功能化介孔材料的制备及其在金属污染物选择性分离与生物传感中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料是一类孔径在2-50nm之间、孔径分布窄且具有规则孔道结构的无机多孔材料。由于其具有比表面积大,传质均一,吸附容量高等特性,逐渐应用于分离科学,特别是其特有的长程有序介孔结构和孔道内外丰富的硅醇基为其功能化组装提供了有利条件。
     本课题采用对目标化合物具有特定识别功能的分子印迹技术合成具有介孔结构的高选择性、大吸附容量、优良再生性能的新型固相萃取吸附剂,建立针对目标污染物的靶向分离/富集体系,探讨其在环境金属污染物选择性分离/富集中的应用;同时通过制备金属掺杂改性的介孔材料并对酶进行固载,探讨改性介孔材料的电催化性质和固载酶的生物催化活性。主要研究结果如下:
     1.表面印迹改性介孔材料的制备及其表征
     应用接枝共聚法和溶胶凝胶法结合表面印迹技术合成了能选择性吸附模板离子Co(Ⅱ)、Pb(Ⅲ)和Cr(Ⅲ)的表面印迹改性介孔材料,运用FT-IR、SEM、XRD、TEM及N2吸附-脱附实验等手段对印迹聚合物进行了表征,证明合成的印迹聚合物具有高度有序的介孔结构。
     2.表面印迹改性介孔材料在环境金属污染物选择性分离/富集中的应用研究
     (1)Co(Ⅱ)在Co(Ⅱ)-IIP的吸附行为符合准二级反应动力学方程,吸附过程受粒子内扩散模型控制。Co(Ⅱ)-IIP对溶液中Co(Ⅱ)的吸附行为与Langmuir方程较为符合,室温下最大理论吸附容量为39.26mg/g。Co(Ⅱ)-IIP比非印迹聚合物对Co(Ⅱ)具有更好的亲和力和选择性。吸附的Co(Ⅱ)可定量洗脱,吸附剂可重复使用。
     (2)Pb(Ⅱ)-IIP对Pb(Ⅱ)的吸附表现出快的吸附速率、高选择性和令人满意的吸附容量。吸附行为符合准二级动力学方程和Langmuir等温吸附模型,吸附过程受内扩散和表面反应过程共同控制,孔扩散比膜扩散起更加主导的作用。该吸附剂用于水样和泥土样品中Pb(Ⅱ)的分离和测定,效果满意。
     (3)建立了以Cr(Ⅲ)-IIP为固相萃取吸附剂,ICP-AES和UV为检测手段,对Cr(Ⅲ)和Cr(Ⅳ)进行形态分析和分离/富集/测定的新方法。比较了Cr(Ⅲ)印迹离子在Cr(Ⅲ)-IIP和非印迹聚合物上的吸附动力学、热力学行为,研究了两者对印迹离子的选择性识别能力,表明Cr(Ⅲ)-IIP对Cr(Ⅲ)具有高的选择性和理想的吸附容量。用于实际样品测定,效果满意。
     3.金属掺杂改性介孔材料的制备及其在生物传感中的应用研究
     (1)采用聚合物物理包埋法制备了纳米CoMCM-41修饰玻碳电极并用SEM进行了表征。用循环伏安(CV)和差示脉冲电流法(DPV)研究了抗坏血酸(AA)和多巴胺(DA)在修饰电极上的电化学行为,得到了氧化电位完全分开的电位型传感器。传感器具有良好的选择性、重现性及高灵敏度,可用于实际样品中AA和DA的同时测定。
     (2)利用电沉积法制备了纳米NiMCM-41修饰电极膜并用于固定辣根过氧化物酶(HRP)。以对苯二酚为电子媒介体,HRP对过氧化氢响应的线性范围为3.52×10-61.31×10-3mol/L,检出限为1.17×10-6mol/L(S/N=3),米氏常数值为1.47mmol/L,说明固定化的HRP有较高的活性,且与H202有较强的亲和能力。
     (3)利用常压微波法合成了TiSBA-15改性介孔材料,通过一步电沉积法将TiSBA-15、CTS和乙酰胆碱酯酶(AChE)共固定于金电极表面。底物乙酰硫代胆碱在修饰电极上具有稳定的电化学响应,有机磷农药西维因对AChE抑制效率在0.005-0.1μg/mL和0.5-5μg/mL两段线性范围内与其浓度呈线性关系,检测限为0.003μg/mL,传感器具有良好的稳定性和重现性。
     (4)选择与葡萄糖氧化酶(GOD)分子尺寸相当的TiSBA-15介孔材料,一步电沉积法制备了GOD/TiSBA-15/CTS复合膜化学修饰电极。在复合膜上实现了GOD的直接电化学,GOD对葡萄糖有良好的电催化活性,线性范围0.02-10mmol/L,米氏常数值2.2mmol/L,建立了无试剂型葡萄糖生物传感器制备的新方法。
Mesoporous materials are inorganic porous material with regular pore structure and narrow pore size distributions between 2 and 50 nm. Mesoporous materials have been gradually applied in separation due to their large surface area, homogeneous transfer and high adsorption capacity. Especially the long-range ordered mesoporous structure and well modified surface properties with abundant Si-OH active bonds inside and outside of the pore walls which provide advantageous conditions for functionalization assembling.
     In this study, mesoporous structure sorbents of high selectivity, large adsorption capacity and good regeneration capability were synthesized by molecular imprinted technology which has specified recognition capability towards target compound. New targeted separation/pre-enrichment system has been developed. Meanwhile, appropriate immobilization technology of protein by metal doping modification mesoporous materials has been studied. The electrocatalysis activity of metal containing mesoporous material and the immobilized enzyme were investigated. The main conclusion included the following items:
     1. The preparation of surface imprinting modified mesoporous materials
     Surface imprinting modified mesoporous materials applied in selective adsorption of Co(II), Pb(II) and Cr(III) were prepared by graft polymerization and sol-gel reaction with the surface imprinting technique on the support of silica mesoporous material. The prepared polymer was characterized by FT-IR, SEM, XRD、TEM and N2 adsorption-desorption isotherm. The results showed that the polymer possessed high ordered mesoporous structure.
     2. The application of surface imprinting modified mesoporous materials in selective separation/enrichment of environmental metal pollutants
     (1) It was found that the pseudo-second-order model best correlated the kinetic data of Co(II) adsorption onto Co(II)-IIP. The adsorption process was controlled by the intraparticle diffusion mechanism. Langmuir model fitted the experiment data well and the maximum calculated capacity of Co(II) reached 39.26 mg/g. Co(II)-IIP showed high affinity and selectivity for template ion compared with NIP. Co(II) adsorbed to the adsorbent could be eluted quantitatively. Co(II)-IIP is a regenerable SPE adsorbent of good selectivity.
     (2) Pb(II)-IIP showed fast kinetics, high selectivity and satisfied adsorption capacity for adsorption of Pb(II). Pb(II) adsorption process over Pb(II)-IIP followed pseudo-second-order reaction kinetics and the Langmuir adsorption model. The adsorption process was controlled by intraparticle diffusion mechanism together with external mass transfer and the pore diffusion was more dominant than film diffusion. The sorbent was applied to the selective separation and determination of Pb(II) in water and sediment samples with satisfactory results.
     (3) A new SPE method for the speciation, separation, preconcentration and determination of Cr(III) and Cr(VI) by ICP-AES and UV on mesoporous imprinted polymer adsorbent was developed. The adsorption kinetics, thermodynamics behavior and recognizing ability towards Cr(III) on imprinted and non imprinted polymer were compared. The results showed that Cr(III)-IIP had higher selectivity and larger Langmuir adsorption capacity of 38.50 mg/g. The proposed method has been successfully applied in the determination and speciation of chromium in natural water samples with satisfactory results.
     3. The preparation of metal ion doping modified mesoporous materials and research of application in biosensing
     (1) Nano CoMCM-41 modified glassy carbon electrode has been fabricated by polymer imbedded method and characterized by SEM. The modified electrode exhibited significant sensitization and electro-separation effect towards AA and DA. With potential difference of 310 mV, it was possible to obtain potentiometric sensor for determination of AA and DA simultaneously.
     (2) Nano NiMCM-41 film modified electrode has been fabricated by coelectrodeposition method to immobilize horseradish peroxidase (HRP). HRP could maintain its bioactivity and showed linear response to hydrogen peroxide in the range of 3.52×10-6~1.31×10-3mol/L in the presence of hydroquinone with detection limit of 1.17×10-6mol/L (S/N=3). The Michaelis constant was 1.47 mmol/L. The biosensor showed good stability and reproducibility
     (3) TiSBA-15 was synthesized under normal pressure by microwave irradiation. Composites of TiSBA-15, CTS and AChE were immobilized on Au electrode by one-step electrodeposition method. Stable electrochemical response of acetylthiocholine was obtained on modified electrode which showed that AChE retained good catalytic activity. The carbaryl inhibition ratio was proportional to its concentration in two ranges from 0.005 to 0.1μg/mL and 0.5 to 5μg/mL with the detection limit of 0.003μg/mL. The biosensor showed good reproducibility and stability.
     (4) One-step electrodeposition method has been applied for preparation of TiSBA-15/CTS/GOD composites film modified electrode. The uniform pores of TiSBA-15 allowed to controlling the adsorption of enzyme molecules on the basis of size. Direct electrochemistry was investigated on the film and the immobilized GOD displayed an excellent electrochemical response towards the electrocatalytic oxidation of glucose in the presence of oxygen. The linear range was 0.02-10 mmol/L and the Michaelis constant was 2.2 mmol/L. A new method for fabricating reagentless glucose biosensor has been developed.
引文
[1]刘健,杨启华,张磊,等.有机-无机杂化氧化硅基介孔材料[J].化学进展,2005,17(5):809-817.
    [2]Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc,1992,114(27):10834-10843.
    [3]Kresge L T, Leonomicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359:710-712.
    [4]Yonemitsu M, Tanaka Y, Iwamoto M. Metal ion-planted MCM-41.1. planting of manganese(II) ion into MCM-41 by a newly developed template-ion exchange method[J]. Chem. Mater.,1997,9(12):2679-2681.
    [5]Ryoo R, Ko C H, Kim J M, et al. Preparation of nanosize Pt clusters using ion exchange of [Pt(NH3)4]2+inside mesoporous channel of MCM-41[J]. Catal. Lett.,1996,37(1-2):29-33.
    [6]Badiei A R, Bonneviot L. Modification of mesoporous silica by direct template ion exchange using cobalt complexes[J]. Inorg. Chem.,1998,37(16):4142-4145.
    [7]Ziolek M, Nowak I, Kilos B, et al. Template synthesis and characterisation of MCM-41 mesoporou molecular sieves containing various transition metal elements—TME(Cu, Fe, Nb, V, Mo)[J]. J. Phys. Chem. Solids,2004,65(2-3):571-581.
    [8]Wu C, Gao Q, Hu J, et al. Rapid preparation, characterization and hydrogen storage properties of pure and metal ions doped mesoporous MCM-41 [J]. Microporous Mesoporous Mater.,2009,117(1-2):165-169.
    [9]Collart O, Cool P, Voort P V D, et al. Aluminum incorporation into MCM-48 toward the creation of BrΦansted acidity[J]. J. Phys. Chem. B,2004,108(37):13905-13912.
    [10]Vinu A, Murugesan V, Bohlmann W, et al. An optimized procedure for the synthesis of A1SBA-15 with large pore diameter and high aluminum content[J]. J. Phys. Chem. B,2004, 108(31):11496-11505.
    [11]Tismaneanu R, Ray B, Khalfin R, et al. Synthesis, characterization and catalytic activity of actinide Th-MCM-41 and U-MCM-41 hexagonal packed mesoporous molecular sieves[J]. J. Mol. Catal. A:Chem.,2001,171(1-2):229-241.
    [12]Lam D J, Veal B W, Paulikas A P. X-Ray photoemission spectroscopy (XPS) study of uranium, neptunium, and plutonium oxides in silicate-based glasses[M]. ACS Symp. Ser., 1983,216:145-154.
    [13]Selvaraj M, Kawi S. An optimal direct synthesis of CrSBA-15 mesoporous materials with enhanced hydrothermal stability [J]. Chem. Mater.,2007,19(3):509-519.
    [14]Zhang W H, Lu J, Han B, et al. Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15[J]. Chem. Mater.,2002,14(8):3413-3421.
    [15]Vinu A, Dhanshri P, Sawant K, et al. Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves[J]. Chem. Mater.,2005,17(21):5339-5345.
    [16]Selvaraj M, Lee T G. Direct synthesis of well-ordered and unusually reactive MnSBA-15 mesoporous molecular sieves with high manganese content[J]. J. Phys. Chem. B,2006, 110(43):21793-21802.
    [17]Lim S, Haller G L. Preparation of highly ordered Vanadium-substituted MCM-41:stability and acidic properties [J]. J. Phys. Chem. B,2002,106(33):8437-8448.
    [18]Koyano K A, Tatusmi T. Synthesis of titanium-containing MCM-41. Microporous Mater., 1997,10(4-6):259-271.
    [19]Yang Y, Lim S, Du G, et al. Synthesis and characterization of highly ordered Ni-MCM-41 mesoporous molecular sieves[J]. J. Phys. Chem. B,2005,109(27):13237-13246.
    [20]Vinu A, Dedecek J, Murugesan V, et al. Synthesis and characterization of CoSBA-1 cubic mesoporous molecular sieves[J]. Chem. Mater.,2002,14(6):2433-2435.
    [21]Dai L X, Tabata K, Suzuki E, et al. Synthesis and characterization of V-SBA-1 cubic mesoporous molecular sieves[J]. Chem. Mater.,2001,13(1):208-212.
    [22]Che S, Sakamoto Y, Yoshitake H, et al. Synthesis and characterization of Mo-SB A-1 cubic mesoporous molecular sieves[J]. J. Phys. Chem. B,2001,105(43):10565-10572.
    [23]Liu L, Li H, Zhang Y. Effect of synthesis parameters on the chromium content and catalytic activities of mesoporous CrMSU-x prepared under acidic conditions[J]. J. Phys. Chem. B, 2006,110(31):15478-15485.
    [24]Kruk M, Jaroniec M, Sakamoto Y, et al. Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction[J]. J. Phys. Chem. B,2000,104(2):292-301.
    [25]Yang J, Zhang J, Zhu L, et al. Synthesis of nano titania particles embedded in mesoporous SBA-15:Characterization and photocatalytic activity[J]. J. Hazard. Mater.,2006,137(2): 952-958.
    [26]Segura Y, Cool P, Kustrowski P, et al. Characterization of vanadium and titanium oxide supported SBA-15[J]. J. Phys. Chem. B,2005,109(24):12071-12079.
    [27]Chmielarz L, Kustrowski P, Dziembaj R, et al. Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia[J]. Appl. Catal. B,2006,62(3-4):369-380.
    [28]Zhao L, Zhu G, Zhang D, et al. A surface modification scheme for incorporation of nanocrystals in mesoporous silica matrix[J]. J. Solid State Chem.,2005,178(10): 2980-2986.
    [29]Gervasini A, Messi C, Carniti P, et al. Insight into the properties of Fe oxide present in high concentrations on mesoporous silica[J]. J. Catal.2009,262(2):224-234.
    [30]Barreca D, Blau W J, Croke G M, et al. Iron oxide nanoparticle impregnated mesoporous silicas as platforms for the growth of carbon nanotubes[J]. Microporous Mesoporous Mater. 2007,103(1-3):142-149.
    [31]Karvan O, Sirkecioglu A, Atakul H. Investigation of nano-CuO/mesoporous SiO2 materials as hot gas desulphurization sorbents[J]. Fuel Process. Technol.,2009,90(12):1452-1458.
    [32]Vradman L, Landau M V, Herskowitz M, et al. High loading of short WS2 slabs inside SBA-15:promotion with nickel and performance in hydrodesulfurization and hydrogenation[J]. J. Catal.,2003,213(2):163-175.
    [33]Bouvy C, Piret F, Marine W, et al. Preparation, photoluminescent properties and quantum size effect of ZnS nanoparticles @ mesoporous silica CMI-1[J]. Chem. Phys. Lett.,2007, 433(4-6):350-354.
    [34]Caponetti E, Pedone L, Saladino M L, et al. MCM-41-CdS nanoparticle composite material: Preparation and characterization[J]. Microporous Mesoporous Mater.,2010,128(1-3): 101-107.
    [35]Zhang Z T, Han Y, Wang R W, et al. Strongly Acidic and High-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure[J]. Angew. Chem. Int. Ed.,2001,40(7):1258-1263.
    [36]Yang W, Billy J, Taarit Y B, et al. H3PW12O40 supported on Cs modified mesoporous silica: catalytic activity in n-butane isomerisation and in situ FTIR study:Comparison with microporous CsxH3-xPW1204o[J]. Catal. Today,2002,73(1-2):153-165.
    [37]Chen L F, Wang J A, Norena L E, et al. Synthesis and physicochemical properties of Zr-MCM-41 mesoporous molecular sieves and Pt/H3PW1204o/Zr-MCM-41 catalysts[J]. J. Solid State Chem.,2007,180(10):2958-2972.
    [38]Sun Y Y, Zhu L, Lu H J, et al. Sulfated zirconia supported in mesoporous materials[J]. Appl. Catal. A-Gen,2002,237(1-2):21-31.
    [39]Lou L L, Yu K, Ding F, et al. Covalently anchored chiral Mn(III) salen-containing ionic species on mesoporous materials as effective catalysts for asymmetric epoxidation of unfunctionalized olefins. J. Catal.,2007,249(1):102-110.
    [40]Kwon E J, Lee T G. Surface-modified mesoporous silica with ferrocene derivatives and its ultrasound-triggered functionality[J]. Appl. Surf. Sci.2008,254(15):4732-4737.
    [41]晋春,马静红,范彬彬,等.介孔分子筛共价键联钴酞菁的制备,表征及性质[J].无机化学学报,2005,21(12):1838-1842.
    [42]Wang X, Tseng Y H, Chan J C C, et al. Direct synthesis of highly ordered large-pore functionalized mesoporous SBA-15 silica with methylaminopropyl groups and its catalytic reactivity in flavanone synthesis[J]. Microporous Mesoporous Mater.,2005,85(3): 241-251.
    [43]Yang L M, Wang Y J, Luo G S, et al. Functionalization of SBA-15 mesoporous silica with thiol or sulfonic acid groups under the crystallization conditions[J]. Microporous Mesoporous Mater.,2005,84(1-3):275-282.
    [44]Liu N, Assink R A, Brinker C J. Synthesis and characterization of highly ordered mesoporous thin films with-COOH terminated pore surfacesfJ]. Chem. Commun.,2003, 370-371.
    [45]Wang Y Q, Yang C M, Zibrowius B, et al. Directing the formation of vinyl-functionalized silica to the hexagonal SBA-15 or large-pore Ia3d structure[J]. Chem. Mater.,2003,15(26): 5029-5035.
    [46]Inagaki S, Guan S, Oshuna T, et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature,2002,416:304-307.
    [47]Hoffmann F, Cornelius M, Morell J, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angew. Chem. Int. Ed.,2006,45(20):3216-3251.
    [48]Jaroniec C P, Kruk M, Jaroniec M, et al. Tailoring surface and structural properties of MCM-41 silicas by bonding organosilancs[J]. J. Phys. Chem. B,1998,102(28):5503-5510.
    [49]Burkett S L, Sims S D, Mann S. Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors[J]. Chem. Commun.,1996, 1367-1368.
    [50]Hall S R, Fowler C E, Lebeau B, et al. Template-directed synthesis of bi-functionalized organo-MCM-41 and phenyl-MCM-48 silica mesophases[J]. Chem. Commun.,1999,2: 201-202.
    [51]聂春发,索继栓.MCM-41固载的(1R,2R)-1,2-环己二胺与Ru(Ⅱ)复合催化剂的合成、表征及不对称氢转移反应的催化应用[J].分子催化,2004,18(1):61-64.
    [52]Yoshina-Ishii C, Asefa T, Coombs N, et al. Periodic mesoporous organosilicas, PMOs:fusion of organic and inorganic chemistry'inside'the channel walls of hexagonal mesoporous silica[J]. Chem. Commun.,1999,24:2539-2540.
    [53]Asefa T, MacLachlan M J, Coombs N, et al. Periodic mesoporous organosilicas with organic inside the channel Walls[J]. Nature,1999,402:867-871.
    [54]Melde B J, Holland BT, Blanford C F, et al. Mesoporous sieves with unified hybrid inorganic/organic frameworks[J]. Chem. Mater.1999,11(11):3302-3308.
    [55]Inagaki S, Guan S, Fukushima Y, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks[J]. J. Am. Chem. Soc.,1999,121(41):9611-9614.
    [56]Ganschow M, Wark M, Wohrle D, et al. Anchoring of functional dye molecules in MCM-41 by microwave-assisted hydrothermal cocondensation[J]. Angew. Chem. Int. Ed.,2000, 39(1),160-163.
    [57]Vogel R, Meredith P, Kartini I, et al. Mesostructured dye-doped titanium dioxide for micro-optoelectronic applications[J]. Chem. Phys. Chem.,2003,4(6):595-603.
    [58]Li G T, Bhosale S, Wang T Y, et al. Gram-scale synthesis of submicrometer-long polythiophene wires in mesoporous silica matrices[J]. Angew. Chem. Int. Ed.,2003,42(32): 3818-3821.
    [59]Cho M S, Choi H J, Ahn W S. Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels[J]. Langmuir,2004,20(1):202-207.
    [60]Coutinho D, Yang Z, Ferraris J P, et al. Proton conducting polyaniline molecular sieve composites[J]. Microporous Mesoporous Mater.,2005,81(1-3):321-332.
    [61]Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host[J]. Science, 1994,264(5166):1757-1759.
    [62]田博士,杨春.温敏性介孔复合材料PNIPAAm/SBA-15的制备与表征[J].化学学报,2008,66(5):505-510.
    [63]张大余,闰明涛,吴丝竹,等.聚苯乙烯/介孔分子筛复合材料的研究[J].高分子材料科学与工程,2006,22(1):233-236.
    [64]Choi M, Kleitz F, Liu D, et al. Controlled polymerization in mesoporous silica toward the design of organic-inorganic composite nanoporous material[J]. J. Am. Chem. Soc.,2005, 127(6):1924-1932.
    [65]孔祥涛,周志平,盛维琛,等.pH值敏感介孔纳米复合材料SBA-15/PAA的制备与性能研究[J].功能材料,2009,7(40):1211-1214.
    [66]曾蕾,胡俐萍,彭兰,等.Mo-MCM-41催化环戊烯烯丙型氧化的研究[J].化学试剂,2010,32(8):727-732.
    [67]张晓丽,杨春艳,李敏艳,等.敞开体系法合成W-MCM-41介孔催化剂及其性能[J].应用化学,2010,27(6):695-699.
    [68]Han P, Zhang H, Qiu X, et al. Palladium within ionic liquid functionalized mesoporous silica SBA-15 and its catalytic application in room-temperature Suzuki coupling reaction[J]. J. Mol. Catal. A:Chem.,2008,295(1-2):57-67.
    [69]Sun Y, Zhu L, Lu H, et al. Sulfated zirconia supported in mesoporous materials[J]. Appl. Catal. A:Gen.,2002,237 (1-2):21-31.
    [70]Luo Y, Lin J. Synthesis and characterization of Co(II) salen functionalized MCM-41-type hybrid mesoporous silicas and their applications in catalysis for styrene oxidation with H2O2[J]. Microporous Mesoporous Mater.,2005,86(1-3):23-30.
    [71]Jung J S, Ji W P, Gon S. Catalytic cracking of n-octane over al kali treated MFI zeolites[J]. Appl. Catal.,2008,288(3):149-157.
    [72]牟莉,屈学俭,于春艳.新型有序介孔磺酸化酚醛树脂FDU-16-S03H的合成与酸催化性能[J].高等学校化学学报,2010,31(8):1643-1646.
    [73]Dai Z, Lu G, Bao J, et al. Low potential detection of NADH at titanium-containing MCM-41 modified glassy carbon electrode[J]. Electroanalysis,2007,19(5):604-607.
    [74]魏培海,李关宾.多巴胺在-巯丙基三甲氧基硅烷-铜/多孔晶形分子筛修饰碳糊电极上的电化学氧化[J].分析化学,2005,33(5):703-706.
    [75]Guo H, He Ne, Ge S, et al. Molecular sieves materials modified carbon paste electrodes for the determination of cardiac troponin I by anodic stripping voltammetry[J]. Microporous Mesoporous Mater.,2005,85(1-2):89-95.
    [76]Diaz J F, Balkus K J. Enzyme immobilization in MCM-41 molecular sieve[J]. J. Mol. Catal. B:Enzym.,1996,2(2-3):115-126.
    [77]Kisler J M, Dahler A, Stevens G W, et al. Separation of biological molecules using mesoporous molecular sieves[J]. Microporous Mesoporous Mater.,2001,44-45:769-774.
    [78]Lei C H, Shin Y S, Liu J, et al. Entrapping enzyme in a functionalized nanoporous support[J]. J. Am. Chem. Soc.,2002,124 (38):11242-11243.
    [79]Yiu H H P, Wright P A, Botting N P. Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces[J]. J. Mol. Catal. B:Enzym.,2001,15(1-3): 81-92.
    [80]Forde J, Vakurov A, Gibson T D, et al. Chemical modification and immobilisation of lipase B from Candida Antarctica onto mesoporous silicates[J]. J. Mol. Catal. B:Enzym.,2010, 66(1-2):203-209.
    [81]Serra E, Diez E, Diaz I, et al. A comparative study of periodic mesoporous organosilica and different hydrophobic mesoporous silicas for lipase immobilization[J]. Microporous Mesoporous Mater.,2010,132(3):487-493.
    [82]Matsuura S, Ishii R, Itoh T, et al. Direct visualization of hetero-enzyme co-encapsulated in mesoporous silicas[J]. Microporous Mesoporous Mater.,2010,127(1-2):61-66.
    [83]周丽绘.金复合介孔SBA-15吸附血红蛋白在H2O2电催化反应中的应用[J].化学学报,2005,63(23):2117-2120.
    [84]Delacote C, Bouillon J P, Walcarius A. Voltammetric response of ferrocene-grafted mesoporous silica[J]. Electrochim. Acta,2006,51(28):6373-6383.
    [85]戴志晖,鞠煌先.介孔分子筛上的蛋白质直接电化学[J].物理化学学报,2004,20(10):1262-1266.
    [86]Dai Z, Bao J, Yang X, et al. A bienzyme channeling glucose sensor with a wide concentration range based on co-entrapment of enzymes in SBA-15 mesopores[J]. Biosens. Bioelectron., 2008,23(7):1070-1076.
    [87]Dai Z, Fang M, Bao J, et al. An amperometric glucose biosensor constructed by immobilizing glucose oxidase on titanium-containing mesoporous composite material of no.41 modified screen-printed electrodes[J]. Anal. Chim. Acta,2007,591(2):195-199.
    [88]Mureseanu M, Reiss A, Cioatera N, et al. Mesoporous silica functionalized with 1-furoyl thiourea urea for Hg(Ⅱ) adsorption from aqueous media[J]. J. Hazard. Mater.2010, 182(1-3):197-203.
    [89]Dana E, Sayari A. Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation:Equilibrium properties[J]. Chem. Eng. J.,2010,166(1):445-453.
    [90]Mureseanu M, Reiss A, Stefanescu I, et al. Modified SBA-15 mesoporous silica for heavy metal ions remediation[J]. Chemosphere,2008,73(9):1499-1504.
    [91]Jiang Y, Gao Q, Yu H, et al. Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials[J]. Microporous Mesoporous Mater.2007,103(1-3):316-324.
    [92]Perez-Quintanilla D, Sanchez A, Hierro I, et al. Preconcentration of Zn(II) in water samples using a new hybrid SBA-15-based material[J]. J. Hazard. Mater.,2009,166(2-3): 1449-1458.
    [93]Perez-Quintanilla D, Sanchez A, Hierro I, et al. New hybrid materials as Zn(II) sorbents in water samples[J]. Mater. Res. Bull.,2010,45(9):1177-1181.
    [94]Kang T, Park Y, Yi J. Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica[J]. Ind. Eng. Chem. Res.,2004,43(6):1478-1484.
    [95]Zhang J, Ma Z, Jiao J, et al. Layer-by-layer grafting of titanium phosphate onto mesoporous silica SBA-15 surfaces:synthesis, characterization, and applications[J]. Langmuir,2009, 25(21):12541-12549.
    [96]Perez-Quintanilla D, Hierro I, Fajardo M, et al. Adsorption of cadmium(II) from aqueous media onto a mesoporous silica chemically modified with 2-mercaptopyrimidine[J]. J. Mater. Chem.,2006,16(18):1757-1764.
    [97]Chen D, Hu B, Huang C. Chitosan modified ordered mesoporous silica as micro-column packing materials for on-line flow injection-inductively coupled plasma optical emission spectrometry determination of trace heavy metals in environmental water samples[J]. Talanta,2009,78(2):491-497.
    [98]Heidari A, Younesi H, Mehraban Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica[J]. Chem. Eng. J.,2009,153(1-3):70-79.
    [99]Yoshitake H, Yokoi T, Tatsumi T. Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1[J]. Chem. Mater.,2002,14(11):4603-4610.
    [100]Fryxell G E, Wu H, Lin Y, et al. Lanthanide selective sorbents:self-assembled monolayers on mesoporous supports (SAMMS)[J]. J. Mater. Chem.,2004,14(22):3356-3363.
    [101]Lin Y, Fiskum S K, Yantasee W, et al. Incorporation of hydroxypyridinone ligands into self-assembled monolayers on mesoporous supports for selective actinide sequestration[J]. Environ. Sci. Technol.,2005,39(5):1332-1337.
    [102]Sayari A, Hamoudi S, Yang Y. Applications of pore-expanded mesoporous silica.1.removal of heavy metal canons and organic pollutants from wastewater[J]. Chem. Mater.,2005,17: 212-216.
    [103]Lam K F, Yeung K L, Mckay G. Selective mesoporous adsorbents for Cr2O72- and Cu2+ separation[J]. Microporous Mesoporous Mater.,2007,100(1-3):191-201.
    [104]Olkhovyk O, Antochshuk V, Jaroniec M. Benzoylthiourea-modified MCM-48 mesoporous silica for mercury(II) adsorption from aqueous solutions[J]. Colloids Surf. A:Physicochem. Eng. Aspechit,2004,236 (1-3):69-72.
    [105]Xue X, Li F. Removal of Cu(II) from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica[J]. Microporous Mesoporous Mater.,2008,116(1-3):116-122.
    [106]Silva L C C, Santos L B O, Abate G, et al. Adsorption of Pb2+, Cu2+ and Cd2+in FDU-1 silica and FDU-1 silica modified with humic acid[J]. Microporous Mesoporous Mater., 2008,110(2-3):250-259.
    [107]Canck E D, Lapeire L, Clercq J D, et al. New ultrastable mesoporous adsorbent for the removal of mercury ions[J]. Langmuir,2010,26(12):10076-10083.
    [108]Wu H Y, Chen C T, Hung I M, et al. Direct synthesis of cubic benzene-bridged mesoporous organosilica functionalized with mercaptopropyl groups as an effective adsorbent for mercury and silver ions[J]. J. Phys. Chem. C,2010,114(15):7021-7029.
    [109]Shah A T, Li B, Abdalla Z E A. Direct synthesis of Cu-SBA-16 by internal pH-modification method and its performance for adsorption of dibenzothiophene[J]. Microporous Mesoporous Mater.,2010,130(1-3):248-254.
    [110]Huang H, Zhao C, Ji Y, et al. Preparation, characterization and application of p-tert-butyl-calix[4]arene-SBA-15 mesoporous silica molecular sieves[J]. J. Hazard. Mater., 2010,178(1-3):680-685.
    [111]Tao Q, Xu Z, Wang J, et al. Adsorption of humic acid to aminopropyl functionalized SBA-15[J]. Microporous Mesoporous Mater.,2010,131(1-3):177-185.
    [112]Han Y J, Stucky G D, Butler A. Mesoporous silicate sequestration and release of proteins[J]. J. Am. Chem. Soc.,1999,121(42),9897-9898.
    [113]Horcajada P, Ramila A, Ferey G, et al. Influence of superficial organic modification of MCM-41 matrices on drug delivery rate[J]. Solid State Sci.,2006,8(10):1243-1249.
    [114]Zhu Y F, Shi J L. A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug[J]. Microporous. Mesoporous Mater.,2007,103(1-3):243-249.
    [115]Zhao J, Gao F, Fu Y, et al. Biomolecule separation using large pore mesoporous. SBA-15 as a substrate in high performance liquid chromatography[J]. Chem. Commun.,2002,7: 752-753.
    [116]陈胜文,邮乃慈,李庆华.环糊精修饰中孔分子筛SBA-15作为手性色谱固定相及其应用[J].分析化学,2008,36(9):1249-1252.
    [117]吴华.固相萃取技术及其在环境分析中的应用[J].现代仪器,2005,1:28-29.
    [118]Franke J P, Zeeuw R A. Solid-phase extraction procedures in systematic toxicological analysis[J]. J. Chromatogr. B,1998,713(1):51-59.
    [119]Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell[J]. J. Colloid Interface Sci.2004,279(2): 307-313.
    [120]Kobya M, Demirbas E, Senturk E. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone[J]. Bioresour. Technol.,2005,96(13): 1518-1521.
    [121]Rao M M, Ramesh A, Rao G P C. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls[J]. J. Hazard. Mater., 2006,129(1-3):123-129.
    [122]Gao R, Hu Z, Chang X, et al. Chemically modified activated carbon with 1-acylthiosemicarbazide for selective solid-phase extraction and preconcentration of trace Cu(II), Hg(II) and Pb(II) from water samples[J]. J. Hazard. Mater.,2009,172(1):324-329.
    [123]Zhang L, Chang X, Zou X, et al. Chemically-modified activated carbon with ethylenediamine for selective solid-phase extraction and preconcentration of metal ions[J]. Anal. Chim. Acta,2009,632(2):272-277.
    [124]Zhang L, Chang X, Li Z, et al. Selective solid-phase extraction using oxidized activated carbon modified with triethylenetetramine for preconcentration of metal ions[J]. J. Mol. Struct.,2010,964(1-3):58-62.
    [125]Gao B, Gao Y, Li Y. Preparation and chelation adsorption property of composite chelating material poly(amidoxime)/SiO2 towards heavy metal ions[J]. Chem. Eng. J.,2010,158(3): 542-549.
    [126]Xie F, Lin X, Wu X, et al. Solid phase extraction of lead(II), copper(II), cadmium(II) and nickel(II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry[J]. Talanta,2008,74(4):836-843.
    [127]Ghaedi M, Asadpour E, Vafaie A. Simultaneous preconcentration and determination of copper, nickel, cobalt, lead, and iron content using a surfactant-coated alumina[J]. Bull. Chem. Soc. Jpn.,2006,79(3):432-436.
    [128]Abollino O, Aceto M, Malandrino M, et al. Adsorption of heavy metals on Na-montmorillonite:Effect of pH and organic substances[J]. Water Res.,2003,37(7): 1619-1627.
    [129]Rozada F, Otero M, Moran A, et al. Adsorption of heavy metals onto sewage sludge-derived materials[J]. Bioresour. Technol.,2008,99(14):6332-6338.
    [130]Guimaraes A M F, Ciminelli V S T, Vasconcelos W L. Smectite organofunctionalized with thioi groups for adsorption of heavy metal ions[J]. Appl. Clay Sci.,2009,42(3-4):410-414.
    [131]Lu A, Zhong S, Chen J, et al. Removal of Cr(VI) and Cr(Ⅲ) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite[J]. Environ. Sci. Technol.,2006,40(9): 3064-3069.
    [132]Bulut V N, Gundogdu A, Duran C, et al. A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000[J]. J. Hazard. Mater.,2007,146(1-2):155-163.
    [133]杨丽梅,李玲,黄松涛,等.氨基膦酸型螯合树脂对水溶液中Ni2+,Fe2+,Fe3+吸附行为的研究[J].稀有金属,2009,33(3):401-405.
    [134]Guo X, Zhang S, Shan X. Adsorption of metal ions on lignin[J]. J. Hazard. Mater.,2008, 151(1):134-142.
    [135]Saracoglu S, Elci L. Column solid-phase extraction with Chromosorb-102 resin and determination of trace elements in water and sediment samples by flame atomic absorption spectrometry[J]. Anal. Chim. Acta,2002,452(1):77-83.
    [136]苏春彦,康春莉,郭平,等.天然水中优势菌胞外聚合物及其中主要成分对铅的吸附[J].应用化学,2008,25(1):1-4.
    [137]King P, Rakesh N, Beenalahari S, et al. Removal of lead from aqueous solution using Syzygium cumini L.:Equilibrium and kinetic studies[J]. J. Hazard. Mater.,2007,142(1-2): 340-347.
    [138]Gurgel L V A, Gil L F. Adsorption of Cu(II), Cd(Ⅱ) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functional ized with triethylenetetramine[J]. Water Res.,2009,43(18):4479-4488.
    [139]Escudero C, Gabaldon C, Marzal P, et al. Effect of EDTA on divalent metal adsorption onto grape stalk and exhausted coffee wastes[J]. J. Hazard. Mater.,2008,152(2):476-485.
    [140]Saraswat S, Rai J P N. Heavy metal adsorption from aqueous solution using Eichhornia crassipes dead biomass[J]. Int. J. Miner. Process.,2010,94(3-4):203-206.
    [141]Saiano F, Ciofalo M, Cacciola S O. Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatments[J]. Water Res.,2005,39(11): 2273-2280.
    [142]Prabhakaran S K, Vijayaraghavan K, Balasubramanian R. Removal of Cr(VI) ions by spent tea and coffee dusts:Reduction to Cr(Ⅲ) and biosorption[J]. Ind. Eng. Chem. Res.,2009, 48(4):2113-2117.
    [143]刘辉,江军.纳米TiO2富集分离石墨炉原子吸收法测定食品中的镉[J].食品研究与开发,2010,31(1):108-110.
    [144]Zhou Q, Zhao X, Xiao J. Preconcentration of nickel and cadmium by TiO2 nanotubes as solid-phase extraction adsorbents coupled with flame atomic absorption spectrometry[J]. Talanta,2009,77(5):1774-1777.
    [145]Kalfa O M, Yalcinkaya O, Turker A. Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium[J]. J. Hazard. Mater.,2009,166(1):455-461.
    [146]Tofighy M A, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets[J]. J. Hazard. Mater.,2011,185(1):140-147.
    [147]Liang P, Liu Y, Guo L, et al. Multiwalled carbon nanotubes as solid phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emissions pectrometry[J]. Anal. Atom Spectrom.,2004, 19:1489-1492.
    [148]Alexander C, Andersson H S, Andersson L I. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003 [J]. J. Mol. Recognit.,2006, 19(2):106-180.
    [149]杨律文.硅胶表面熊果酸分子印迹聚合物的合成及其应用,[硕士学位论文].湖南:湖南大学,2007.
    [150]Masque N, Marce R M, Borrull F. Molecularly imprinted polymers:new tailor-made materials for selective solid-phase extraction[J]. TrAC-Trends in Anal. Chem.,2001,20(9): 477-486.
    [151]Prasad K, Kala R, Prasada Rao T, et al. Ion imprinted polymer based ion-selective electrode for the trace determination ofdysprosium(III) ions[J]. Anal. Chim. Acta,2006,566(1): 69-74.
    [152]Uezu K, Nakamuta H, Goto M, et al. Novel metal ion-imprinted resins prepared by surface template polymerization with W/O emulsion[J]. J. Chem. Eng. Jpn.,1994,27(3):436-438.
    [153]Yu K Y, Tsukagoshi K, Maeda M. Metal ion-imprinted microspheres prepared by reorganization of the coordinating groups on the surface[J]. Jpn. Soc. Anal. Chem.,1992, 8(5):701-703.
    [154]Ahmadi S J, Noori-Kalkhoran O, Shirvani-Arani S. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO22+) ions[J]. J. Hazard. Mater.,2010,175(1-3):193-197.
    [155]Luo W, Zhu L, Yu C, et al. Synthesis of surface molecularly imprinted silica micro-particles in aqueous solution and the usage for selective off-line solid-phase extraction of 2,4-dinitrophen from water matrixes[J]. Anal. Chim. Acta,2008,618(2):147-156.
    [156]Su H, Zhang M, Li B, et al. HPLC determination of sulfamethazine in milk using surface-imprinted silica synthesized with iniferter technique[J]. Talanta,2008,76(5): 1141-1146.
    [157]Augusto F, Carasek E, Silva R G C, et al. New sorbents for extraction and microextraction techniques[J]. J. Chromatogr. A,2010,1217(16):2533-2542.
    [158]Nishide H, Deguchi J, Tsuchida E. Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template[J]. Chem. Lett.,1976,5: 169-174.
    [159]Kabanov V A, Efendiev A A, Orujev D D. Complex-forming polymeric sorbents with macromolecular arrangement favorable for ion sorption[J]. J. Appl. Polym. Sci.,1979, 24(1):259-267.
    [160]Prasada Rao T, Daniel S, Mary Gladis J. Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE). Trends Anal. Chem.,2004,23(1):28-35.
    [161]Ohga K, Kurauchi Y, Yanase H. Adsorption of Cu2+ or Hg2+ion on resins prepared by crosslinking metal-complexed chitosans[J]. Bull. Chem. Soc. Jpn.,1987,60(1):444-446.
    [162]Harkins D A, Schweitzer G K. Preparation of site-selective ion-exchange resins[J]. Sep. Sci. Technol.,1991,26(3):345-354.
    [163]Say R, Birlik E, Ersoz A, et al. Preconcentration of copper on ion-selective imprinted polymer microbeads[J]. Anal. Chim. Acta,2003,480(2):251-258.
    [164]Ersoz A, Say R, Denizli A. Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns[J]. Anal. Chim. Acta,2004,502(1):91-97.
    [165]辉永庆,钟志京,何小波,等.铅分子印迹聚合物合成及其在痕量测量中的应用[J].应用化学,2009,26(6):721-725.
    [166]Esen C, Andac M, Bereli N, et al. Highly selective ion-imprinted particles for solid-phase extraction of Pb2+ions[J]. Mater. Sci. Eng. C,2009,29(8):2464-2470.
    [167]Yoshida M, Uezu K, Goto M, et al. Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions[J]. J. Appl. Polym. Sci.,1999,73(7):1223-1230.
    [168]Su H, Li J, Tan T. Adsorption mechanism for imprinted ion (Ni2+) of the surface molecular imprinting adsorbent (SMIA)[J]. Biochem. Eng. J.,2008,39(3):503-509.
    [169]Ren Y, Zhang M, Zhao D. Synthesis and properties of magnetic Cu(II) ion imprinted composite adsorbent for selective removal of copper[J]. Desalination,2008,228(1-3): 135-149.
    [170]Chang X, Jiang N, Zheng H, et al. Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique[J]. Talanta, 2007,71(1):38-43.
    [171]Chang X, Wang X, Jiang N. Silica gel surface-imprinted solid-phase extraction of Zr(IV) from aqueous solutions[J]. Microchim. Acta,2008,162(1-2):113-119.
    [172]Jiang N, Chang X, Zheng H, et al. Selective solid-phase extraction of nickel(II) using a surface-imprinted silica gel sorbent[J]. Anal. Chim. Acta,2006,577(2):225-231.
    [173]Li F, Jiang H, Zhang S. An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(Ⅱ) from aqueous solution[J]. Talanta, 2007,71(4):1487-1493.
    [174]Huo H, Su H, Tan T. Adsorption of Ag+by a surface molecular-imprinted biosorbent. Chem. Eng. J.,2009,150(1):139-144.
    [175]Zhang Z, Zhang H, Hu Y, et al. Novel surface molecularly imprinted material modified multi-walled carbon nanotubes as solid-phase extraction sorbent for selective extraction gallium ion from fly ash[J]. Talanta,2010,82(1):304-311.
    [176]Zhang N, Hu B, Huang C. A new ion-imprinted silica gel sorbent for on-line selective solid-phase extraction of dysprosium(III) with detection by inductively coupled plasma-atomic emission spectrometry[J]. Anal. Chim. Acta,2007,597(1):12-18.
    [177]Candan N, Tuzmen N, Andac M, et al. Cadmium removal out of human plasma using ion-imprinted beads in a magnetic column[J]. Mater. Sci. Eng. C,2009,29(1):144-152.
    [178]He Q, Chang X, Wu Q, et al. Synthesis and applications of surface-grafted Th(IV)-imprinted polymers for selective solid-phase extraction of thorium(IV)[J]. Anal. Chim. Acta,2007,605(2):192-197.
    [179]Lin C, Wang H, Wang Y, et al. Selective solid-phase extraction of trace thorium(IV) using surface-grafted Th(IV)-imprinted polymers with pyrazole derivative[J]. Talanta,2010, 81(1-2):30-36.
    [180]Shamsipur M, Fasihi J, Ashtari K. Grafting of ion-imprinted polymers on the surface of silica gel Particles through Covalently Surface-Bound Initiators:A Selective Sorbent for Uranyl Ion. Anal. Chem.,2007,79 (18):7116-7123.
    [181]Fang G Z, Tan J, Yan X P. An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol gel process for selective solid-phase extraction of cadmium(II)[J]. Anal. Chem.,2005,77(6):1734-1739.
    [182]Li Q, Su H, Tan T. Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances[J]. Biochem. Eng. J.,2008,38(2):212-218.
    [183]Pan J, Zou X, Yan Y, et al. An ion-imprinted polymer based on palygorskite as a sacrificial support for selective removal of strontium(II)[J]. Appl. Clay Sci.,2010,50(2):260-265.
    [184]Zhang X, Li C, Yan Y, et al. A Ce3+-imprinted functionalized potassium tetratitanate whisker sorbent prepared by surface molecularly imprinting technique for selective separation and determination of Ce3+[J]. Microchim. Acta,2010,169(3-4):289-296.
    [185]Fan Z. Hg(II)-imprinted thiol-functionalized mesoporous sorbent micro-column preconcentration of trace mercury and determination by inductively coupled plasma optical emission spectrometry[J]. Talanta,2006,70(5):1164-1169.
    [186]Bakker E. Electrochemical sensors[J]. Anal. Chem.,2004,76(12):3285-3298.
    [187]吴礼光,刘茉娥,朱长乐.生物传感器研究进展[J].化学进展,1995,7(4):287-301.
    [188]池其金,董绍俊.酶直接电化学与第三代生物传感器[J].分析化学,1994,22(10):1065-1072.
    [189]雷存喜.纳米活性界面构建新方法用于电化学生物传感器设计,[博士学位论文].湖南:湖南大学,2004.
    [190]Cheng Y, Liu Y, Huang J, et al. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms[J]. Electrochim. Acta,2009,54(9):2588-2594.
    [191]Geng P, Zhang X, Meng W, et al. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy[J]. Electrochem. Acta,2008,53(14):4463-4668.
    [192]Cao X, Luo L, Ding Y, et al. Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode[J]. Sens. Actuators B:Chem.,2008,129(2):941-946.
    [193]Wang L, Bai J, Bo X, et al. A novel glucose sensor based on ordered mesoporous carbon-Au nanoparticles nanocomposites[J]. Talanta,2011,83(5):1386-1391.
    [194]Tasviri M, Rafiee-Pou H A, Ghourchian H, et al. Amine functionalized TiO2 coated on carbon nanotube as a nanomaterial for direct electrochemistry of glucose oxidase and glucose biosensing[J]. J. Mol. Catal. B:Enzym.,2011,68(2):206-210.
    [195]Rui Q, Komori K, Tian Y, et al. Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets[J]. Anal. Chim. Acta,2010,670(1-2):57-62.
    [196]Lin K C, Tsai T H, Chen S M. Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film[J]. Biosens. Bioelectron., 2010,26(2):608-614.
    [197]Tsai M C, Chen P Y. Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media[J]. Talanta,2008,76(3):533-539.
    [198]Yuce M, Nazir H, Donmez G. A voltammetric Rhodotorula mucilaginosa modified microbial biosensor for Cu(ll) determination[J]. Bioelectrochemistry,2010,79(1):66-70.
    [199]Li J, Lin X Q. Electrocatalytic reduction of nitrite at polypyrrole nanowire-platinum nanocluster modified glassy carbon electrode[J]. Microchem. J.,2007,22(8):1749-1755.
    [200]Mita D G, Attanasio A, Arduini F, et al. Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers[J]. Anal. Chim. Acta,2007,23(1): 60-65.
    [201]张岩,吕鹏飞,李胜利.聚吖啶橙修饰电极上对苯二酚的电催化及分析应用[J].理化检验,2006,42(9):726-728.
    [202]Arduini F, Ricci F, Tuta C S, et al. Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode[J]. Anal. Chim. Acta,2006,580(2):155-162.
    [203]Crew A, Lonsdale D, Byrd N, et al. A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides[J]. Biosens. Bioelectron.,2011,26(6):2847-2851.
    [204]Zheng Z, Zhou Y, Li X, et al. Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots[J]. Biosens. Bioelectron.,2011,26(6):3081-3085.
    [205]Li C Y, Wang C F, Wang C H, et al. Development of a parathion sensor based on molecularly imprinted nano-TiO2 self-assembled film electrode[J]. Sens. Actuators, B,2006, 117(1):166-171.
    [206]Mauchauffee S, Meux E. Use of sodium decanoate for selective precipitation of metals contained in industrial waste water[J]. Chemosphere,2007,69(5):763-768.
    [207]Mohsen-Nia M, Montazeri P, Modarress H. Removal of Cu2+and Ni2+from wastewater with a chelating agent and reverse osmosis processes[J]. Desalination,2007,217(1-3): 276-281.
    [208]Verma V K, Tewari S, Rai J P N. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes[J]. Bioresour. Technol.,2008,99(6): 1932-1938.
    [209]El Samrani A G, Lartiges B S, Villieras F. Chemical coagulation of combined sewer overflow:heavy metal removal and treatment optimization[J]. Water Res.,2008,42(4-5), 951-960.
    [210]Kurniawan T A, Chan G Y S, Lo W H, et al. Comparisons of low-cost adsorbents for treatingwastewaters laden with heavy metals[J]. Sci. Total. Environ.,2006,366(2-3): 409-426.
    [211]Prasada Rao T, Kala R, Daniel S. Metal ion-imprinted polymers-Novel materials for selective recognition of inorganics[J]. Anal. Chim. Acta,2006,578(2):105-116.
    [212]Wang L, Zhou M, Jing Z, et al. Selective separation of lead from aqueous solution with a novel Pb(II) surface ion-imprinted sol-gel sorbent[J]. Microchim. Acta,2009,165: 367-372.
    [213]Zhu X, Cui Y, Chang X, et al. Selective solid-phase extraction of lead(II) from biological and natural water samples using surface-grafted lead(II)-imprinted polymers[J]. Microchim. Acta,2009,164(1-2):125-132.
    [214]Markowitz M A, Kust P R, Klaehn J. Surface-imprinted silica particles:the effects of added organosilanes on catalytic activity[J]. Anal. Chim. Acta,2001,435, (1):177-185.
    [215]Li J, Qi T, Wang L, et al. Synthesis and characterization of imidazole-functionalized SBA-15 as an adsorbent of hexavalent chromium[J]. Mater. Lett.,2007,61(14-15): 3197-3200.
    [216]Zhang J N, Ma Z, Jiao J, et al. Layer-by-layer grafting of titanium phosphate onto mesoporous silica SBA-15 surfaces:synthesis, characterization, and applications[J]. Langmuir,2009,25(21):12541-12549.
    [217]Rengaraj S, Moon S H. Kinetics of adsorption of Co(Ⅱ) removal from water and wastewater by ion exchange resins[J]. Water Res.,2002,36(7):1783-1793.
    [218]Manohar D M, Noeline B F, Anirudhan T S. Adsorption performance of Alpillared bentonite clay for the removal of cobalt(II) from aqueous phase[J]. Appl. Clay Sci.,2006, 31(3-4):194-206.
    [219]Yin C Y, Aroua M K, Daud W M A W. Polyethyleneimine impregnation on activated carbon:Effects of impregnation amount and molecular number on textural characteristics and metal adsorption capacities[J]. Mater. Chem. Phys.,2008,112(2):417-422.
    [220]Bayramoglu G, Arica M Y. Adsorption of Cr(VI) onto PEI immobilized acrylate-based magnetic beads:Isotherms, kinetics and thermodynamics study[J]. Chem. Eng. J.,2008, 139(1):20-28.
    [221]An F, Gao B. Chelating adsorption properties of PEI/SiO2 for plumbum ion[J]. J. Hazard. Mater.,2007,145(3):495-500.
    [222]Gao B, An F, Liu K. Studies on chelating adsorption properties of novel composite material polyethyleneimine/silica gel for heavy-metal ions[J]. Appl. Surf. Sci.,2006,253(4), 1946-1952.
    [223]Gao B, Li Y, Chen Z. Adsorption behaviour of functional grafting particles based on polyethyleneimine for chromate anions[J]. Chem. Eng. J.,2009,150(2-3):337-343.
    [224]An F, Gao B. Adsorption characteristics of Cr(III) ionic imprinting polyamine on silica gel surface[J]. Desalination,2009,249(3):1390-1396.
    [225]Zhao D, Feng J, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science,1998,279(5350):548-552.
    [226]雷海波,高保娇,中艳玲.复合型吸附材料PE1/SiO2对胆红素的吸附作用[J].应用化学,2007,24(5):580-584.
    [227]Dai S, Burleigh M C, Shin Y S, et al. Imprint coating:A novel synthesis of selective functionalized ordered mesoporous sorbents[J]. Angew Chem. Int. Ed.,1999,38(9): 1235-1239.
    [228]Song C, Zhang X, Jia C, et al. Highly sensitive and selective fluorescence sensor based on functional SBA-15 for detection of Hg2+ in aqueous media[J]. Talanta,2010,81(1-2): 643-649
    [229]Perez-Quintanilla D, Sanchez A, Hierro I, et al. Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-l-methyltetrazole[J]. J. Colloid Interface Sci.,2007,313(2):551-562.
    [230]Morishige K, Tateishi N, Fukuma S. Capillary condensation of nitrogen in MCM-48 and SBA-16[J]. J. Phys. Chem. B,2003,107(22):5177-5188.
    [231]Wang L, Zhang J, Zhao R, et al. Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.:Kinetics, isotherms, pH, and ionic strength studies[J]. Bioresour. Technol.,2010,101(15):5808-5814.
    [232]Martins B L, Cruz C C V, Luna A S, et al. Sorption and desorption of Pb2+ions by dead Sargassum sp. Biomass[J]. Biochem. Eng. J.,2006,27(3):310-314.
    [233]Majeti N V, Ravi K. A review of chitin and chitosan applications[J]. React. Funct. Polym., 2000,46(1):1-27.
    [234]Viswanathan N, Sundaram C S, Meenakshi S. Sorption behaviour of fluoride on carboxylated cross-linked chitosan beads[J]. Colloids Surf. B,2009,68(1):48-54.
    [235]Xi F, Wu J. Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent[J]. J. Chromatogr. A,2004,1057(1-2): 41-47.
    [236]Shi Q H, Tian Y, Dong X Y, et al. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption[J]. Biochem. Eng. J.,2003,16(3):317-322.
    [237]Ren D W, Bao D C, Wang W L. Study on N-acetylated chitosans by FTIR and XRD[J]. Spectral. Anal.,2006,26(7):1217-1220.
    [238]Martendal E, Maltez H F, Carasek E. Speciation of Cr(Ⅲ) and Cr(Ⅵ) in environmental samples determined by selective separation and preconcentration on silica gel chemically modified with niobium(Ⅴ) oxide[J]. J. Hazard. Mater.,2009,161(1):450-456.
    [239]Cuesta A, Todoli J L, Mora J, et al. Rapid determination of chemical oxygen demand by a semi-automated method based on microwave sample digestion, chromium(Ⅵ) organic solvent extraction and flame atomic absorption spectrometry[J]. Anal. Chim. Acta,1998, 372(3):399-409.
    [240]Stasinakis A S, Thomaidis N S, Lekkas T, D. Speciation of chromium in wastewater and sludge by extraction with liquid anion exchanger Amberlite LA-2 and electrothermal atomic absorption spectrometry[J]. Anal. Chim. Acta,2003,478(1):119-127.
    [241]Tunceli A, Turker A R. Speciation of Cr(Ⅲ) and Cr(Ⅵ) in water after preconcentration of its 1,5-diphenylcarbazone complex on amberlite XAD-16 resin and determination by FAAS[J]. Talanta,2002,57(6):1199-1204.
    [242]Lu Y K, Yan X P. An imprinted organic inorganic hybrid sorbent for selective separation of cadmium from aqueous solution[J]. Anal. Chem.,2004,76(2):453-457.
    [243]Missana T, Garcia-Gutierrez M, Alonso U, et al. On radionuclide retention mechanism in fractured geological media[J]. J. Iber. Geol.,2006,32(1):55-77.
    [244]Liu Y, Gao J, Li C, et al. Synthesis and adsorption performance of surface-grafted Co(Ⅱ)-imprinted polymer for selective removal of cobalt[J]. Chin. J. Chem.,2010,28(4): 548-554.
    [245]Demirbas E, Kobya M, Senturk E, et al. Adsorption kinetics for the removal of chromium(Ⅵ) from aqueous solutions on the activated carbons prepared from agricultural wastes[J]. Water SA,2004,30(4):533-540.
    [246]Aroua M K, Leong S P P, Teo L Y, et al. Real-time determination of kinetics of adsorption of lead(Ⅱ) onto palm shell-based activated carbon using ion selective electrode[J]. Bioresour. Technol.,2008,99(13):5786-5792.
    [247]Gupta S S, Bhattacharyya K. G. Adsorption of Ni(Ⅱ) on clays[J]. J. Colloid Interface Sci. 2006,295(1):21-32.
    [248]Demirbas E, Dizge N, Sulak M T, et al. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon[J]. Chem. Eng. J.,2009,148(2-3): 480-487.
    [249]Azizian S. Kinetic models of sorption:a theoretical analysis[J]. J. Colloid Interface Sci., 2004,276(1):47-52.
    [250]Mezenner N Y, Bensmaili A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste[J]. Chem. Eng. J.,2009,147(2-3):87-96.
    [251]Bayramoglu G, Arica M Y. Construction a hybrid biosorbent using Scenedesmus quadricauda and Ca-alginate for biosorption of Cu(II), Zn(II) and Ni(II):Kinetics and equilibrium studies[J]. Bioresour. Technol.,2009,100(1),186-193.
    [252]Kiran B, Kaushik A. Chromium binding capacity of Lyngbya putealis exopolysaccharides[J]. Biochem. Eng. J.,2008,38(1):47-54.
    [253]Ng J C Y, Cheung W, McKay G. Equilibrium studies of the sorption of Cu(II) ions onto chitosan[J]. J. Colloid Interface Sci.,2002,255(1):64-74.
    [254]Namasivayam C, Ranganathan K. Waste Fe(III)/Cr(III) hydroxide as adsorbent for the removal of Cr(VI) fromaqueous solution and chromium plating industry wastewater[J]. Environ. Pollut.,1993,82(3):255-261.
    [255]Guo J, Cai J, Su Q. Ion imprinted polymer particles of neodymium:synthesis, characterization and selective recognition[J]. J. Rare Earths,2009,27(1):22-27.
    [256]Wang L, Xing R, Liu S, et al. Studies on adsorption behavior of Pb(II) onto a thiourea-modified chitosan resin with Pb(II) as template[J]. Carbohydr. Polym.,2010,81(2): 305-310.
    [257]Quirarte-Escalante C A, Soto V, Cruz W, et al. Synthesis of hybrid adsorbents combining sol-gel processing and molecular imprinting applied to lead removal from aqueous streams[J]. Chem. Mater.,2009,21(8):1439-1450.
    [258]Argun M E, Dursun S. A new approach to modification of natural adsorbent for heavy metal adsorption [J]. Bioresour. Technol.,2008,99(7):2516-2527.
    [259]Argun M E, Dursun S, Karatas M, et al. Activation of pine cone using Fenton oxidation for Cd(II) and Pb(II) removal[J]. Bioresour. Technol.,2008,99(18):8691-8698.
    [260]Varshney K G, Khan A A, Gupta U, et al. Kinetics of adsorption of phosphamidon on antimony(V) phosphate cation exchanger:evaluation of the order of reaction and some physical parameters[J]. Colloids. Surf. A:Physicochem. Eng. Asp.,1996,113(1-2):19-23.
    [261]Langmuir I. The constitution and fundamental properties of solids and liquids[J]. J. Franklin Institute,1917,183(1):102-105.
    [262]Freundlich H. Uber die adsorption in lusungen[J]. Zeitschrift fur Physikalische Chemie (leipzig).,1906,57:385-470.
    [263]Singh K K, Talat M, Hasan S H. Removal of lead from aqueous solutions by agricultural waste maize bran[J]. Bioresour. Technol.,2006,97(16):2124-2130.
    [264]Karaca S, Gurses A, Ejder M, et al. Adsorptive removal of phosphate from aqueous solutions using raw and calcinated dolomite[J]. J. Hazard. Mater.,2006,128(2-3):273-279.
    [265]Acharyaa J, Sahub J N, Mohantyc C R, et al. Removal of lead(II) from wastewater by activated carbon developed fromTamarind wood by zinc chloride activation[J]. Chem. Eng. J.,2009,149(1-3):249-262.
    [266]Li C, Gao J, Pan J, et al. Synthesis, characterization, and adsorption performance of Pb(II)-imprinted polymer in nano-TiO2 matrix[J]. J. Environ. Sci.2009,21(12):1722-1729.
    [267]Doner G, Ege A. Determination of copper, cadmium and lead in seawater and mineral water by flame atomic absorption spectrometry after coprecipitation with aluminum hydroxide[J]. Anal. Chim. Acta,2005,547(1):14-17.
    [268]Soylak M, Sungur Cay R. Separation/preconcentration of silver(I) and lead(II) in environmental samples on cellulose nitrate membrane filter prior to their flame atomic absorption spectrometric determinations[J]. J. Hazard. Mater.,2007,146(1-2):142-147.
    [269]Divrikli U, Akdogan A, Soylak M, et al. Solid-phase extraction of Fe(III), Pb(II) and Cr(III) in environmental samples on amberlite XAD-7 and their determinations by flame atomic absorption spectrometry[J]. J. Hazard. Mater.,2007,149(2):331-337.
    [270]Soylak M, Narin I. Bezerra M A, et al. Factorial design in the optimization of preconcentration procedure for lead determination by FAAS[J]. Talanta,2005,65(4): 895-899.
    [271]Perez-Quintanilla D, Sanchez A, Hierro I, et al. Solid phase extraction of Pb(II) in water samples using a new hybrid inorganic-organic mesoporous silica prior to its determination by FAAS[J]. Microchim. Acta,2009,165(3-4):291-298.
    [272]Narin I, Surme Y, Bercin E, et al. SP70-benzoin oxime chelating resin for preconcentration-separation of Pb(II), Cd(Ⅱ), Co(Ⅱ) and Cr(Ⅲ) in environ-mental samples[J]. J. Hazard. Mater.,2007,145(1-2):113-119.
    [273]Wang L, Yan Y, Deng Y, et al. Synthesis, characterization and adsorption behavior of Pb2+-imprinted polymer in aqueous solution[J]. Chin. J. Anal. Chem.,2009,37(4):537-542.
    [274]Protiva R R,Takeyoshi O,Takeo O. Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes[J]. Bioelectrochemistry, 2003,59(1-2):11-19.
    [275]李根喜,方惠群,陈洪渊.聚苯胺修饰电极上抗坏血.酸与多巴安胺氧化峰的分离[J].分析化学,1994,2(2):138-142.
    [276]万其进,喻玖宏,王刚,等.聚茜素红膜修饰电极控制电位扫描法分别测定多巴胺和抗坏血酸[J].高等学校化学学报,2000,21(11):1651-1654.
    [277]王宗花,刘军,颜流水,等.羧基化碳纳米管嵌入石墨修饰电极对多巴胺和抗坏血酸 的电催化[J].分析化学,2002,30(9):1053-1057.
    [278]Yang G J, Xu J J, Wang K, et al. Electrocatalytic oxidation of dopamine and ascorbic acid on carbon paste electrode modified with nanosized cobalt phthalocyanine particles: simultaneous determination in the presence of CTAB[J]. Electroanalysis,2006,18(3): 282-290.
    [279]Sun C L, Lee H H, Yang J M, et al. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites[J]. Biosens. Bioelectron.,2011,26(8):3450-3455.
    [280]姜廷顺,赵谦,陆路德,等.纳米级含钴介孔分子筛的合成与表征[J].硅酸盐学报,2005,33(10):1197-1201.
    [281]Mu S L, Kan J Q. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of ferrocenesulfonic acid[J]. Synth. Met.,2002,132(1):29-33.
    [282]Wu K B, Fei J J, Hu S S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes[J]. Anal. Biochem.,2003, 318(1):100-106.
    [283]Burke S K, Xu Y L, Margerum D W. Cu(Ⅱ)Gly2HisGly oxidation by H2O2/ascorbic acid to the Cu(Ⅲ) complex and its subsequent decay to alkene peptides[J]. Inorg. Chem.,2003, 42(19):5807-5817.
    [284]Chen S M, Chzo W Y. Simultaneous voltammetric detection of dopamine and ascorbic acid using didodecyldimethylammonium bromide (DDAB) film-modified electrodes[J]. J. Electro. Chem.,2006,587(2),226-234.
    [285]Fan J, Yu C Z, Wang L M, et al. Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies[J]. Chem. Commun.,2003,17: 2140-2141.
    [286]He H, Crooks R M. Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles[J]. J. Am. Chem. Soc.,2005,127(13):4930-4934.
    [287]Liu Y J, Yin F, Long Y M, et al. Study of the immobilization of alcohol dehydrogenase on Au-colloid modified gold electrodeby piezoelectric quartz crystal sensor, cyclic voltammetry, and electrochemical impedance techniques[J]. J. Colloid Interface Sci.,2003, 258(1):75-81.
    [288]刘兵,阳明辉,杨海峰,等.基于等离子体聚合膜固定酶的H2O2生物传感器[J].高等学校化学学报,2004,25(10):1820-1824.
    [289]Lei C, Deng J. Hydrogen peroxide sensor based on coimmobilized methylene green and horseradish peroxidase in the same montmorillonite modified bovine serum albumin glutaraldehyde matrix on a glassy carbon electrode surface[J]. Anal. Chem.,1996,68(19): 3344-3349.
    [290]张娟,徐静娟,陈洪渊.基于SiO2纳米粒子固定辣根过氧化物酶的生物传感器[J].高 等学校化学学报,2004,25(4):614-617.
    [291]Ruan C, Yang F, Lei C, et al. Thionine covalently tethered to multilayer horseradish peroxidase in a self-assembled monolayer as an electron-transfer mediator[J]. Anal. Chem., 1998,70(9),1721-1725.
    [292]Wang S F, Chen T, Zhang Z L, et al. Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids[J]. Langmuir,2005,21(20):9260-9266.
    [293]Chen H Y. A reagentless hydrogen peroxide sensor based on incorporation of horseradish peroxidase in poly(thionine) film on a monolayer modified electrode[J]. Anal. Chim. Acta, 1996,391(3):299-306.
    [294]Mulchandani A, Chen W, Mulchandani P. Biosensors for direct determination of organophosphate pesticides[J]. Biosens. Bioelectron.,2001,16(4-5):225-230.
    [295]Gulbaultg G, Sadorm H, Kuan S S. Enzymatic methods of analysis:Trace analysis of various pesticides with insect cholinesterases[J]. Anal. Chim. Acta,1970,52(1):75-82.
    [296]Muldachani P, Muchandania K I. Biosensor for direct determination of organophosphate nerve agents.1. potentiometric enzyme electrode[J]. Biosens. Bioelectron.,1999,14(1): 77-85.
    [297]Coussen F, Bonnerot C, Massoulie J. Stable expression of acetylcholinesterase and associated collagenic subunits in transfected RBL cell lines:production of GPI-anchored dimers and collagen-tailed forms[J]. Eur. J. Cell Biol.,1995,67(3):254-260.
    [298]Andreescu S, Marry J L. Twenty years research in cholinesterase biosensors[J]. Biomol. Eng.,2006,23(1):1-15.
    [299]Kang Y, He J, Guo X D, et al. Influence of pore diameters on the immobilization of lipase in SBA-15[J]. Ind. Eng. Chem. Res.,2007,46(13):4474-4479.
    [300]Du D, Ding J W, Cai J, et al. Electrochemical thiocholine inhibition sensor based on biocatalytic growth of Au nanoparticles using chitosan as template[J]. Sens. Actuators B: Chem.,2007,127(2):317-322.
    [301]Vinu A, Srinivasu P, Miyahara M, et al. Preparation and catalytic performances of ultralarge-pore TiSBA-15 mesoporous molecular sieves with very high Ti content[J]. J. Phys. Chem. B,2006,110(2):801-806.
    [302]Schulze H, Vorlova S, Villatte F, et al. Design of acetylcholinesterases for biosensor applications[J]. Biosens. Bioelectron.2003,18(2-3):201-209.
    [303]Liu G D, Lin Y H. Electrochemical stripping analysis of organophosphate pesticides and nerve agents[J]. Electrochem. Commun.,2005,7(4):339-343.
    [304]Dai Z H, Ni J, Huang X H, et al. Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix[J]. Bioelectrochemistry,2007,70(2): 250-256.
    [305]Chouyyok W, Panpranot J, Thanachayanant C, et al. Effect of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization[J]. J. Mol. Catal. B:Enzym., 2009,56(4):246-252.
    [306]Hartmann M, Vinu A. Mechanical stability and porosity analysis of large-pore SBA-15 mesoporous molecular sieves by mercury porosimetry and organics adsorption[J]. Langmuir,2002,18(21):8010-8016.
    [307]Galarneau A, Cambon H, Di Renzo F, et al. True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature[J]. Langmuir,2001, 17(26):8328-8335.
    [308]Manyar H G, Gianotti E, Sakamoto Y, et al. Active biocatalysts based on pepsin immobilized in mesoporous SBA-15[J]. J. Phys. Chem. C,2008,112(46):18110-18116.
    [309]Shah P, Sridevi N, Prabhune A, et al. Structural features of Penicillin acylase adsorption on APTES functionalized SBA-15[J]. Microporous Mesoporous Mater.,2008,116(1-3): 157-165.
    [310]Serra E, Mayoral A, Sakamoto Y, et al. Immobilization of lipase in ordered mesoporous materials:Effect of textural and structural parameters[J], Microporous Mesoporous Mater., 2008,114(1-3):201-213.
    [311]Zhu L, Wang K Q, Lu T H, et al. The direct electrochemistry behavior of Cyt c on the modified glassy carbon electrode by SBA-15 with a high-redox potential[J]. J. Mol. Catal. B:Enzym.,2008,55(1-2):93-98.
    [312]Liu Y G, Xu Q, Feng X M, et al. Immobilization of hemoglobin on SBA-15 applied to the electrocatalytic reduction of H2O2[J]. Anal. Bioanal. Chem.,2007,387(4):1553-1559.
    [313]Cai C X, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes[J]. Anal. Biochem.,2004,332(1):75-83.
    [314]Huang Y X, Zhang W J, Xiao H, et al. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode[J]. Biosens. Bioelectron.,2005,21(5):817-821.
    [315]Liu Q, Lu X B, Li J, et al. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J]. Biosens. Bioelectron.,2007,22(12):3203-3209.
    [316]Takahashi H, Li B, Sasaki T, et al. Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent[J]. Microporous Mesoporous Mater.,2001,44-45(6):755-762.
    [317]Yang Y H, Yang H F, Yang M H, et al. Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/chitosan composite film as immobilization matrix[J]. Anal. Chim. Acta,2004,525(2):213-220.
    [318]Zhao G., Feng J J, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film[J]. Electrochem. Commun.,2005,7(7): 724-729.
    [319]Lavirom E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem.,1979,101(1):19-28.
    [320]Fry A. Synthetic organic electrochemistry (second Ed.). New York:Wiley-Interscience, 1989,50(79):101-105.
    [321]Luo X L, Killard A J, Smyth M R. Reagentless glucose biosensor based on the direct electrochemistry of glucose oxidase on carbon nanotube-modified electrodes[J]. Electroanalysis,2006,18(11):1131-1134.
    [322]Liu Y, Wang M K, Zhao F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix[J]. Biosens. Bioelectron., 2005,21(6):984-988.
    [323]Cui G, Kim S J, Choi S H, et al. A disposable amperometric sensor screen printed on a nitrocellulose strip:a glucose biosensor employing lead oxide as an interference-removing agent[J]. Anal. Chem.,2000,72(8):1925-1929.
    [324]Chen X, Dong S J. Sol-gel-derived titanium oxide/copolymer composite based glucose biosensor[J]. Biosens. Bioelectron.,2003,18(8):999-1004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700