铰接式履带车辆行驶性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铰接式履带车辆因其拥有极高的路面通过性,被广泛应用于国防、森林消防及抢险救灾等事业中。铰接式履带车辆两车体之间的铰接机构可以实现俯仰、转向和翻转三个自由度的运动,其中前两个自由度可以通过液压油缸进行主动控制,使车辆行驶在特殊地形时履带能够更充分地与地面接触,从而获得更大的牵引力,增强车辆的通过性。
     本文对车辆的行走机构与铰接机构进行了运动学和动力学分析,对车辆进行了牵引性能计算,根据行走与转向机构的特点,对车辆原地转向和转向行驶进行了动力学分析,为后面的仿真工作提供了理论基础。
     本文利用RecurDyn软件中的AutoDesign模块对铰接转向机构的铰点位置进行了优化,通过试验设计得出了各参数对目标值的影响分析,经过铰点位置优化后的铰接转向机构比初始设计的机构综合性能更好。
     应用RecurDyn软件中的Professional模块和Colink模块建立了铰接履带车辆的虚拟样机和驱动控制模型。分别在硬质路面、粘土、重粘土和干沙上进行60%坡度的爬坡过程仿真,只有在粘土路面时车辆不能爬上60%坡,而只能爬上坡度为40%的坡,并将差速器闭锁和工作两种状态的车辆通过性能进行对比,得知将差速器闭锁可以大幅提高车辆的爬坡通过性,但在干沙路面上时的影响很小,主要是因为干沙路面可以提供车辆的最大牵引力要比其它路面大的多;同时进行了履刺高度对通过性影响的研究,加大履刺高度可以提高车辆在粘性土壤上的通过性,也对部分行走机构失效后的车辆爬坡通过性进行研究,可知在爬坡时后车履带驱动时的通过性要大于前车履带驱动。
     对铰接履带车辆进行原地转向过程仿真,得出在不同土壤上转向的所需的转向力矩以及转向时的前后车稳定性,在行驶转向仿真过程中,建立了以车速为控制目标的PID驱动模型,分析了行驶车速、前后车质量比、铰点到前后车几何中心的距离和转向角对车辆转向性能的影响,主要包括转向半径、转向不准确度、驱动力增加率和转向驱动力矩等,通过对车辆转向过程的仿真,得到车辆在转向时的性能,为车辆在驾驶和以后的改进设计方面有一定的指导作用。
     通过对铰接式履带车辆越4m宽深沟和1.5m高垂直障碍的仿真,得出乍辆在通过这两种障碍时的稳定性,俯仰油缸的受力情况,各个轮系的冲击载何,车体质心处和驾驶员处的各方向加速度,用1/3倍频的加权加速度均方根值来评价其通过障碍时的平顺性。
     仿真分析结果表明,铰接式履带车辆虚拟样机模型建立正确,能够顺利完成爬60%坡、转向、越4m宽深沟和1.5m高的障碍,满足车辆设计指标的要求。车辆在越障过程有很好的稳定性,人没有不舒适的感觉。同时,证明应用多体动力学理论的虚拟样机技术在铰接车辆设计过程中的可行性,减少了实验成本,更有利于铰接式履带车辆行驶理论的研究,掌握铰接式履带车辆的关键技术。
As articulated tracked vehicle has a good traffic ability, it is extensively used in military affairs, fire fighting of forest region and succor campaign etc. The two vehicle-bodies of articulated tracked vehicle are capable of locomotion of three freedoms by articulated mechanism, including yaw, pitch and roll. The yaw and pitch motion will be controlled by two series of hydraulic cylinder, and they make the track and ground match well. More uniform pressure can be achieved, thus the vehicle maintains greater traction. It enhances the traffic ability of the articulated tracked vehicle.
     Analysis of the kinematics and dynamics of the travel mechanism and articulated mechanism is showed in the paper. In addition, the traction performance of the articulated tracked vehicle is calculated, and dynamics of pivot steering and proriding steering basing on the characteristic of the mobile mechanism and articulated mechanism is researched. These provide the theory for vehicle simulation.
     In the paper, the hinge points location of articulated mechanism is optimized by AutoDesign module of RecurDyn software, and effect analysis of each parameter is showed after the Design of Experiment (DOE). The comprehensive performance of optimized articulated mechanism is better than primary articulated mechanism.
     The virtual prototype of articulated tracked vehicle and driving model are set up by Professional and Colink module in RecurDyn software in the paper. The results of simulating the process of climbing slope with rigid road, clay, heavy clay and sand show that the vehicle can climb up a sixty percent slope except clay, but it can climb up a forty percent slope with clay. The research also reveals that the traffic ability will rise up if the differential is turned off. However, it is not obvious on the sand, because obtaining the max traction of the vehicle is greater on the sand. A certain extent, the height of grouser will effect the traffic ability. If the grouser is higher, the traffic ability only on the viscous road will be better. Result of studying the climbing traffic ability after the travel mechanism failed partly indicates that it will have a better climbing traffic ability when the rear part is driven.
     After simulated the pivot steering of articulated tracked vehicle, get the steering torque on different road, and get the steering stability of both front part and rear part. In the riding steering simulation, set up a PID control model to drive by speed, analyse the effects on vehicle steering capability(such as, effect on steering radius, steering inaccurateness, and steering torque etc.)about speed, the mass ratio of front part to rear part, distance between hinge point and the geometry center of front part, distance between hinge point and the geometry center of rear part and steering angle. The simulation on steering reveals the performances of vehicle steering. It can direct people to drive and manipulate the vehicle well.
     The simulation on passing a ditch with 4meter depth and a perpendicular obstruction with 1.5meter height shows the stability of the vehicle, the force state on pitching hydraulic cylinders, dynamic load on each wheel system, the PSD (power spectral density) based on the acceleration in three direction in both the center mass of vehicle body and driver seat, evaluate the ride comfort when pass obstructions by weighted acceleration RMS (root mean square) of 1/3 frequency multiplication.
     The result of simulation shows that the virtual prototype of articulated tracked vehicle is correct, and it can climb up sixty percent slope, steer, pass 4m breadth ditch and 1.5m height obstruction, so it can meet the vehicle design requirement. The driver will not feel uncomfortable when the vehicle is passing an obstruction. In addition, it proves that applying virtual prototype technology which is based on multi-body dynamics to articulated tracked vehicle design is feasible. Especially, the examine cost is reduced, and it is useful for studying articulated tracked vehicle. The method in the paper is valuable to researching and designing other mechanisms.
引文
[1]陈金涛等.钴结壳采矿铰接式履带作业车仿真研究[D].中南大学,2007.
    [2]赵辉.铰接履带式海底作业车行走与控制仿真研究[D].中南大学,2008.
    [3]陈金涛等.铰接式履带车辆转向特性仿真研究[J].计算机仿真,2007(12):155-158.
    [4]王国强,程悦荪,马若丁.铰接式履带车辆的结构参数对转向性能的影响[J].吉林工业大学学报,1997(02):7-12.
    [5]Fahhim F. Alhimdani. Steering analysis of articulated tracked vehicles[J]. Journal of Terramechanics,1982,19:195-209.
    [6]K. Watanabe, M. Kitano. Study on steerability of articulated tracked vehicles-part 1, Theoretical and experimental analysis[J]. Journal of Terramechanics,1986,23:69-83.
    [7]S. Sasaki, T. Yamada, E. Miyata. Articulated tracked vehicle with four degrees of freedom[J]. Journal of Terramechanics,1991,28:189-199.
    [8]焦小娟,张湝渭,彭斌彬.RecurDyn多体系统优化仿真技术[M].清华大学出版社,2010.
    [9]张光裕,许纯新.工程机械底盘设计[M].机械工业出版社,1987.
    [10]李太杰.工程机械底盘理论与性能[M].人民交通出版社,1989.
    [11]范成建.虚拟样机软件MSC.ADAMS应用与提高[M].机械工业出版社,2006.
    [12]刘述学.工程机械地面力学[M].机械工业出版社,1992.
    [13]唐云岗等.基于ADAMS/ATV的铰接式坦克越壕性能仿真[J].兵工自动化,2009(03):10-12.
    [14]朱博.装载机转向机构优化设计[J].工程机械,2011,42:45-47.
    [15]周林松.装载机铰接转向机构铰点位置优化设计[J].工程机械,2007,38:25-28.
    [16]张文春.汽车理论[M].机械工业出版社,2005.
    [17]J. G. Hetherington. Tracked vehicle operations on sand-investigations at model scale[J]. Journal of Terramechanics,2005,42:65-70.
    [18]ZHENG-DONG MA, N.C.PERKINS. A Super-Element of Track-Wheel-Terrain Interaction for Dynamic Simulation[J]. Multibody System Dynamics,2006,15: 351-372.
    [19]Jonathan J. Halvorson, Donald K. McCool, Larry G. King, Lawrence W. Gatto. Soil compaction and over-winter changes to tracked-vehicle ruts, Yakima Training Center, Washington [J]. Journal of Terramechanics,2001,38:131-151.
    [20]朱艳芳,翟雁,郭晓波.基于ADAMS的履带车辆行走系统性能的仿真[J].传动技术,2008(02):29-31.
    [21]马伟标,王红岩,程军伟.基于ATV分析履带预张力对车辆软土通过性能的影响[J].装甲兵工程学院学报,2005(04):59-62.
    [22]O. Benoit, Ph. Gotteland, A. Quibel. Prediction of trafficability for tracked vehicle on broken soil:real size tests [J]. Journal of Terramechanics,2003,40:135-160.
    [23]W.Y. Park, Y.C.Chang, S.S. Lee, J.H. Hong, J.G. Park, K.S. Lee. Prediction of the tractive performance of a flexible tracked vehicle[J]. Journal of Terramechanics, 2008,45:13-23
    [24]T. NAKANISHI, A. A. SHABANA. On the Numerical Solution of Tracked Vehicle Dynamic Equations [J]. Nonlinear Dynamics,1994(6):391-417.
    [25]Gianni Ferretti, Roberto Girelli. Modelling and simulation of an agricultural tracked vehicle[J]. Journal of Terramechanics,1999,36:139-158.
    [26]Okhyun Kang, Youngjin Park, Youn-sik Park, Moonsuk Suh. Look-ahead preview control application to the high-mobility tracked vehicle model with trailing arms[J]. Journal of Mechanical Science and Technology,2009(13):914-917.
    [27]陈淑艳.移动机器人履带行走装置的构型与机动性能研究[D].扬州大学,2008.
    [28]吴国锐.深海履带式钴结壳采矿车工作稳定性仿真研究[D].中南大学,2007.
    [29]Seung-Bok Choi, Dong-Won Park, Moon-Suk Suh. Fuzzy Sky-Ground Hook Control of a Tracked Vehicle Featuring Semi-Active Electrorheological Suspension Units[J]. Journal of Dynamic Systems, Measurement, and Control,2002,124: 150-157.
    [30]He Yan, Zhang Xiaoyan. Dynamics Modeling and Simulation for Tracked Vehicles[C]. Proceedings of the 27th Chinese Control Conference,2008.
    [31]J.Y. Wong. Development of high-mobility tracked vehicles for over snow operations [J]. Journal of Terramechanics,2009,46:141-155.
    [32]李炳.海底车体转向式履带车行走性能的仿真研究[D].中南大学,2008.
    [33]韩宝坤等.高速履带车辆性能仿真及影响因素分析[J].兵工学报,2004(05):513-516.
    [34]Sachiko Wakabayashi, Hitoshi Sato, Shin-Ichiro Nishida. Design and mobility evaluation of tracked lunar vehicle[J]. Journal of Terramechanics,2009,46:105-114.
    [35]Tatsuro Muro, Soichiro Kawahara, Takahiro Mitsubayashi. Comparison between centrifugal and vertical vibro-compaction of high-lifted decomposed weathered granite sandy soil using a tracked vehicle [J]. Journal of Terramechanics,2001,38: 15-45.
    [36]D.T. Tran, J. O'Brien, T. Muro. An optimal method for the design of a robotic tracked vehicle to operate over fresh concrete under steering motion[J]. Journal of Terramechanics,2002,39:1-22.
    [37]J. Yamakawa, K. Watanabe. A spatial motion analysis model of tracked vehicles with torsion bar type suspension[J]. Journal of Terramechanics,2004,41:113-126.
    [38]董新建.履带车辆高速转向动力学仿真[J].计算机辅助工程,2006(S1):277-280
    [39]张永锋等.履带车辆动力性仿真研究[J].装甲兵工程学院学报,2003(03):37-39.
    [40]Bo Zhou, Jianda Han. A Comparison of Nonlinear Estimation Methods for Tracked Vehicle with Slipping[C].2007 IEEE International Conference on Control and Automation.
    [41]Hansik Ryu. Dynamic Modeling and Experiment of Military Tracked Vehicle[C]. SAE,2006-01-0929.
    [42]M. K. Hada, V S Raghuvanshi. Modeling of Tracked Vehicle Incorporating Non-Linear, Sequential Heavy Duty Hydro-Pneumatic Strut[C]. SAE,2005-26-070.
    [43]Luis G. Maqueda, Ahmed A. Shabana. Multibody System/Finite Element Simulation of Belt Drives and Rubber Tracked Vehicles[C]. SAE,2008-01-2668.
    [44]马吉胜.基于虚拟样机技术的自行火炮接地压力分布研究[J].计算机仿真,2005(07):139-141.
    [45]马星国等.某高速履带式装甲车悬挂系统动力学仿真[J].中国工程机械学报,2009(01):36-40.
    [46]Mauro Velardocchia, Enzo Rondinelli, Stefano Tornincasa, Elvio Bonisoli. Multi-body Versus Block-Oriented Approach in Suspension Dynamics of a Military Tracked Tank[C]. SAE,2009-01-0443.
    [47]M. K. Ravishankar. Ride Dynamic Analysis of a Military Tracked Vehicle:A Comparison of Torsion Bar Suspension with Hydrogas Suspension[C]. SAE, 2008-01-0780.
    [48]Yunan Zhang, Yunshan Ge. Turning Control and Analysis for a Tracked Vehicle with Electric Transmission System[C]. SAE,2004-01-1592.
    [49]Jesper Slattengren. Utilization of ADAMS to Predict Tracked Vehicle Performance[C]. SAE,2000-01-0303.
    [50]陈兵等.履带车辆半主动悬挂多体及控制联合仿真研究[J].计算机仿真,2006(04):248-252.
    [51]秦玉英.汽车行驶平顺性建模与仿真的新方法研究及应用[D].吉林大学,2009.
    [52]Mike McCullough, Ashok Khubchandani, Albert Shyu, Darren Simoni. Verification and Fidelity of High Mobility Tracked Vehicle Dynamic Models[C]. SAE, 2006-01-0928.
    [53]Bogdan Thaddeus Fijalkowski. Novel mobility and steerability enhancing concept of all-electric intelligent articulated tracked vehicles[C]. IEEE,2003.
    [54]A. Falk. Advanced mobility in difficult terrain[J]. Journal of Terramechanics,2004, 41:101-111.
    [55]N. L. Azad, A. McPhee, J. Analysis of Jackknifing in Articulated Steer vehicles[C]. IEEE,2005.
    [56]Christian R Kelber, S Osorio, Leandro B Becker. Assistance controller for driving backwards and parking an articulated vehicle[C]. IEEE,2008.
    [57]Reza Ghabcheloo, Mika Hyvonen. Modeling and motion control of an articulated-frame-steering hydraulic mobile machine[C].17th Mediterranean Conference on Control & Automation,2009.
    [58]A. Hemami. Motion Dynamics and Path Tracking Control Problem of a Dual-Unit Articulated Vehicle[C]. Proceedings of the 2002 IEEE,2002.
    [59]NASSER LASHGARIAN AZAD, AMIR KHAJEPOUR, JOHN MCPHEE. Robust state feedback stabilization of articulated steer vehicles[J]. Vehicle System Dynamics, 2007,45(3):249-275.
    [60]Soo-Ho Lee, Tae-Won Park. The articulated vehicle dynamic analysis using the AWS (All Wheel Steering) ECU (Electronic Control Unit) test[J]. Journal of Mechanical Science and Technology,2009,23:923-926.
    [61]GB/T 4970-2009,汽车平顺性实验方法[S].中国标准出版社,2009.
    [62]ISO2631-1:1997(E), Mechanical vibration and shock Evaluation of human exposure to whole-body vibration[S]. INTERNATIONAL STANDARD,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700