and membrane formation study on concentrated cellulose acetate solutions. Journal of Applied Polymer Science.1976;20(5): 1339-1353.
    [50]孔瑛,吴庸烈,徐纪平.膜蒸馏用PVDF微孔膜的结构控制.水处理技术.1992;18(1):11-16.
    [51]Jian K, Pintauro PN. Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations. Journal of Membrane Science. 1997;135(1):41-53.
    [52]Strathmann H, Scheible P, Baker RW. A rationale for the preparation of Loeb-Sourirajan-type cellulose acetate membranes. Journal of Applied Polymer Science.1971;15(4):811-828.
    [53]Wang XY, Zhang L, Sun DH, An QF, Chen HL. Effect of coagulation bath temperature on formation mechanism of poly (vinylidene fluoride) membrane. Journal of Applied Polymer Science.2008; 110(3):1656-1663.
    [54]李战胜,李恕广.浸入凝胶法聚合物膜形成机理的研究现状.膜科学与技术.2002;22(2):29-36.
    [55]Bottino A, Capannelli G, Munari S, Turturro A. High performance ultrafiltration membranes cast from LiCl doped solutions. Desalination.1988;68(2-3):167-177.
    [56]Tomaszewska M. Preparation and properties of flat-sheet membranes from poly (vinylidene fluoride) for membrane distillation. Desalination.1996; 104(1-2):1-11.
    [57]Lin DJ, Chang CL, Huang FM, Cheng LP. Effect of salt additive on the formation of microporous poly (vinylidene fluoride) membranes by phase inversion from LiC104/Water/DMF/PVDF system. Polymer.2003;44(2):413-422.
    [58]Kong J, Li K. Preparation of PVDF hollow-fiber membranes via immersion precipitation. Journal of Applied Polymer Science.2001;81(7):1643-1653.
    [59]Wang D, Li K, Teo WK. Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes. Journal of Membrane Science. 1999; 163(2):211-220.
    [60]孔瑛,吴庸烈,杨金荣,徐纪平.用于膜蒸馏的疏水聚偏氟乙烯不对称微孔膜的制备及其形态结构研究,膜科学与技术,1990;10(3):19-26.
    [61]孔瑛,吴庸烈,杨金荣,彭曦,徐纪平.膜蒸馏用聚偏氟乙烯微孔膜的结构控制Ⅱ凝固浴对膜形态结构的影响,水处理技术,1992;18(2):84-89.
    [62]吴庸烈,刘卫宏,张华杰,杨金荣,徐纪平.沉淀剂组成对聚偏氟乙烯微孔膜孔结构的影响.膜科学与技术.1989;9(3):1-7.
    [63]Buonomenna MG, Macchi P, Davoli M, Drioli E. Poly (vinylidene fluoride) membranes by phase inversion:the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal. 2007;43(4):1557-1572.
    [64]Young TH, Huang JH, Chuang WY. Effect of evaporation temperature on the formation of particulate membranes from crystalline polymers by dry-cast process. European Polymer Journal.2002;38(1):63-72.
    [65]Chae Park H, Po Kim Y, Yong Kim H, Soo Kang Y. Membrane formation by water vapor induced phase inversion. Journal of Membrane. Science. 1999; 156(2):169-178.
    [66]Caquineau H, Menut P, Deratani A, Dupuy C. Influence of the relative humidity on film formation by vapor induced phase separation. Polymer Engineering and Science.2003;43(4):798-808.
    [67]孔瑛,吴庸烈,杨金荣,徐纪平.膜蒸馏用聚偏氟乙烯微孔膜的结构控制Ⅲ制膜条件的选择和膜蒸馏性能,水处理技术,1992;18(3):167-192.
    [68]刘武义,胡振锟.聚偏二氟乙烯增强型微孔膜的研制.水处理技术.1999;25(4):194-198.
    [69]Khayet M, Feng CY, Khulbe KC, Matsuura T. Study on the effect of a non-solvent additive on the morphology and performance of ultrafiltration hollow-fiber membranes. Desalination.2002;148(1-3):321-327.
    [70]董燕,张枫.电转移中蛋白质的透膜现象及其对蛋白质印迹结果的影响.生物化学与生物物理进展.2002;29(3):449-453.
    [71]陈丽蓉.PVDF膜在电印迹法中的应用.生物技术.1998;8(3):45-46.
    [72]Bienvenut WV, Sanchez JC, Karmime A, Rouge V, Rose K, Binz PA, et al. Toward a clinical molecular scanner for proteome research:parallel protein chemical processing before and during western blot. Analytical Chemistry. 1999;71(21):4800-4807.
    [73]Hirano H, Komatsu S, Kajiwara H, Takagi Y, Tsunasawa S. Microsequence analysis of the N-terminally blocked proteins immobilized on polyvinylidene difluoride membrane by Western blotting. Electrophoresis.1993;14(l):839-846.
    [74]Levin MC, Lee SM, Kalume F, Morcos Y, Dohan FC, Hasty KA, et al. Autoimmunity due to molecular mimicry as a cause of neurological disease. Nature medicine.2002;8(5):509-513.
    [75]Herbrink P, Van Bussel FJ, Warnaar SO. The antigen spot test (AST):a highly sensitive assay for the detection of antibodies. Journal of Immunological Methods. 1982;48(3):293-298.
    [76]郑乃刚,郑景兰.免疫组织化学与完整细胞原位蛋白质斑点印迹联合应用的探讨.河南医科大学学报.1997;32(3):118-119.
    [77]Tapp H, Stotzky G. Dot blot enzyme-linked immunosorbent assay for monitoring the fate of insecticidal toxins from Bacillus thuringiensis in soil. Applied and Environmental Microbiology.1995;61(2):602-609.
    [78]Valkirs GE, Barton R. ImmunoConcentration--a new format for solid-phase immunoassays. Clinical Chemistry.1985;31(9):1427.
    [79]Spielberg F, Ryder RW, Harris J, Heyward WL, Kabeya CM, Kifuani NK, et al. Field testing and comparative evaluation of rapid, visually read screening assays for antibody to human immunodeficiency virus. The Lancet.1989;333(8638):580-584.
    [80]Faulk W P,Taylor G M.An immSunocolloid method for the electron microscope. Immunochemistry.1971;8(11):1081-1083.
    [81]Beggs M, Novotny M, Sampedro S, Devore J, Gordon J, Osikowicz G. A selfperforming chromatographic immunoassay for the qualitative determination of human chorionic gonadotrophin (HCG) in urine and serum. Clinical Chemistry. 1990;36(11):1084-1085.
    [82]徐劲,陆家海.应用胶体金免疫层法快速检测恶性疟原虫中HRP Ⅱ抗原研究.中国人兽共患病杂志.2001;17(1):26-27.
    [83]Law WT, Doshi S, McGeehan J, McGeehan S, Gibboni D, Nikolioukine Y, et al. Whole-blood test for total cholesterol by a self-metering, self-timing disposable device with built-in quality control. Clinical chemistry.1997;43(2):384-389.
    [84]Paek SH, Lee SH, Cho JH, Kim YS. Development of rapid one-step immunochromatographic assay. Methods.2000;22(1):53-60.
    [85]Oku Y, Kamiya K, Kamiya H, Shibahara Y, Ii T, Uesaka Y. Development of oligonucleotide lateral-flow immunoassay for multi-parameter detection. Journal of immunological methods.2001;258(1-2):73-84.
    [86]孙海翔.聚偏氟乙烯改性亲和膜及其吸附与免疫分离性能研究,[博士学位论文]:浙江大学,2006.
    [87]Scheurich P, ucer U, Kr nke M, Pfizenmaier K. Quantification and characterization of high-affinity membrane receptors for tumor necrosis factor on human leukemic cell lines. International Journal of Cancer.1986;38(1):127-133.
    [88]Kubota N, Nakagawa Y, Eguchi Y. Recovery of serum proteins using cellulosic affinity membrane modified by immobilization of Cu2+ ion. Journal of Applied Polymer Science.1996;62(8):1153-1160.
    [89]Coffinier Y, Legallais C, Vijayalakshmi MA. Separation of IgG from human plasma using thiophilic hollow fiber membranes. Journal of Membrane Science. 2002;208(1-2):13-22.
    [90]Igarashi K, David M, Larner AC, Finbloom DS. In vitro activation of a transcription factor by gamma interferon requires a membrane-associated tyrosine kinase and is mimicked by vanadate. Molecular and cellular biology. 1993;13(7):3984-3989.
    [91]Charcosset C, Su Z, Karoor S, Daun G, Colton CK. Protein A immunoaffinity hollow fiber membranes for immunoglobulin G purification:Experimental characterization. Biotechnology and bioengineering.1995;48(4):415-427.
    [92]Wei Guo. Separation and purification of horseradish peroxidase by membrane affinity chromatography. Journal of Membrane Science,2003,21 1(1):101-1 11.
    [93]刘国诠.生物工程下游技术.北京:化学工业出版社,2003,252.
    [94]Hermanson GT, Mallia AK, Smith PK. Immobilized affinity ligand techniques, CA:Academic Press San Diego,1992,137-275.
    [95]商振华,于亿年.亲和膜分离技术(Ⅱ)-方法和应用.膜科学与技术.1995;15(4):1-6.
    [96]M.E. Prudich, H. L. Chen, T. Y. Gu, R. B. Gupta, K. P. Johnston, H. Lutz, et. al. "Section 20- Alternative Separation Processes" in Perry's Chemical Engineers' Handbook [M],8th edition, R. H. Perry, C. H. Chilton, D. W. Green (editors), McGraw-Hill, New York,2006.
    [97]Anspach FB, Hilbeck O. Removal of endotoxins by affinity sorbents. Journal of Chromatography A.1995;711(1):81-92.
    [98]Lee DS, Kim BM, Seol DW. Improved purification of recombinant adenoviral vector by metal affinity membrane chromatography. Biochemical and Biophysical Research Communications.2009;378(3):640-644.
    [99]Shi W, Shen Y, Ge D, Xue M, Cao H, Huang S, et al. Functionalized anodic aluminum oxide (AAO) membranes for affinity protein separation. Journal of Membrane Science.2008;325(2):801-808.
    [100]de Aquino LCL, de Sousa HRT, Miranda EA, Vilela L, Bueno SMA. Evaluation of IDA-PEVA hollow fiber membrane metal ion affinity chromatography for purification of a histidine-tagged human proinsulin. Journal of Chromatography B. 2006;834(1-2):68-76.
    [101]Wolman FJ, Maglio DG, Grasselli M, Cascone O. One-step lactoferrin purification from bovine whey and colostrum by affinity membrane chromatography. Journal of Membrane Science.2007;288(1-2):132-138.
    [102]Ma Z, Masaya K, Ramakrishna S. Immobilization of Cibacron blue F3GA on electrospun polysulphone ultra-fine fiber surfaces towards developing an affinity membrane for albumin adsorption. Journal of membrane science. 2006;282(1-2):237-244.
    [103]Nie HL, Zhu LM. Adsorption of papain with Cibacron Blue F3GA carrying chitosan-coated nylon affinity membranes. International journal of biological macromolecules.2007;40(3):261-267.
    [104]Chao AC. Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinity sorption for tyrosinase purification with Agaricus bisporus. Journal of Membrane Science.2008;311(1-2):306-318.
    [105]Ma Z, Ramakrishna S. Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. Journal of Membrane Science.2008;319(1-2):23-28.
    [106]Mukherjee S, Roy D, Bhattacharya P. Comparative performance study of polyethersulfone and polysulfone membranes for trypsin isolation from goat pancreas using affinity ultrafiltration. Separation and Purification Technology. 2008;60(3):345-351.
    [107]Machado RL, De Arruda EJ, Santana CC, Bueno SMA. Evaluation of a chitosan membrane for removal of endotoxin from human IgG solutions. Process Biochemistry. 2006;41(11):2252-2257.
    [108]Sun HX, Zhang L, Chai H, Chen HL. Removing Endotoxin from Protein solution by Chitosan Modified Affinit yMembrane. Chinese Journal of Chemical Engineering,2005; 13(4),457-463.
    [109]Wei Z, Huang W, Li J, Hou G, Fang J, Yuan Z. Studies on endotoxin removal mechanism of adsorbents with amino acid ligands. Journal of Chromatography B. 2007;852(1-2):288-292.
    [110]胡英,刘洪来.分子工程与化学工程.化学进展,1995;7(3):235-251.
    [111]秦克诚译,理论物理学中的计算机模拟方法.北京:北京大学出版社,1996.
    [112]张晖,微孔中不同流体非平衡性质的分子动力学模拟研究,[硕士学位论文]:浙江大学,2004.
    [113]刘迎春,微孔中流体结构性质和传递性质的分子动力学模拟研究,[博士学位论文]:浙江大学,2004.
    [114]Heermann DW. Computer simulation methods in theoretical physics. Berlin Heidelberg:Springer-Verlag,1990,81.
    [115]Hlady V, Buijs J. Protein adsorption on solid surfaces. Current Opinion in Biotechnology.1996;7(1):72-77.
    [116]Morra M. On the molecular basis of fouling resistance. Journal of Biomaterials Science, Polymer Edition.2000; 11(6):547-569.
    [117]Nakanishi K, Sakiyama T, Imamura K. On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. Journal of bioscience and bioengineering.2001;91(3):233-244.
    [118]Calonder C, Tie Y, Van Tassel PR. History dependence of protein adsorption kinetics. Proceedings of the National Academy of Sciences of the United States of America.2001;98(19):10664-10669.
    [119]Malmsten M. Ellipsometry studies of the effects of surface hydrophobicity on protein adsorption. Colloids and Surfaces B:Biointerfaces.1995;3(5):297-308.
    [120]Wertz CF, Santore MM. Effect of surface hydrophobicity on adsorption and relaxation kinetics of albumin and fibrinogen:single-species and competitive behavior. Langmuir.2001;17(10):3006-3016.
    [121]Wertz CF, Santore MM. Fibrinogen adsorption on hydrophilic and hydrophobic surfaces:geometrical and energetic aspects of interfacial relaxations. Langmuir. 2002;18(3):706-715.
    [122]Wertz CF, Santore MM. Adsorption and reorientation kinetics of lysozyme on hydrophobic surfaces. Langmuir.2002;18(4):1190-1199.
    [123]Gessner A, Lieske A, Paulke BR, Miiller RH. Influence of surface charge density on protein adsorption on polymeric nanoparticles:analysis by two-dimensional electrophoresis. European journal of pharmaceutics and biopharmaceutics.2002;54(2):165-170.
    [124]Gessner A, Waicz R, Lieske A, Paulke BR, M der K, Miiller RH. Nanoparticles with decreasing surface hydrophobicities:influence on plasma protein adsorption. International journal of pharmaceutics.2000;196(2):245-249.
    [125]Giacomelli CE, Norde W. The adsorption-desorption cycle. Reversibility of the BSA-silica system. Journal of colloid and interface science.2001;233(2):234-240.
    [126]董秀丽.蛋白质与羟基磷灰石表面的相互作用机理研究,[博士学位论文]:浙江大学,2008.
    [127]Monti S. RAD 16Ⅱ β-sheet filaments onto titanium dioxide:Dynamics and adsorption properties. Journal of physical chemistry C.2007;111 (45):16962-16973.
    [128]Pitt WG, Weaver DR. Calculation of protein-polymer force fields using molecular dynamics. Journal of colloid and interface science.1997;185(1):258-264.
    [129]Yu CH, Norman MA, Newton SQ, Miller DM, Teppen BJ, Sch fer L. Molecular dynamics simulations of the adsorption of proteins on clay mineral surfaces. Journal of Molecular Structure.2000;556(1-3):95-103.
    [130]Agashe M, Raut V, Stuart SJ, Latour RA. Molecular simulation to characterize the adsorption behavior of a fibrinogen y-chain fragment. Langmuir. 2005;21(3):1103-1117.
    [1]Young TH, Huang JH, Chuang WY. Effect of evaporation temperature on the formation of particulate membranes from crystalline polymers by dry-cast process. European Polymer Journal.2002;38(1):63-72.
    [2]Kober PA. Pervaporation, perstillation and percrystallization* 1. Journal of Membrane Science.1995;100(1):61-64.
    [3]叶凌碧,刘大真,宇恒.孔径为1.2μm以下的微孔膜孔径测定方法.膜分离科学与技术.1983;3(1):54-54.
    [4]Lin DJ, Chang HH, Chen TC, Lee YC, Cheng LP. Formation of porous poly (vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. European Polymer Journal. 2006;42(7):1581-1594.
    [5]Tsai HA, Ruaan RC, Wang DM, Lai JY. Effect of temperature and span series surfactant on the structure of polysulfone membranes. Journal of Applied Polymer Science.2002;86(1):166-173.
    [6]Lai JY, Lin FC, Wang CC, Wang DM. Effect of nonsolvent additives on the porosity and morphology of asymmetric TPX membranes. Journal of Membrane Science.1996;118(1):49-61.
    [7]Sun H, Liu S, Ge B, Xing L, Chen H. Cellulose nitrate membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. Journal of Membrane Science.2007;295(1-2):2-10.
    [8]Zhao YH, Qian YL, Pang DX, Zhu BK, Xu YY. Porous membranes modified by hyperbranched polymers Ⅱ.:Effect of the arm length of amphiphilic hyperbranched-star polymers on the hydrophilicity and protein resistance of poly (vinylidene fluoride) membranes. Journal of Membrane Science.2007;304(1-2): 138-147.
    [9]Young TH, Huang JH, Chuang WY. Effect of evaporation temperature on the formation of particulate membranes from crystalline polymers by dry-cast process. European Polymer Journal.2002;38(1):63-72.
    [10]Wang X, Zhang L, Sun D, An Q, Chen H. Effect of coagulation bath temperature on formation mechanism of poly (vinylidene fluoride) membrane. Journal of Applied Polymer Science.2008;110(3):1656-1663.
    [11]Zsigmondy R, Bachmann W, On new filters, Zeitschrift fur Anorganische und Allgemeine Chemie.1918;103(1):119-128.
    [12]Lin DJ, Chang HH, Chen TC, Lee YC, Cheng LP. Formation of porous poly (vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. European Polymer Journal. 2006;42(7):1581-1594.
    [13]Cheng LP, Dwan AH, Gryte CC. Membrane formation by isothermal precipitation in polyamide-formic acid-water systems I. Description of membrane morphology. Journal of Polymer Science Part B:Polymer Physics. 1995;33(2):211-222.
    [14]Reuvers AJ, Smolders CA. Formation of membranes by means of immersion precipitation::Part Ⅱ. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. Journal of membrane science. 1987;34(1):67-86.
    [15]Baker CS, Dunn MJ, Yacoub MH. Evaluation of membranes used for eiectroblotting of proteins for direct automated microsequencing. Electrophoresis. 1991;12(5):342-348.
    [16]Caquineau H, Menut P, Deratani A, Dupuy C. Influence of the relative humidity on film formation by vapor induced phase separation. Polymer Engineering and Science.2003;43(4):798-808.
    [17]Yeow ML, Liu YT, Li K. Morphological study of poly (vinylidene fluoride) asymmetric membranes:effects of the solvent, additive, and dope temperature. Journal of Applied Polymer Science.2004;92(3):1782-1789.
    [18]Shi L, Wang R, Cao Y, Liang DT, Tay JH. Effect of additives on the fabrication of poly (vinylidene fluoride-co-hexafluropropylene)(PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science. 2008;315(1-2):195-204.
    [1]Zhao YH, Qian YL, Pang DX, Zhu BK, Xu YY. Porous membranes modified by hyperbranched polymers Ⅱ. Effect of the arm length of amphiphilic hyperbranched-star polymers on the hydrophilicity and protein resistance of poly (vinylidene fluoride) membranes. Journal of Membrane Science. 2007;304(1-2):138-147.
    [2]Young TH, Cheng LP, Lin DJ, Fane L, Chuang WY. Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer.1999;40(19):5315-5323.
    [3]Materials Data, Inc., Computer software JADE, XRD Pattern and Processing& Identification, version 3.1.
    [4]Bottino A, Camera-Roda G, Capannelli G, Munari S. The formation of microporous polyvinylidene difluoride membranes by phase separation. Journal of membrane science.1991;57(1):1-20.
    [5]Barton A.F.M., Handbook of Solubility Parameters and Other Cohesion Parameters, Florida:CRC Press,1983,153.
    [6]Lin DJ, Beltsios K, Young TH, Jeng YS, Cheng LP. Strong effect of precursor preparation on the morphology of semicrystalline phase inversion poly (vinylidene fluoride) membranes. Journal of membrane science.2006;274(1-2):64-72.
    [7]Cohen C, Tanny GB, Prager S. Diffusion-controlled formation of porous structures in ternary polymer systems. Journal of Polymer Science:Polymer Physics Edition.1979;17(3):477-489.
    [8]YilmazL, McHugh AJ. Modelling of asymmetric membrane formation. I. Critique of evaporation models and development of a diffusion equation formalism for the quench period. Journal of Membrane Science.1986;28(3):287-310.
    [9]Lin DJ, Chang HH, Chen TC, Lee YC, Cheng LP. Formation of porous poly (vinylidene fluoride) membranes with symmetric or asymmetric morphology by immersion precipitation in the water/TEP/PVDF system. European Polymer Journal. 2006;42(7):1581-1594.
    [10]Reuvers AJ, Smolders CA. Formation of membranes by means of immersion precipitation::Part II. the mechanism of formation of membranes prepared from the system cellulose acetate-acetone-water. Journal of membrane science. 1987;34(1):67-86.
    [11]Cheng LP, Dwan AH, Gryte CC. Membrane formation by isothermal precipitation in polyamide-formic acid-water systems I. Description of membrane morphology. Journal of Polymer Science Part B:Polymer Physics. 1995;33(2):211-222.
    [12]Buonomenna MG, Macchi P, Davoli M, Drioli E. Poly (vinylidene fluoride) membranes by phase inversion:the role the casting and coagulation conditions play in their morphology, crystalline structure and properties. European Polymer Journal. 2007;43(4):1557-1572.
    [13]Salimi A, Yousefi AA. Conformational changes and phase transformation mechanisms in PVDF solution-cast films. Journal of Polymer Science Part B: Polymer Physics.2004;42(18):3487-3495.
    [14]Khayet M, Matsuura T. Preparation and characterization of poly vinylidene fluoride membranes for membrane distillation. Ind Eng Chem Res. 2001;40(24):5710-5718.
    [15]Wang D, Li K, Teo WK. Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes. Journal of Membrane Science. 1999; 163(2):211-220.
    [16]Bowen WR, Gan Q. Properties of microfiltration membranes:Adsorption of bovine serum albumin at polyvinylidene fluoride membranes. Journal of colloid and interface science.1991;144(1):254-262.
    [17]Baker CS, Dunn MJ, Yacoub MH. Evaluation of membranes used for electroblotting of proteins for direct automated microsequencing. Electrophoresis. 1991;12(5):342-348.
    [18]俞三传.浸入沉淀相转化法制膜.膜科学与技术.2000;20(5):36-41.
    [19]周海平.密度梯度结构的聚砜超滤膜的制备研究,[硕士学位论文]:浙江大学,2006.
    [1]Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. Journal of Biological Chemistry. 1987;262(21):10035-10038.
    [2]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.1970;227(5259):680-685.
    [3]Wu L, Sun J, Wang Q. Poly (vinylidene fluoride)/polyethersulfone blend membranes:effects of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology. Journal of Membrane Science. 2006;285(1-2):290-298.
    [4]尹秀丽,邓桦,杨溥臣PVDF/PS共混超滤膜的研究.水处理技术.1997;23(2):131-134.
    [5]孙海翔.聚偏氟乙烯改性亲和膜及其吸附与免疫分离性能研究,[博士学位论文]:杭州,浙江大学,2006.
    [6]于志辉,钱英.聚偏氟乙烯/聚丙烯腈共混超滤膜的研究.膜科学与技术.2000;20(5):10-15.
    [7]负延滨,李继定,马润宇PVDF/PS共混微孔膜的制备.膜科学与技术.2005;25(5):10-14.
    [8]Uragami T, Fujimoto M, Sugihara M. Studies on syntheses and permeabilities of special polymer membranes.28. Permeation characteristics and structure of interpolymer membranes from poly (vinylidene fluoride) and poly (styrene sulfonic acid). Desalination.1980;34(3):311-323.
    [9]Nunes SP, Peinemann KV. Ultrafiltration membranes from PVDF/PMMA blends. Journal of Membrane Science.1992;73(1):25-35.
    [1]Water K. Removing nucleic acid and endotoxin from solution using chitosan treatment, Japanese Patent:07.289,238,1995.
    [2]Rustici A, Velucchi M, Faggioni R, Sironi M, Ghezzi P, Quataert S, et al. Molecular mapping and detoxification of the lipid A binding site by synthetic peptides. Science.1993;259(5093):361-365.
    [3]Anspach FB. Endotoxin removal by affinity sorbents. J. Biochem. Biophys. Methods.2001;49(1-3):665-681.
    [4]Wolf F, Deckwer D. Model studies on the mechanism of endotoxin adsorption on flat-sheet microfiltration membrane adsorbers. The Canadian Journal of Chemical Engineering.1999;77(5):921-929.
    [5]Frecer V, Ho B, Ling Ding J. Molecular dynamics study on lipid A from Escherichia coli:insights into its mechanism of biological action. Biochimica et Biophysica Acta (BBA)-Biomembranes.2000;1466(1-2):87-104.
    [6]郝卫强.膜亲和色谱和反相液相柱色谱中传质过程的研究.[博士学位论文]:大连,中国科学院研究生院(大连化学物理研究所),2005.
    [7]Wei Z, Huang W, Li J, et al.Studies on endotoxin removal mechanism of adsorbents with amino acid ligands. Journal of Chromatography B,2007;852(1-2):288-292.
    [8]Lee SH, Kim JS, Kim CW. Optimization of buffer conditions for the removal of endotoxins using Q-sepharose. Process Biochemistry.2003;38(7):1091-1098.
    [9]Eiji Iritani, Nobuyuki Katagiri, Tsutomu Kawabata, Yukiko Takaishi.Chiral separation of tryptophan by single-pass affinity inclined ultrafiltration using hollow fiber membrane module[J]. Separation and Purification Technology,2009;64(3): 337-344.
    [10]Yilmaz M, Bayramolu G, Arlca MY. Separation and purification of lysozyme by Reactive Green 19 immobilised membrane affinity chromatography. Food Chemistry. 2005;89(1):11-18
    [11]Van Lenten BJ, Fogelman AM, Haberland ME, Edwards PA. The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharide. Proceedings of the National Academy of Sciences of the United States of America.1986;83(8):2704-2708.
    [1]Gray JJ. The interaction of proteins with solid surfaces. Current Opinion in Structural Biology.2004;14(1):1 10-115.
    [2]Kandori K, Masunari A, Ishikawa T. Study on adsorption mechanism of proteins onto synthetic calcium hydroxyapatites through ionic concentration measurements. Calcified tissue international.2005;76(3):194-206.
    [3]Chen X, Wang Q, Shen J, Pan H, Wu T. Adsorption of LRAP on hydroxyapatite (001) surface through-COO-claws. Journal of Physical Chemistry.2007,111(3): 1284-1290.
    [4]Nokihara K. Procedures leading to primary structure determination of proteins in complex mixtures by gel electrophoresis and modem micro-scale analyses. Analytica chimica acta.1998;372(1-2):21-32.
    [5]Becker O M, Jr MacKerell A D, Roux B, Watanabe M. Computational Biochemistry and Biophysics, New York:Marcel Dekker,2001.
    [6]Raffaini G, Ganazzoli F. Molecular Dynamics Simulation of the Adsorption of a Fibronectin Module on a Graphite Surface. Langmuir.2004;20(8):3371-3378.
    [7]Foloppe N, MacKerell Jr AD. All-atom empirical force field for nucleic acids:I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry.2000;21(2):86-104.
    [8]MacKerell Jr AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck JD, Field MJ, et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. Journal of Physical Chemistry B.1998;102(18):3586-3616.
    [9]Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society.1984;106(3):765-784.
    [10]Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society.1996;118(45):11225-11236.
    [11]Halgren TA. MMFF VI. MMFF94s option for energy minimization studies. Journal of Computational Chemistry.1999;20(7):720-729.
    [12]Mayo SL, Olafson BD, Goddard WA. DREIDING:a generic force field for molecular simulations. Journal of Physical Chemistry.1990;94(26):8897-8909.
    [13]Rappe AK, Casewit CJ, Colwell KS, Goddard Iii WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society.1992;114(25):10024-10035.
    [14]Sun H. COMPASS:an ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds. Journal of Physical Chemistry B.1998;102(38):7338-7364.
    [15]Lifson S, Warshel A. Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules. The Journal of Chemical Physics.1968;49(11):5116-5129.
    [16]Allinger NL, Tribble MT, Miller MA, Wertz DH. Conformational analysis. LXIX. Improved force field for the calculation of the structures and energies of hydrocarbons. Journal of the American Chemical Society.1971;93(7):1637-1648.
    [17]Allinger NL. Conformational analysis.130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. Journal of the American Chemical Society. 1977;99(25):8127-8134.
    [18]Bartell LS. On the effects of intramolecular van der Waals forces. The Journal of Chemical Physics.1960;32(3):827-831.
    [19]Allinger NL, Yuh YH, Lii JH. Molecular mechanics. The MM3 force field for hydrocarbons. Journal of the American Chemical Society.1989;111(23):8551-8566.
    [20]Allured VS, Kelly CM, Landis CR. SHAPES empirical force field: new treatment of angular potentials and its application to square-planar transition-metal complexes. Journal of the American Chemical Society.1991;113(1):1-12.
    [21]Allinger NL, Fan Y. Molecular mechanics studies (MM4) of sulfides and mercaptans. Journal of Computational Chemistry.1997;18(15):1827-1847.
    [22]吉青,杨小震.分子力场发展的新趋势.化学通报.2005;68(2):111-116.
    [23]Berendsen HJC, Postma JPM, Van Gunsteren WF, Hermans J.Interaction models for water in relation to protein hydration. Intermolecular forces. Netherlands:Pullman, B., Ed., Reidel-Dordrecht,1981;331.
    [24]Verlet L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review,1967,159(1):98-103.
    [25]潘海华.表面活性剂在油水界面行为研究,[博士学位论文]:杭州,浙江大学,2003.
    [26]曹茂盛,黄龙男,陈铮.材料现代设计理论与方法.哈尔滨:哈尔滨工业大学出版社,2002,132-135.
    [27]董秀丽.蛋白质与羟基磷灰石表面的相互作用机理研究,[博士学位论文]:杭州,浙江大学,2008.
    [28]Casida ME. Recent advances in density functional methods. Part I, Singapore: World Scientific,1995.
    [29]Chong DP. Recent Advances in Density Functional Methods. Singapore:World Scientific,1995.
    [30]Lovell T, Himo F, Han WG, Noodleman L. Density functional methods applied to metalloenzymes. Coordination Chemistry Reviews.2003;238:211-232.
    [31]Springborg M. Density-functional methods in chemistry and materials science, New York:Wiley Chichester,1997.
    [32]Zhao XG, Richardson WH, Chen JL, Li J, Noodleman L, Tsai HL, et al. Density Functional Calculations of Electronic Structure, Charge Distribution, and Spin Coupling in Manganese-Oxo Dimer Complexes. Inorganic Chemistry. 1997;36(6):1198-1217.
    [33]Noodleman L, Baerends EJ. Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-X. alpha, valence bond theory. Journal of the American Chemical Society.1984; 106(8):2316-2327.
    [34]Van Gisbergen SJA, Groeneveld JA, Rosa A, Snijders JG, Baerends EJ. Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to MnO4-, Ni (CO) 4, and Mn2 (CO) 10. Journal of Physical Chemistry A.1999;103(34):6835-6844.
    [35]Lindahl E, Hess B, van der Spoel D. GROMACS 3.0:a package for molecular simulation and trajectory analysis. Journal of Molecular Modeling. 2001;7(8):306-317.
    [36]Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K, et al. Mechanical unfolding intermediates in titin modules. Nature. 1999;402(6757):100-103.
    [37]Sotomayor M, Schulten K. Single-molecule experiments in vitro and in silico. Science Signaling.2007;316(5828):1144-1148.
    [38]Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L, et al. Crystal structure of BMP-9 and functional interactions with pro-region and receptors. Journal of Biological Chemistry.2005;280(26):25111-25118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700