基于场效应管检测的新型纳机电谐振器基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳机电谐振器的应用十分广泛,可作为新的实验手段来研究量子物理,并可在高灵敏度传感器和射频电路等方面得到直接应用,因此得到人们广泛关注。
     在检测方面,随着尺寸的进一步减小,目前应用于纳机电谐振器的电容、压阻等检测方法将遇到信号提取困难,甚至无法工作的问题,必须研究新的检测方法以满足应用需求。论文提出一种新型场效应管检测方法,即将谐振器作为源区、沟道区和漏区,SOI硅片衬底作栅电极,构成空气间隙场效应管,利用沟道电流检测谐振器振动,不管谐振器尺寸多大,该效应均存在,是一种有效的纳机电谐振器检测方法。建立了初步的理论模型,分析表明,沟道电流可反应振动情况,二倍频分量最易检测振动;发现了由机械振动引起场效应管输出特性曲线中的负阻现象,并在实验中得到验证。采用等离子体处理工艺解决了掏空后器件不能正常工作的问题。在源、漏电极和栅极间增加去寄生电极有效地消除了寄生信号。
     在制作方面,随着纳机电谐振器由梁结构进一步发展为线结构,目前标准的纳米线加工方法不适于批量制作,而新发展的一些利用材料和工艺特性的加工方法,或工艺、版图设计较复杂,或器件尺寸不容易控制,发展工艺简单可靠、可精确控制尺寸的加工方法是纳机电谐振器进一步发展迫切需要解决的问题。论文在制作梁式谐振器时首次发现了含HF酸溶液选择性腐蚀PN结N型区域现象,对腐蚀机理进行了探讨。常温下腐蚀速率小于1nm/min,腐蚀后样品表面非常光滑,可用于纳米结构的加工。基于该现象发展了一套纳机电谐振器加工工艺,完全采用标准MEMS工艺,工艺简单,通过控制初始SOI硅片顶层硅厚度和BOE腐蚀时间可精确控制纳米线尺寸,利用该工艺制作了宽和厚50nm左右的谐振器结构。刘等人提出了一种基于TMAH各向异性腐蚀的谐振器加工工艺,控制氧化厚度及TMAH腐蚀时间可精确控制尺寸。但是该工艺采用氮化硅作TMAH腐蚀的掩膜,而生长和刻蚀氮化硅需要采用LPCVD和Ion Beam,工艺较复杂。论文采用氧化硅取代氮化硅作TMAH各向异性腐蚀掩膜,改进了该工艺,制作了几百纳米宽,几十纳米厚的样品。
     对实际应用来说,噪声是制约谐振器性能的重要因素;而辐射损伤则是航空航天领域应用必须解决的问题。目前多数研究者将辐射导致的微/纳器件性能改变归因于电学性能的改变,而对辐射引起器件机械性能的改变则较少涉及,这对谐振器这类强烈依赖结构机械性能的器件来说,是不够的。论文建立了初步的微/纳机电谐振器噪声模型,仿真分析表明对于微机电谐振器及目前常见的纳机电谐振器来说,谐振频率附近噪声主要由布朗噪声引起,远离谐振频率处噪声由随机温度漂移噪声、Johnson噪声及布朗噪声共同决定。高真空、超低温条件可获得较好的噪声性能。对微/纳机电谐振器进行了电子和钴60γ射线辐射实验,测得了谐振频率、Q值等机械性能变化,并且这些变化在常温下可退火。对结果进行了初步分析,辐射在材料内部引入缺陷,引起内应力,改变内耗,导致材料机械参数变化,引起谐振器谐振频率漂移,Q值变化;电子辐射以及钻60γ射线辐射引起的缺陷不是永久的,在常温下可退火。
     本文提出了一种新型纳机电谐振器检测方法,即场效应管检测方法,该方法不受谐振器尺寸的限制;发展了一套基于BOE溶液选择性腐蚀PN结N型区域现象的纳机电谐振器加工工艺,其工艺简单,并可精确控制谐振器尺寸;改进了刘等人提出的基于TMAH各向异性腐蚀的纳机电谐振器加工工艺;建立了初步的谐振器的噪声模型;对微/纳机电谐振器进行了电子和钴60γ射线辐射实验,并对实验结果进行了初步分析。通过本论文的工作,为纳机电谐振器的进一步发展打下了良好的基础,为提高微/纳机电谐振器性能,推动微/纳机电谐振器在航空航天领域的应用提供了理论依据。
Nowadays, it is possible to produce NEMS resonators with dimensions well below 100nm, which show increased eigenfrequencies up to 1GHz. In this frequency range NEMS resonators could serve as filters for information processing applications. Another range of applications emerges from the sensitivity these devices could reach in sensor applications. Using sophisticated detection schemes this might even lead to the quantum limit where e.g. the uncertainty principle might be observed in the motion of a mechanical resonator. NEMS resonators have drawn lots of attention because of these applications. However, as the dimension is so small, it is difficult to develop fabrication and detection method for NEMS resonator. MEMS and NEMS resonators are suitable for aeronautical and astronautical application because of their small size and low power consumption. But there is radiation in the outer space, mechanical property of the resonator will change due to radiation. A little research work has been done on this area.
     This work has done some researches on fabrication and detection method for NEMS resonators, noise characteristic and mechanical radiation damage for MEMS/NEMS resonators.
     Crystal-silicon nano-beam, with one hundred nanometers thickness, is fabricated on the top silicon of N-type SOI wafer. PNP junction is formed on the beam. P-channel air-gap thin film transistor (TFT) is obtained after the oxide layer under the beam removed, with the PNP junction as drain, channel and source, and the substrate of the SOI wafer as gate. Such an air-gap TFT can be used for vibration detection of the silicon beam. The electric characteristic of the as-released air-gap TFT is very poor. After treated in O_2 and N_2 plasma for 5 minutes, the characteristic is significantly improved. Negative resistance phenomenon in the output curve because of the beam motion is observed.
     It is found that n-type area of pn junction can be selectively etched by BOE solution without illumination, with etching rate lower than 1nm/min. The possible mechanism of the etching phenomenon is discussed. A simple fabrication process for NEMS resonator is proposed according to the above phenomenon. In this process only traditional micro-electromechanical system technology is used. Dimension of the fabricated nano-wire can be controlled well. A 50nm wide and 50nm thick resonator has been formed using this method.
     Liu et al developed a fabrication process for NEMS resonator based on TMAH anisotropic etching. Si_3N_4 is used as the etching mask. Using SiO_2, instead of Si_3N_4, as the etching mask, a NEMS resonator, with a few hundreds nanometer width and a few tens nanometer thickness is successfully fabricated. The fabrication process is more simple and easier to control.
     A simple noise model for MEMS/NEMS resonator is established. Simulation results indicate that the noise near the eigenfrequencies is determined by the Brownian noise, but the noise far from the eigenfrequencies is determined by the temperature fluctuation noise, Johnson noise and the Brownian noise. The noise becomes small when the resonator works at high vacuum and low temperature.
     Changes in the eigenfrequencies and Q of the MEMS/NEMS resonator have been detected by the electron and gamma ray radiation experiment. A simple mechanical radiation damage theory is established based on these results. Disfigurement will be produced in the semiconductor material by radiation. The disfigurement is unabiding and it can be annealed at room temperature.
引文
[001]刘焕彬,陈小泉,纳米科学与技术导论,化学工业出版社,2006年3月第1版
    [002]http://www.nanoctr.cn/info/997.html
    [003]R.Birfinger,H.Geiter,H.P.Klein et al,Nanocrystalline materials an approach to a novel solid structure with gas-like disorder,Phys.Lett.A,1984,102(8),365-369
    [004]曹茂盛,超微颗粒制备科学与技术,哈尔滨工业大学出版社,1995
    [005]曹茂盛,关长斌,徐甲强,纳米材料导论,哈尔滨工业大学出版社,2001
    [006]曹茂盛,殷景华,张宇,物理学与高科技,哈尔滨工业大学出版社,1995
    [007]R.Uyeda,The morphology of fme metal crystallites,Cryst J.Growth,1974,24/25,69-75
    [008]R.Uyeda,Growth of polyhedral metal crystallites in inactive gas,Cryst J.Growth,1978,45,485-489
    [009]W.Z.Li,S.S.Xie,L.X.Qian et al,Large-Scale Synthesis of Aligned Carbon Nanotubes,Science,1996,274,1701-1703
    [010]Z.W.Pan,S.S.Xie,B.H.Chang et al,Very long carbon nanotues,Nature,1998,394,631-632
    [011]马仁志,魏秉庆,徐才录等,基于碳纳米管的超级电容器,中国科学(E辑),2000,2,112-116
    [012]陈军峰,吴军,徐才录等,串联碳纳米管双电层电容器电容特性的研究,炭素技术,2000,4.8-11
    [013]朱宏伟,徐才录,陈桉等,碳纳米管表面处理对储氢性能的影响,炭素技术,2000,4,13-120
    [014]李志杰,梁奇,陈栋梁等,碳纳米管和石墨在电化学嵌锂过程中的协同效应,应用化学,2001,4,269-271
    [015]刘成林,李远光,钟菊花等,超微颗粒及其复合膜的紫外—可见光吸收光谱的研究,功能材料,1999,30(2),223
    [016]岳立萍,何怡贞,纳米颗粒镶嵌膜的非线性光吸收研究,功能材料,1995(增刊)
    [017]王雅静,姜月顺,超微粒薄膜的界面电子转移研究,化学物理学报,1999,12(2),201
    [018]T.Uchihashi,N.Choi,M.Tanigawa et al,Jpn.J.Appl.Phys,39,L887,2000
    [019]http://www.nanoctr.cn/info/1068.html
    [020]http://www.nanoctr.cn/info/1052.html
    [021]黄德欢,纳米技术与应用,中国纺织大学出版社,2001年第1版
    [022]S.J.Tans,M.H.Devoret,R.J.A Groeneveld et al,Electron correlations in carbon nanotubes,Nature,1998,394,761-764
    [023]P.G.Collins,M.S.Arnold,P.Avouris,Engineering Carbon nanotubes and nanotube circuits using electrical breakdown,Science,2001,292,706-709
    [024]H.W.C.Postma,T.Teepen,Z.Yao et al,Carbon nanotube single-electron transistors at room temperature,Science,2001,293,76-79
    [025]J.Park,A.N.Pasupathy,J.I.Goldsmith et al,Coulomb blockade and the kondo effect in single-atom transistors,Nature,2002,417,722-725
    [026]X.F.Duan,C.Niu,V.Sahi et al,High-performance thin-film transistors using semiconductor nanowires and nanoribbons,Nature,2003,425,274-278
    [027]Y.Huang,X.F.Duan,Y.Cui et al,Logic gates and computation from assembled nanowire building blocks,Science,2001,294,1313-1317
    [028]A.Bachtold,P.Hadley,T.Nakanishi et al,Logic circuits with carbon nanotube transistors,Science,2001,294,1317-1320
    [029]Y.Chen,G.Y.Jung,D.A.A.Ohlberg et al,Nanoscale molecular-switch crossbar circuits,Nanotechnology,2003,14(4),462-468
    [030]X.F.Duan,Y.Huang,R.Agarwal et al,Single-nanowire electrically driven lasers,Nature,2003,421,241-245
    [031]J.A.Misewich,R.Martel,P.Avouris et al,Electrically induced optical emission from a carbon nanotube FET,Science,2003,300,783
    [032]周兆英,微/纳机电系统,仪表技术与传感器,2003,2,1-5
    [033]T.D.Stowe,K.Yasumura,T.W.Kenny et al,Attonewton force detection using ultrathin silicon cantilevers,Appl.Phys.Lett.,1997,71,288-290
    [034]A.Erbe,H.Blick,Silicon-on-Insulator Based Nano resonators for Mechanical Mixing at Radio Frequencies,IEEE Trans Ultra Ferro Freq Con,2002,49(8),1114-1117
    [035]T.Toriyama,Y.Tanimoto,and S.sugiyama,Characteristics of silicon nano wire as piezoresistor for nano electromechanical systems,The 14th IEEE International Conference on Micro Electro Mechanical Systems,Interlaken,2001,21-25 Jan,305-308
    [036]M.Stopka,D.Drews,K.Mayr et al,Multifunctional AFM/SNOM cantilever probes:fabrication and measurements,Microelectronic Engineering,2000,53,183-186
    [037]R.K.Soong,G.D.Bachand,H.P.Neves et al,Powering an inorganic nanodevice with a biomolecular motor,Science,2000,290(5496),1555-1558
    [038]P.Poncharal,Z.L.Wang,D.Ugarte et al,Electrostatic deflections and electromechanical resonances of carbon nanotubes,Science,1999,283(3),1513-1516
    [039]S.Vatannia,J.L.Schiano,G.Gildenblat et al,Resonant Tunneling Displacement,Transducer IEEE Trans.Elec Dev,1998,45(7),1616-1619
    [040]庞洁,悬臂梁质量块结构吸合时间式加速度传感器研究,中科院研究生院硕士论文,2007
    [041]M.K.Sunkara,S.Sharma,R.Miranda et al,Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method,Appl.Phys.Lett.,2001,79,1546-1548
    [042]冯孙齐,俞大鹏,张洪洲等,一维硅纳米线的生长机制及其量子限制效应的研究,中国科学(A),1999,29,921-926
    [043]H.F.Yan,Y.J.Xing,Q.L.Hang et al,Growth of amorphous Silicon nanowires via a solid-liquid-solid mechanism,Chemical Physics letters,2000,323(3),224-228
    [044]K.Shimizu,S.Oda,Fabrication of MOS nanostructure by employing Electron Beam lithography and Anisotropic wet etching of silicon,Jpn J Appl Phys,1991,30(3A),L415-L417
    [045]J.Orloff,High-resolution focused ion beams,Rev.Scie.Instrum.,1993,64,1105-1130
    [046]F.S.-S.Chien,C.-L.Wu,Y.-C.Chou et al,Nanomachining of(110)-oriented silicon by scanning probe lithography and anisotropic wet etching,Appl.Phys.Lett.,1999,75,2429-2431
    [047]H.Fujii,S.Kanemaru,T.Matsukawa et al,Fabrication of a nanometer-scale si-wire by micromaching of a silicon-on-insulator substrate,Jpn J Appl Phys,1998,37(12B),7182-7185
    [048]H.Fujii,S.Kanemaru,T.Matsukawa et al,Air-bridge-structure silicon nanowire and anomalous conductivity,Appl.Phys.Lett.,1999,75,3986-3988
    [049]H.I.Liu,D.K.Biegelsen,N.M.Johnson et al,Self-limiting oxidation of Si nanowires,J.Vac.Sci.Technol.B,1993,11(6),2532-2537
    [050]H.Rueda,Modeling of mechanical stress in silicon isolation technology and it's influence on device characters,Ph.D Dissertation,University of Florida,2001
    [051]S.Cea,Multidimensional viscoelastic modeling of silicon oxidation and titanium silicidation,Ph.D Dissertation,University of Florida,1996
    [052]T.Hiramoto,H.Ishikuro and T.Fujii,Fabrication of silicon nanostructures for single electron device applications by anisotropic etching,Jpn.J.Appl.Phys.,1996,35,6664-6667
    [053]K.Ishii,E.Suzuki,T.Sekigawa,Fabrication of nanometer-sized silicon wires using a bevel SiO2 wall as an electron cyclotron resonance plasma etching mask,J.Vac.Sci Tec B,1997,15(7),543-547
    [054]Y.Ono,K.Yamazaki,Y.Takahashi,Si single-electron Transistors with high voltage gain,IEICE Trans Electron,2001,84(8),1061-1065
    [055]Y.K.Choi,T.J.King,C.Hu,A spacer patterning Technology for nanoscale CMOS,Electron Device,IEEE Trans on,2002,49(3),436-441
    [056]J.T.Sheu,J.M.Kuo,K.S.You et al,A new fabrication technique for silicon nanowires,Microelectronic Engineering,2004,73-74(1),594-598
    [057]S.Ciucci,F.D'Angelo,A.Diligenti et al.,Silicon nanowires fabricated by means of an underetching technique,Microelectronic Engineering,2005,78-79,338-342
    [058]V.Agache,1.1 GHz Silicon Blade nano-electromechanical resonator featuring 20 nm gap lateral transducers,Micro Electro Mechanical Systems,MEMS2005.18th IEEE International conference on,30 Jan 2005,121-124
    [059]A.Husain,J.Hone,Henk W.Ch.Postma et al,Nanowire-based very-high-frequency electromechanical resonator,Appl.Phys.Lett.,2003,83(6),1240-1242
    [060]A.N.Clelanda and M.L.Roukes,Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,Appl.Phys.Lett.,1996,69(18),2653-2655
    [061]K.L.Ekinci,Y.T.Yang,X.M.H.Huang et al,Balanced electronic detection of displacement in nanoelectromechanical systems,Appl.Phys.Lett.,2002,81(12),2253-2255
    [062]I.bargatin,Sensitive detection of nanomechanical motion using piezoresistive signal downmixing,Appl.Phys.Lett.,2005,86(13),133109-1-133109-3
    [063]D.W.Carr,S.Evoy,L.Sekaric et al,Measurement of mechanical resonance and losses in nanometer scale silicon wires,Appl.Phys.Lett.,1999,75(7),920-922
    [064]H.C.Nathanson,W.E.Newell,R.A.Wichstrom et al,The Resonant Gate Transistor,IEEE Trans.Elec.Dev.,1967,14(3),117-133
    [065]刘文平,李铁,杨恒等,基于MEMS工艺制作的硅纳米线及其电学性质,半导体学报,2006,27(9):1645-1649
    [066]曾树荣,半导体器件物理基础,北京大学出版社,2002
    [067]M.H.Bao,Analysis and Design Principles of MEMS Devices,ELSEVIER,2004,2~(nd)ver
    [068]N.艾罗拉著,张兴等译,用于VLSI模拟的小尺寸MOS器件模型,科学出版社,1999
    [069]孙恒慧,包宗明,半导体物理实验,高等教育出版社,1985
    [070]孙以材,半导体测试技术,冶金工业出版社,1984
    [071]管绍茂,半导体表面钝化技术及其应用,国防工业出版社,1981
    [072]B.A.Khan,R.Pandya,Activation-energy of source-drain current in hydrogenated and unhydrogenated polysilicon thin-films transistors,IEEE Trans.Electron Devices,1990,37,1727-1734.
    [073]M.Hack,A.G.Lewis,L-W.Wu,Physical models for degradation effects in polysilicon thin-film transistors,IEEE Trans.Electron Devices,1993,40,890-897
    [074]M.J.Tsai,F.S.Wang,K.L.Cheng et al,Characterization of H2/N2 plasma passivation process for poly-Si thin-film transistors(TFT's),Solid State Electron,1995,38,1233-1238
    [075]P.M.Fauchet,L.Tsybeskov,C.Peng et al,Light-emitting porous silicon:material science,properties,and device applications,IEEE J.Sel Top.Quantum Electron,1995,1,1126-1139
    [076]K.D.Hirschman,L.Trybeskov,S.P.Duttagupta et al,Silicon-based visible light-emitting devices integrated into microelectronic circuits,Nature,1996,384,338
    [077]H.Kaneko,P.J.French,R.F.Wolffenbuttel,Photo-and electrolurninescence from porous Si,J.of Luminescence,1993,57,101-104
    [078]C.M.A Ashruf,Galvanic etching of silicon for fabrication of micromechanical structures,Delft University of Technology,DIMES,Department of Electrical Engineering,Laboratory for Electronic Instrumentation,Mekelweg 4,2628 CD Delft,The Netherlands
    [079]H.Ohji,P.J.French,K.Tsutsumi,Fabrication of mechanical structures in p-type silicon using electrochemical etching,Proceeding of Transducers'99,Sendai,Japan,June,1999,1086-1089
    [080]R,B,Wehrspohn,J.N.Chazalviel,f.Ozanam,Macropore formation in highly resistive p-type crystalline silicon,J.Electrochem.Soc.,1998,145,2958-2961
    [081]T.E.Bell,P.T.J.Gennissen,D.DeMunter,M.Kuhl,Porous silicon as a sacrificial material,J.Micromech.Microeng.1996,6,361
    [082]P.Lim,J.R.Brock,I.Trachtenberg,Laser-induced etching of silicon in hydrofluoric acid,Appl.Phys.Lett,1992,60,486-488
    [083]O.K.Andersen,T.Frello and E.Veje,Photoinduced synthesis of porous silicon without anodization,J.Appl.Phys,1995,78,6189-6192
    [084]K.W.Cheah,C.H.Choy,Wavelength dependence in photosynthesis of porous silicon dot,Sol Sta Commu,1994,91,795-797
    [085]N.Noguchi,I.Suemune,Luminescent porous silicon synthesized by visible light irradiation,Appl.Phys.Lett.,1992,62,1429-1431
    [086]T.Yoshida,T.Kudo and K.Ikeda,Photo-induced preferential anodization for fabrication of monocrystalline micromechanical structures,Micro electro mechanical systems,1992,MEMS'92,Proceedings,An investigation of micro structures,sensors,actuators,machines and robot.IEEE,Travemunde,Germany,56-61
    [087]H.Ohji,Macroporous Silicon Based Micromachining,Delft University of Technology,2002,The Netherlands
    [088]程璇,林昌健,半导体硅片的p-n结和铜沉积行为的电化学研究,半导体学报,2000,21(5),509-516
    [089]V.Bertagna,R.Erre,F.Rouelle et al,Corrosion rate of n-and p-silicon substrates in HF,HF+HCl,and HF+NH(4)F aqueous solutions,J.electrochem.Soc,1999,146(1),83-90
    [090]N.H.Tea,V.Milanovic,C.A.Zincke,Hybrid postprocessing etching for CMOS compatible MEMS,J Microelectromechanical Systems,1997,6(4),363-372
    [091]黄庆安,硅微机械加工技术,科学出版社,1996
    [092]王涓,孙岳明,单晶硅各向异性湿法腐蚀机理的研究进展,化工时刊,2004,18,1-4
    [093]张建辉,李伟东,万红,吴学忠,TMAH腐蚀液制作硅微结构的研究,传感技术学报,2006,19(3),593-596
    [094]刘文平,基于MEMS技术制作的硅纳米线及其性质研究,中科院研究生院博士论文,2004
    [095]沈桂芬,姚朋军,张宏,刘玲,张宏庆,范军,TMAH腐蚀液的研究,微电子学与计算机,2003.10,45-47
    [096]J.R.Vig,Y.K.Kim,Noise in Microelectromechanical System Resonators,IEEE Trans.Ultra Ferro Freq Con,1999,46(6),1558-1565
    [097]A.N.Cleland,M.L.Roukes,Noise process in nanomechanical resonators,J.Appl Phys,2002,92,2758-2769
    [098]P.W.Kruse,L D.McGlauchin,R.B.McQuistan,Elements of infrared technology generation, Transmission,and detection,New York,Wiley,1963,354
    [099]P.W.Kruse,D.D.Skatrud,Uncooled infrared imaging arrays and systems,Semiconductors and semimetals,1997,47
    [100]J.R.Vig,R.J.Piller,Y.Kim,Application of Quartz Microresonators to Uncooled Imaging Arrays,Semiconductros and Semimetals,Vol.47,SanDiego,CA:Academic,1997,269-296
    [101]C.T.-C Nguyen,Micromechanical resonators for oscillators and filters,Proc.IEEE Int.Ultrason,Symp.,1995,489-499
    [102]L.D.Edmonds,et al,Radiation Response of a MEMS Accelerometer:An Electrostatic Force,IEEE Trans Nuc Sci,1998,45(6),2779
    [103]C.I.Lee,et al,Total dose effects on Microelectromechanical System(MEMS):Accelerometers,IEEE Trans.Nuc Sci,1996,43(6),3127
    [104]S.S.Mcclure,Radiation Effects in Micro-electromechanical System(MEMS):RF Relays,IEEE Tans.Nuclear Science,2002,49(6),3197
    [105]曹建中,半导体材料的辐射效应,科学出版社,1993
    [106]赖祖武,抗辐射电子学:辐射效应及加固原理,国防工业出版社,1998
    [107]X.Y.Xia,Z.X.Zhang,and X.X.Li,A Latin-cross-shaped integrated resonant cantilever with second torsion-mode resonance for ultra-resoluble bio-mass sensing,J.Micromech.Microeng,2008,18,035028

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700