东营凹陷超压特征及演化与油气驱动机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超压对油气成藏过程中的诸多方面如油气生成、运移和聚集具有重要的影响,超压分布特征及演化是含油气盆地中油气地质研究的重要方面,其研究也对钻井工程和油藏工程具有重要的意义。本文以东营凹陷沙三-四段烃源岩层系发育的大规模超压系统为研究对象,利用钻井、测井、地震以及测试分析等资料,在前人已有成果的基础上,深入研究了东营凹陷现今超压分布特征、成因和演化,并探讨了不同压力环境条件下油气驱动机制的差异性及其对油气运移和聚集的影响。通过对以上问题的研究,取得的成果认识如下:
     (1)东营凹陷为富烃超压凹陷,钻井揭示该凹陷大规模超压系统出现在沙三-四段烃源岩层系(沙四上亚段和沙三中-下亚段)。根据1485口探井的2400个钻杆测试(DST)数据,实测砂岩异常高压的埋深范围约在2200~4400m,剩余压力约为3.4~39.6MPa,压力系数在1.2~1.99;根据钻井和测井以及地震速度资料综合解释,超压带钻井泥浆密度明显增加,超压泥质岩层具有偏离正常趋势的异常高声波时差测井响应和异常低地震层速度响应特征,综合解释超压系统顶界面埋深在2200~2900m,对应地温在90~120℃,超压顶界面深度随着烃源岩层系顶界埋深的增加而增加。上述测井声波时差和地震层速度异常可以来预测东营凹陷大规模超压系统分布,根据单井超压计算结果和所建立的三维超压体模型,超压带整体分布特征和超压发育幅度与成熟烃源岩的累积厚度、埋深和热成熟生油作用具有明显的相关性,超压系统范围内烃源岩层系样品镜质体反射率(R0,%)分布在0.5~1.3%,成熟烃源岩累计厚度大,热演化程度处在大量生油阶段的区域控制了超压大规模发育的区带;断裂系统和输导性砂体对东营凹陷沙三~四段地层中发育的大规模超压系统的分布和结构变化具有重要影响。
     (2)油包裹体荧光颜色以黄白色(低中等成熟度)和蓝白色(高成熟度)为主,根据荧光光谱主峰波长特征可以将其划分为两种类型;发黄白色荧光和蓝白色荧光油包裹体的均一温度范围分别为70~100℃和100~130℃,与之对应的同期盐水包裹体的均一温度的范围为100~140℃和140~180℃。将共生的盐水包裹体平均温度在地层埋藏史和热史图中“投影”,由此得到东营凹陷沙四段和沙三段储层存在两个油气成藏期,第一期为东营组沉积期,时间大约为30-25Ma,第二期发生在明化镇组沉积期至今,时间大约为8~0Ma;不同荧光颜色的油包裹体可能为同一期油气充注造成,其差别主要是由油气来源不同导致成分不同所造成。从烃源岩成熟史和生排烃史特征来看,第二期油气充注期内,沙三下亚段和沙四上亚段干酪根转化率和生排烃量都大量增加,是最主要的成藏期。在每个成藏期内,利用流体包裹体古压力热动力学模拟的方法都检测到超压发育,根据试油结论,现今油层和油水同层发育超压,而水层和含油水层发育常压,判断其成因为砂岩储层的传递型超压。
     (3)对现今烃源岩压力场成因识别根据地层有效应力对欠压实和生油增压两种不同超压机制具有不同响应特征的原理,利用实测流体压力(DST)测试结果,结合声波和密度测井资料,对超压段所识别的不均衡压实作用和生油作用两种超压成因机制下的实测压力和有效应力随深度变化特征进行了分析,结果表明:①两种不同成因机制下的实测压力和有效应力特征具有明显的差异性,不均衡压实作用在压实过程中流体排出受阻,承担上覆部分岩层压力形成超压,表现为阻止地层有效应力增大,因此其实测超压增加段与静岩压力增加趋势大体一致,而有效应力随深度基本保持不变;生油作用在岩层正常压实固结之后形成超压,发育程度不受上覆岩层压力的影响,因此超压的增加在深度上与上覆岩层压力增加不具有一致性,且超压对有效应力的影响不同于不均衡压实作用;②这两种不同的超压成因使得有效应力的变化随着声波速度出现加载和卸载两种趋势线,可以用其来判断超压成因,利用实测资料计算的有效应力结果说明了东营凹陷超压成因机制包括欠压实作用和生油作用,但欠压实作用形成超压的范围和规模较小,平面上主要分布在利津洼陷北带和牛庄洼陷东部地区,埋深主要在2000-3200m的范围内,而生油作用对深部大规模超压和中等-强超压的形成至关重要,所以,现今超压系统主要是生油作用所致。
     (4)利用数值模拟的方法结合流体包裹体热动力学模拟结果说明,第一期超压的成因机制可能以欠压实作用为主。①生油增压的计算结果说明第一期超压发育期内由于生油增压一方面很难达到泥岩的破裂压力程度,另一方面其生成的超压幅度要小于流体包裹体热动力学模拟结果,所以,单纯以生油作用作为超压的成因很难对原油从烃源岩中的排出产生影响;②根据沉积速率计算结果,地层在沙三段沉积期经历了快速沉积过程,沉积速度可以达到800~1000m/Ma,为沙三下亚段和沙四上亚段大套泥岩发生欠压实作用形成异常高压提供了有利的条件;因此,欠压实开始形成的时期为沙三段地层沉积时期,早于第一期成藏期,埋深在1000~2000m的范围内。
     (5)烃源岩成熟史、生排烃史模拟和流体势计算结果表明:①主力烃源岩段沙三中、下亚段现今成熟度(R0%)区内主要分布在0.3~1.0%之间,沙四上亚段现今成熟度(R0%)区内主要分布在0.5~1.1%之间,洼陷内深凹区的成熟度高于洼陷边缘,现今仍处于大量生油阶段;②东营凹陷烃源岩层系的生、排烃过程可以分为三个阶段,至少存在两期原油的生成和排出,早期为30~25Ma,晚期为16~0Ma,其中以晚期为主,特别是距今5Ma(馆陶组沉积末期)以来,石油大量生成并排出;③流体势计算结果结果显示围绕各个深洼区的边缘和中央断裂带是有利的油气聚集区;其中,沙四上亚段在中央断裂带聚集的油气沿通源断裂和输导性砂体作垂向和横向上的运移;整体上,油气在三维空间中从高油势区向低油势区运移并聚集。
     (6)根据研究区2000余口探井的实测地压和油田水化学资料,结合储层超压演化,利用水化学场的成因特征,研究了超压系统演化过程对地层流体运聚产生的影响,即超压作用下流体运移特征。结果表明:①在垂向上,2200m之上常压系统(沙二段至馆陶组)地层水矿化度一般<100g/l,属于咸水范畴;2200m之下的超压系统(沙四和沙三段)部分地层水矿化度值>100g/l,最高达336g/l,属于盐水范畴;②在平面上,东营凹陷东部地层水矿化度值高于西部,北带高于南部,沙三段和沙二段高矿化度地层水在凹陷中心沿断裂带分布,沙四段地层水矿化度以东营北带洼陷区为中心呈环带状向外减小;③东营凹陷地层水离子间的关系和组合特征说明,在水化学场和超压系统耦合作用下,超压流体封存箱中的水-岩相互作用对凹陷中心氯化钙型高矿化度地层水的形成具有重要作用,高矿化度地层水形成可能某种程度上受到沙四段蒸发岩地层中盐类溶解作用的影响;④沙二、三段高矿化度地层水则主要是与沿断裂系统垂向运移的高矿化度沙四段地层水混合作用的结果。
     (7)东营组末期主要是来自沙四上亚段烃源岩的油气发生运移和成藏过程,最主要的油气充注成藏期是馆陶组末期5Ma以来的油气运移聚集。根据油气运移的能量条件(流体势模拟)和动力与阻力以及驱动机制分析,东营凹陷总体为与超压系统有关的油气驱动体系,但其中的超压系统、过渡压力系统和常压系统中的油气运聚特点存在明差异。超压环境下异常高压在相当大的程度上影响和控制着油气的运移指向、运移距离和富集程度;超压体边界、超压顶面附近、中等超压至弱超压或压力过渡带(压力系数<1.4)以及泄压区或与超压体有联系的常压系统中的储集层是有利的油气运移和富集的位置;强超压系统(压力系数>1.4)中的储层一般不利于油气充注和富集。
Overpressure has an important impact to many aspects of the hydrocarbon accumulation process, such as hydrocarbon generation, migration and accumulation. Overpressure distribution characteristics and evolution is an important aspect of petroliferous basin geological research, the study also has a great significance for the drilling engineering and oilreservoir engineering. The source rocks of Es3and Es4in Dongying Depression, development of large-scale overpressured systems that as a research object, the use of drilling, well logging, seismic, and test analysis data, the basis of the results of our predecessors have been studied, Dongying Depression today overpressure distribution characteristics, origin and evolution, and discusses the differences of the different pressures environmental conditions, oil and gas drive mechanism and its oil and gas migration and accumulation. The results have obtained as follows:
     (1) Dongying Depression is a typical overpressured depression with abundant petroleum resources, a large-scale overpressured system occurs in the third and fourth members of the Shahejie Formation in the depression which evidenced by drill stem test (DST) data, and the source rocks are also existed within the overpressured system. Based on the2400DST data from1485wells, the burial depths of overpressured sandstone reservoirs range from2200to4400m with excess pressures of about3.4to39.6MPa and pressure coefficients of1.2to1.99. According to the integrated interpretation of drilling, well logging and seismic velocity data, the large-scale overpressured system is associated with significantly increase in drilling mud density, as well as abnormal high sonic transit times with deviation from the normal trend and low seismic interval velocity responding. By the integrated explanation, the burial depths of the top overpressured surface range from2200to2900m, corresponding formation temperatures ranging from90to120℃, the depths of top overpressure surface increase as the burial depths of source rocks deepen, the characteristics and magnitudes of overpressured system are coincident with the cumulative thickness and burial depth of mature source rocks, and thermal degradation oil-generation of source rocks. The increase of high sonic transit times and low seimic interval velocity responding can be used to predict the distribution of large-scale ovpressured system. This study indicates that the large-scale overpressured system is well developed where the cumulative thickness of mature source rocks is thick and source rocks remain in oil-generating stage of thermal evolution with vitrinite reflectance values of overpressured source rocks various from0.5to1.3%, and the fault system and sandstone transporting layers have an important influence on the distribution and construction change of the large-scale overpressured system in the third and fourth members of the Shahejie Formation of Dongying Depression.
     (2) The fluorescence color of oil inclusions are mainly yellow-white (medium maturity) and blue-white (high maturity), fluorescence spectrum peak wavelength characteristics can be divided into two types, yellow-white fluorescent and blue-white fluorescent oil inclusions homogenization temperatures range respectively from70℃to100℃and from100℃to130℃, and corresponding to the same period in aqueous inclusions of the homogenization temperature range from100℃to140℃and from140℃to180℃. The timing of oil charge by combining the homogenization temperatures of the aqueous fluid inclusions coeval with the oil inclusions with the inferred burial and geothermal histories of the host rocks, On the basis of the integration of the geohistory modeling results and the fluid inclusion homogenization temperature data, two episodes of oil charge are identified in the Es3and Es4reservoirs of the Dongying Depression at around the end of Ed depositional period (30~25Ma) and the Nm and Ng depositional period (8~0Ma), respectively. Different fluorescence colors of oil inclusions may be cause for the same period of the oil and gas injection, composition difference is mainly caused by the oil and gas from different sources. According to the source rock maturation history and hydrocarbon generation and expulsion history of the simulation results, in the second oil charge period, kerogen conversion rate and amount of hydrocarbon generation and expulsion is a substantial increase in the Es3x and Es4s formations, so it is the most significant oil charge period in Dongying Depression. In the first and second oil generation and charge period, the overpressure development was detected by thermodynamic modeling of fluid inclusions. In accordance with the conclusions of the test oil in the wells that reservoir and oil-water bed development overpressure, while the development of normal overpressure of the water layer, so the origin of overpressure in the sandstone is transfer of the overpressure from source rocks.
     (3) According to the different phenomenon of effective character which is controlled by origin overpressure mechanism of compaction disequilibrium and oil generation, the effective stress is calculated from the DST data and used to analyze the origin of overpressure. According to the results of the measured formation pressures from Drilling Stem Test (DST), sonic logging and density logging data, correlated the graphs of measured pressures and effective stress verses the depth, the origins of overpressures in the depression are both compaction disequilibrium and oil generation, this studies indicate that:①there are apparently separation differences of measured pressures and effective stress between undercompaction and oil generation. In the process of compaction disequilibrium, as a vertical sediment loading increases during burial, the pore fluid expulsion in shales is blocked and porosity reducing is not consistent with subsidence and rapid deposition, leading to the overpressures to occur due to the pore fluid undertaking a part of overburden stress. It seems that the effective stress increase is restricted, the overpressure trend is coincidence with the increase of overburden stress, and the values of effective stress verses the depth is about a constant in this condition. However, when the overpressures are formed due to oil generation within the normally compacted shales, the degree of overpressures is not influence by lithostatic pressure on the overlying, and the trend of excess pressure increase with depth is not consistent with the overburden stress increase, the effective stress relating to the overpressures with the regime of oil generation is different from the overpressures caused by compaction disequilibrium;②using the relationship of effective stress and sonic velocity, the loading curve and the unloading curve can be described to explain the regimes of the overpressures caused by undercompaction and oil generation. Based on the calculated effective stresses using the measured data, the origins of overpressures in Dongying Depression are considered to be compaction disequilibrium and oil generation, but the overpressures caused by undercompaction are small with the relative shallow depths, and mainly distributed in the Lijin sag North with Niuzhuang sag eastern region. Oil generation is the important regime for the formation of deep basin-scale overpressures.
     (4) The results of numerical simulation method combined thermodynamic modeling of fluid inclusions indicate that the origin of overpressure in the first phase is mainly compaction disequilibrium.①Quantitative estimation of overpessure cause by oil generation shows that the the overpressure value cause by oil generation is difficult to reach the rupture stress levels in the mudstone, and this value less than the thermal dynamics simulation of the fluid inclusions. Therefore, the pure oil-generating role as the overpressure causes is difficult impact on the discharge of crude oil from source rocks;②According to the deposition rate calculation, the Es3deposition period experienced rapid deposition process in the first phase of generating overpressure, the deposition rate can reach800-1000m/Ma, and the thick layers of mudstone occur compaction disequilibrium in Es3x and Es4s is provide favorable conditions for generating abnormal high pressure. Therore compaction disequilibrium began to form overpressure in a period of Es3formation during the deposition and earlier than the first phase of the Petroleum generation and charge, the depth range from1000m to2000m.
     (5) Source rock maturation history, and expulsion of the hydrocarbon generation history modeling and fluid potential calculation results show that:①The maturity (Ro%) values of main source rocks in Es3z and Es3x layers range from0.3%to1.0%, while those of Es4s layer range from0.5%to1.1%, and it is lower in the shallow edge area than in the deep depression, where the source rocks are supposed to generate mass oil at present;②The generation and expulsion processes can be divided into three stages, and there are at least two periods of oil generation and expulsion, the first one occurring from30Ma to25Ma, the second one occurring from16Ma to OMa, which is more important in the mean of oil generation and expulsion, particularly from5Ma to the present (the end of Guantao Formation in Neogene);③Simulation results show that around the edge of the sag areas and the central fault zone is favorable for hydrocarbon accumulation area, oil and gas gathering in the central fault zone in Es4s through the fracture and transporting sand for the vertical and lateral migration. On the whole, the oil from the high oil potential in the three-dimensional space to the low oil potential migration and aggregation.
     (6) According to the study area more than2,000wells in the measured pressure and the oil field water chemistry data, combined with the reservoir overpressure evolution, the use of the genesis of the water chemistry to study the impact of the overpressure system evolution process of formation fluid migration and accumulation, that is fluid migration features under the influence of the overpressure. The result are showed as follows:①In the normally pressure system (from Es2to Qp), which the depth above2200m, the total dissolved solid lower than100g/l, it belongs to the salt water areas; In the overpressure system (Es3and Es4), which the depth under2200m, the total dissolved solid higher than100g/l, up to336g/l, it belongs to saline areas;②In the east of the Dongying Depression, the total dissolved solid is higher than west, and higher in the north than south, in Es2and Es3, the distribution of high total dissolved formation water along the fault zone, and in Es4, the distribution of high total dissolved formation water as the center with north of Dongying Depression, was reduced to outside as zonal;③The relationship between plasma and assemblages shows:in the condition of the matched relationship between the formation water and overpressure system, the high total dissolved solid formation water maybe from the salts dissolved of evaporate formation in Es4, in the evolution process of the water chemical field, the CaCl2formation water have high total dissolved solid is formed by the water-rock interaction;④In Es2and Es3, high salinity formation water is mainly the result of mixing of high salinity Es4formation water vertical migration along fault systems.
     (7) The end of Ed deposition from Es4s source rocks of oil and gas migration and accumulation process. The most important oil and gas charge reservoir of hydrocarbon migration and accumulation since the late Guantao group (5Ma). Analysis of the energy conditions (fluid potential of hydrocarbon migration simulation), power and resistance as well as the drive mechanism, although Dongying Depression is the oil and gas-driven system with overpressure system, in the overpressure system, hydrocarbon migration and accumulation characteristics of the transition pressure and normal pressure systems existence of significant differences. Abnormal high pressure in the overpressure environment influence and control the direction of hydrocarbon migration, migration distance and the degree of hydrocarbon accumulation to a large extent. The reservoir in the boundary and top of overporessure, weak overpressure or pressure transition zone (pressure coefficient<1.4) and pressure relief area or the normal pressure system which have the realation with the overpressure body system is favorablethe location are hydrocarbon migration and accumulation, high overpressure system (reservoir pressure coefficient>1.4) are generally not conducive to oil and gas charge and enrichment.
引文
[1]Bradely J S. Abnormal formation pressure[J]. AAPG Bull.,1975,60(7):1127-1128.
    [2]Powley D E. Pressures and hydrogeology in petroleum basins [J]. Earth-Science Reviews, 1990,29(1-4):215-226
    [3]Hunt, J. M. Generation and migration of petroleum fromabnormally pressured fluid compartments [J]. AAPG Bulletin,1990,9(3):1-12.
    [4]Osborne, M. J., Swarbrick R. E. Mechanisms for generating overpressures in sedimentary basins:a reevaluation[J]. AAPG Bulletin,1997,81:1023-1041.
    [5]真柄钦次(著),陈荷立(译).压实与流体运移[M].北京:石油工业出版社,1981,10-22
    [6]胡济世.异常高压、流体压裂与油气运移(上)[M].石油勘探与开发,1989,16(2):16-23
    [7]Bradley, Powley. Pressure compartments in sedimentary basins:A review[J]. AAPG Memoir, 1994,61:3-25
    [8]邱桂强.东营凹陷古近系烃源岩超压特征及分布规律[J].石油勘探与开发,2003,30(3):71-75
    [9]Jordin, J.R., Shirley, O,J. Application of drilling performance data to overpressure detection. Journal of petroleum technology,18,1387-1394.
    [10]R.B. Daniel. Pressure prediction for a Central Graben wildcat well, UK North Sea[J]. Marine and Petroleum Geology,2001,18:235-250.
    [11]Tura A, Aminzadeh F. Dynamic reservoir characterization and seismically constrained production optimization[A]:An overview[C]. SEG. 69th annul meeting,1999.
    [12]Pigott, J.D., Shrestha, R.K., Warwick, R.A. Direct determination of carbonate reservoir porosity and pressure from AVO inversion. Soc. Explor. Geophys.60th Annu. Int. Meet.,2:1533-1536.
    [13]Lindsay R O, Towner B. Pore pressure influence on rockproperty and reflectivity modeling[J]. Leading Edge Geo-phys,2001,20(2):184-187.
    [14]王兴岭,冯斌,李心宁.井约束地震压力预测在滚动勘探开发中的应用[J].石油地球物理勘探,2002,37(4):391-394.
    [15]Alan R. The future of pore-pressure prediction using geophysical methods[J]. The leading edgy,2002,199-205.
    [16]Hottman, C.E., Johnson, R.K. Estimation of formation pressures from log-derived shale properties[J]. J. Pet. Technol.,1991,17:717-722
    [17]Wallace, E.W. Application of electric log measured pressures to drilling problems and a new simplified chart for wellsite pressure computation[J]. Log Anal.,1965,60,4-10.
    [18]Foster J.B., Whalen J.E. Estimation of formation pressure from electrical survey-offfshore Louisiana[J]. Journal of Petroleum Technology,1966,18(2):165-171.
    [19]Eaton, B.A. Graphical method predicts geopressure owrldwide[J]. Word oil,1972:51-56
    [20]樊洪海.利用声速检测欠压实泥岩异常高压的简易方法与应用[J].石油钻探技术,2001,29(5):9-11.
    [21]Mark R.P. Tingay, Richard R. Hillis, Richard E.Swarbrick et al. Origin of overpressure and pore-pressure prediction in the Baram province, Brunei[J], AAPG Bulletin, 2009,93(1):51-74..
    [22]Bowers, G. L. Pore-pressure estimation from velocity data:Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling and Completion,1995,10(2):89-95.
    [23]Peter Van Ruth, Richard Hills, Peter Tingate. The origin of overpressure in th Carnarvon Basin, Western Australia:implications for pore pressure prediction[J], Petroleum Geosciecne,2004,10:247-257.
    [24]Bowers, G.L. Pore pressure estimation from velocity data:accountion for overpressure mechanisms besides undercompaction. SPE Drilling & Completion,1995,10(2):89-95.
    [25]樊洪海,张传进.复杂地层孔隙压力求取新技术[J].石油钻探技术,2005,33(5):40-43.
    [26]Pennebaker E.S. Seismic data depth magnitude of abnormal pressures[J]. Word oil, 1968:73-77.
    [27]何生,何治亮,杨智等.准噶尔盆地腹部侏罗系超压特征和测井响应以及成因[J].地球科学——中国地质大学学报,2009,34(3),457-470.
    [28]Fillippone W R. On the prediction of abnormally pressured sedimentary rocks from seismic data [C]. Offshore Technology Conference. Houston, Texas.1979:2667-2676.
    [29]王振峰,罗晓容.莺琼盆地高温高压地层钻井压力预监测技术研究[M].石油工业出版社,2004,10-16.
    [30]Fillippone W.R. Estimation of formation parameters and the prediction of overpressure from seismic data[J]. The SEG Research Symp, Geopressure studies.1982,10:17-21.
    [31]刘震.辽西凹陷北洼下第三系异常地层压力分析[J].石油学报,1993,14(1):14-24.
    [32]李善鹏,邱楠生,尹长河.利用流体包裹体研究沉积盆地古压力[J].矿产与地质,2003,17(95):161-165.
    [33]刘斌.利用不混溶流体包裹体作为地质温度计和地质压力计[J].科学通报,1986,31(18):1432-1436.
    [34]柳少波,顾家裕.包裹体在石油地质研究中的应用与问题讨论[J].石油与天然气地质,1997,18(4):326-331.
    [35]李昌存,韩秀丽,邹继兴.栾木场金矿石英流体包裹体及成矿预测[J].矿物岩石,1999,19(1):55-57
    [36]陈勇,周瑶琪.一种获取包裹体内压的新方法[J].地球化学与岩石圈动力学开放实 验室年报,2002,86-91.
    [37]平宏伟,陈红汉.影响油包裹体均一温度的主要控制因素及其地质意义[J].地球科学-中国地质大学学报,2011,36(1):131-138.
    [38]邹海峰.大港探区前第三系古流体和古温压特征及演化[D].吉林大学博士学位论文,2000.
    [39]刘震,许晓明,谢启超等.渤海湾盆地异常高压晚期形成特征分析[J].现代地质,2006,20(2):259-267
    [40]刘福宁.异常高压区的古沉积厚度和古地层压力恢复方法探讨[J].石油与天然气地质,1994,15(2):180-185.
    [41]Magnus Wangen. A quantitative comparison of some mechanisms generating overpressure in sedimentary basins[J]. Techonophysics,2001,334:211-234.
    [42]鲍晓欢,郝芳,方勇.东营凹陷牛庄洼陷地层压力演化及其成藏意义[J].地球科学—中国地质大学学报,2007,32(2):241-246.
    [43]张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993,190-191.
    [44]潘立银,倪培,欧光习,等.油气包裹体在油气地质研究中的应用-概念、分类、形成机制及研究意义[J].矿物岩石地球化学通报,2006,25(1):19-29.
    [45]Crawford M.L. Phase equilibria in aqueous fluid inclusions[A].In:Hollister L.S., Craword M.L. Short course in fluid inclusions applications to petrology [C]. Canada:Mineral Assessment Canada Short Course Handbook,1981,6:75-100
    [46]施继锡.有机包裹体与油气的关系[J].中国科学(D),1987,3:318-325.
    [47]Pedeersen K.S., Fredenslund A, Thomassen P. Properties of oil and natural gases[J]. Petroleum Geology and Engineering,1989,5(5):252.
    [48]Aplin A.C., Larter S.R., Bigge M.A., et al. PVTX history of the North Sea's Judy oilfield[A]. In:Pueyo J.J., Cardellach E, Bitzer K, et al. Proceedings of geofluids[C]. Journal of Geochemical Exploration,2000,69:641-644.
    [49]陈红汉,董伟良,张树林,等.流体包裹体在古压力模拟研究中的应用[J].石油与天然气地质,2004,23(3):207-211.
    [50]Roedder E, Bondnor R.J. Geological pressure determinating from fluid inclusion studies[J]. Annual Review of Earth Planetary Science,1980,8:263-301.
    [51]李善鹏,邱楠生,曾溅辉.利用流体包裹体分析东营凹陷古压力[J].东华理工学院学报,2004,27(3):209-212.
    [52]刘斌,段光贤NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-351.
    [53]刘斌.利用不混溶流体包裹体作为地质温度计和地质压力计[J].科学通报,1986,31(18):1432-1436.
    [54]Aplin, A. C., MacLeod, G., Larter, S. R., et al. Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology,1999,16,97-110.
    [55]Hsin-Yi, T., Robert, J. P. Fluid inclusion constraints on petroleum PVT and compositional history of the Greater Alwyn—South Brent petroleum system, northern North sea[J]. Marine and Petroleum Geology,2002,19:797-809.
    [56]Teinturiera, S., J. Pironona, and F. Walgenwitz. Fluid inclusions and PVTX modelling: examples from the Garn Formation in well 6507/2-2, Haltenbanken, Mid-Norway [J]. Marine and Petroleum Geology,2002,19:755-765.
    [57]Thierya, R. J. Pirononb, F. Walgenwitzc, F. Montel Individual characterization of petroleum fluid inclusions (composition and P-T trapping conditions) by microthermometry and confocal laser scanning microscopy:inferences from applied thermodynamics of oils [J]. Marine and Petroleum Geology,2002,19,847-859.
    [58]Liu, D. H. X. M. Xiao, J. K. Mi, et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software—a case study of Lower Ordovician carbonates from the Lunnan Low Uplift, Tarim Basin [J]. Marine and Petroleum Geology, 2003,20:29-43.
    [59]米敬奎,肖贤明,刘德汉,等.利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力—以鄂尔多斯盆地上古生界深盆气藏为例[J].中国科学(D辑),2003,33(7):679-685.
    [60]刘建章,陈红汉,李剑,等.鄂尔多斯盆地伊一陕斜坡山西组2段包裹体古流体压力分布及演化[J].石油学报,2008,29(2):226-230.
    [61]Pironon, J., and J. Bourdet. Petroleum and aqueous inclusions from deeply buried reservoirs: Experimental simulations and consequencesfor overpressure estimates [J]. Geochimica et CosmochimicaActa,2008,72:4916-4928.
    [62]张守春.东营凹陷异常压力形成机制及其与成烃成藏关系[D].中国石油大学博士论文,2010:1-3.
    [63]Pittman, E D. Relationship of Porosity and Permeability to Various Parameters Derived from Mercury Injection-Capillary Pressure Curves for Sandstone[J]. AAPG Bull.,1992,76, 191-198.
    [64]Yardley G.S., Swarbrick R.E. Lateral transfer:a source of additional pressure?[J]. Marine and petroleum geology,2000,17:523-537
    [65]Dickinson, G. Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana[J]. AAPG Bulletin,1953,37:410-432.
    [66]Rubey, W. W., Hubbert, M. K. Role of fluid pressure inmechanics of overthrust faulting II [J]. Geological Society of American Bulletin,1959,70:166-205.
    [67]Dickey, P. A. Abnormal formation pressure:Discussion[J]. AAPG Bulletin,1976,60: 1124-1128.
    [68]Chapman, R. E. Mechanical versus thermal cause of abnormally high pressures in shales: Reply [J]. AAPG Bulletin,1980,64:179-213.
    [69]Pickering, L. A., Indelicato, G. J. Abnormal formation pressure:a review[J]. The Mountain Geologist,1985,22(2):78-89.
    [70]Thomas Hantschel. Fundamentals of Basin and Petroleum Systems Modeling[M]. Springer, 2009:33-35.
    [71]Hege M., Nordgard B., Christian H., et al. Origin of overpressures in shales:Constraints from basin modeling[J]. AAPG Bulltin,2004,88(2):193-211
    [72]Law, B. E., Dickinson, W. W. Conceptual model of origin of abnormally pressured gas accumulations in low permeability reservoirs[J]. AAPG Bulletin,1985,69:1295-1304.
    [73]Meissner, F. F. Abnormal electric resistivity and fluid pressure in Bakken Formation, Williston basin, and its relation to petroleum generation, migration, and accumulation(abs.) [J]. AAPG Bulletin,1976,60:1403-1404.
    [74]Meissner, F. F. Petroleum geology of the Bakken Formation, Williston basin, North Dakota and Montana, in 24th annual conference, Williston Basin symposium[J]. Montana Geological Society,1978, p.207-227.
    [75]Spencer, C. Hydrocarbon generation as a mechanism for overpressure in Rocky Mountain region[J]. AAPG Bulletin,1987,71,368-388.
    [76]Freed, R. L, Peacor, D. R. Geopressured shale and sealing effect of smectite to illite transition[J]. AAPG Bulletin,1989,73(10):1223-1232.
    [77]Barker, C. Aquathermal pressuring-role of temperature in development of abnormal-pressure zones[J]. AAPG Bulletin,1972,56,2068-2071.
    [78]Daines, S. R. Aquathermal pressuring and geopressure evaluation [J]. AAPG Bulletin,1982, 66(7):931-939.
    [79]Luo, X., and G. Vasseur. Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions[J]. AAPG Bulletin,1992,76, 1550-1559.
    [80]Colton-Bradley, V. A. C. Role of pressure in smectite dehydration—effects on geopressure and smectite-to-illite transition[J]. AAPG Bulletin,1987,71,1414-1427.
    [81]刘晓峰,解习农,张成.渤海湾盆地渤中坳陷储层超压特征与成因机制[J].地球科学—中国地质大学学报,2008,33(3):337-341.
    [82]刘晓峰.超压传递:概念和方式[J].石油实验地质,2002,24(6):533-536.
    [83]alderhaug O., Bjorkum, P.H., Nadeau, et al. Quantitative modelling of basin subsidence caused by temperature-driven silica dissolution and reprecipitation[J]. Petroleum Geoscience,2001,7:107-113
    [84]陈荷立.油气运移研究的有效途径[J].石油与天然气地质,1995,16(2):126-131.
    [85]Hindle, A. D., Petroleum migration pathways and charge concentration:a three-dimensional model. AAPG Bulletin,1997,81(9):1451-1481
    [86]Schegga, R., Cornfordb, C., and Leu, W. Migration and accumulation of hydrocarbons in the Swiss Molasse Basin:implications of a 2D basin modeling study, Marine and Petroleum Geology 1999,16,511-531.
    [87]Pang, X.Q., Lerche, I., Zhou, H.Y., Jiang, Z.X., Hydrocarbon accumulation control by predominant migration pathways, Energy exploration and exploitation,2003,21 (3): 167-186.
    [88]Zeng, J.H., Jin, Z.J.. Experimental investigation of episodic oil migration along fault systems, Journal of Geochemical exploration,2003,78-9:493-498.
    [89]解习农,王其允,李思田.低渗透泥质岩石中水力破裂与幕式压实作用[J].科学通报,1997,42(19):2193-2195
    [90]Ye JR, Hao F, Chen JY. Development of overpressure in the tertiary Damintun depression, Liaohe basin, northern China. ACTA Geologica sinica-english edition,2003,77 (3): 402-412
    [91]周波,金之钧,王毅.油气二次运移数值模拟分析[J].石油与天然气地质,2008,29(4):527-532.
    [92]Karsten F. Kroeger, Rolando di Primio and Brian Horsfield. Hydrocarbon flow modeling in complex structures (Mackenzie Basin, Canada). AAPG Bulletin,2009,93(9):1209-1234.
    [93]杜栩,郑洪印,焦秀琼.异常压力与油气分布.地学前缘[J],1995,2(4):137-148
    [94]Song, Y., Xia, X.Y., Hong, F., Qin, S.F., Fu, G.Y., Abnormal overpressure distribution and natural gas accumulation in foreland basins, Western China, Chinese Science Bulletin,2002, 47:71-77.
    [95]Pi, X.J., Xie, H.W., Zhang, C, Tian, Z.J., Mechanisms of abnormal overpressure generation in Kuqa foreland thrust belt and their impacts on oil and gas reservoir formation, Chinese Science Bulletin,2002,47:85-93.
    [96]石万忠,陈红汉,张希明,等.阳霞凹陷超压成因及与油气成藏关系探讨.地球科学—中国地质大学学报,2005,30(2):221-227.
    [97]Leach W G. Fluid migration, HC concentration in south Louisiana Tertiary sands [J]. Oil and Gas Journal,1993.
    [98]郑和荣,黄永玲,冯有良.东营凹陷下第三系地层异常高压及其石油地质意义[J].石油勘探与开发,2000,27(4):67-70.
    [99]Xie Xinong, Bethke C M, Li S, et al. Overpressure and petroleum generation and accumulation in the Dongying Depression of Bohaiwan Basin, China [J]. Geofluids,2001,1: 67-70.
    [100]刘晓峰,解习农.东营凹陷流体压力系统研究[J].地球科学—中国地质大学学报,2003,28(1):78-85.
    [101]隋风贵.东营断陷盆地地层流体超压系统与油气运聚成藏[J].石油大学学报(自然科学版),2004,28(3):17-21.
    [102]陈中红,查明.东营凹陷流体超压封存箱与油气运聚[J].沉积学报,2006,24(4):607-614.
    [103]解习农,李思田,刘晓峰,等.异常压力盆地流体动力学[M].武汉:中国地质大学出版社,2006,14-15.
    [104]赵国欣.烃源岩层中异常高压研究以渤海湾盆地东营凹陷古近系为例[J].石油实验地质,2008,30(4):340-344.
    [105]刘晖,操应长,姜在兴,等.渤海湾盆地东营凹陷沙河街组四段膏盐层及地层压力分布特征[J].石油与天然气地质,2008,30(3):287-293.
    [106]张善文,张林晔,张守春等.东营凹陷古近系异常高压的形成与岩性油藏的含油性研究[J].科学通报,2009,54(11):1570-1578.
    [107]杨娇,何生,王冰洁.东营凹陷牛庄洼陷超压特征及预测模型[J].地质科技情报,2009,28(4):34-40.
    [108]张守春,张林哗,查明.东营凹陷压力系统发育对油气成藏的控制[J].石油勘探与开发,2010,37(3):289-296.
    [109]郭小文,何生,宋国奇等.东营凹陷生油增压成因的证据[J].地球科学—中国地质大学学报,2011,36(6):55-65.
    [110]朱光有,金强,戴金星等.东营凹陷油气成藏期次及其分布规律研究[J],石油与天然气地质,2004,25(2):209-215.
    [111]蒋有录,刘华,张乐,等.东营凹陷油气成藏期分析[J],石油与天然气地质,2003,24(3):215-218.
    [112]邱楠生,金之钧,胡文喧.东营凹陷油气充注历史的流体包裹体分析[J].石油大学学报,2000,24(4):95-103.
    [113]祝厚勤,庞雄奇,姜振学等.东营凹陷岩性油藏成藏期次与成藏过程[J].地质科技情报,2007,26(1):65-70.
    [114]李兆奇,陈红汉,刘惠民,等.流体包裹体多参数综合划分东营凹陷沙三段油气充注期次及充注时期确定[J].地质科技情报,2008,27(4):69-74.
    [115]孙秀丽,陈红汉,宋国奇,等.东营凹陷胜坨地区深层油气成藏期及主控因素分析[J].石油学报,2010,31(3):386-393.
    [116]查明.东营凹陷沙三,沙四段石油运移地球化学特征及意义[J].现代地质,1997,11(4):540-5.
    [117]卓勤功,蒋有录,隋风贵.渤海湾盆地东营凹陷砂岩透镜体油藏成藏动力学模式[J].石油与天然气地质,2006,27(5):620-629.
    [118]包友书,张林哗,张守春,等.东营凹陷深部异常高压与岩性油气藏的形成[J].新疆石油地质,2008,29(5):585-7.
    [119]陈中红,查明,金强.东营凹陷超压系统的幕式排烃[J].石油与天然气地质,2004,25(4):444-447.
    [120]张卫海,陈中红,查明,等.东营凹陷烃源岩排油机理[J].石油学报,2006,27(5):46-50.
    [121]胜利石油地质志编写组.中国石油地质志(卷六-胜利油田),北京:石油工业出版社,1993,2-84.
    [122]李丕龙,张善文,曲寿利,等.陆相断陷盆地油气地质勘探(卷1)-陆相断陷盆地构造演化与构造样式.北京:石油工业出版社/地质出版社,2003,18-87.
    [123]徐嘉炜,马国锋.郯庐断裂带研究的十年回顾[J].地质论评,1992,38(4):16-24
    [124]宗国洪,施央申.济阳坳陷构造演化及其大地构造意义[J].高校地质学报,1999,5(3):75-82.
    [125]张林晔,刘庆 张春荣.东营凹陷成烃与成藏关系研究[M].北京:石油工业出版社,2005,3-16
    [126]郝雪峰.东营凹陷输导体系及其控藏模式研究[D].浙江大学,2007,5-10.
    [127]李春光.东营凹陷断裂系统对油气藏分布的控制[J].石油与天然气地质,1994,15(1):87-93.
    [128]爱德华A.博蒙特,诺曼H.福斯特(主编),刘德来(译).国外油气勘探开发进展丛书(一)——油气圈闭勘探[M].石油工业出版社,2002,175-180.
    [129]Chillingar, G V, Serebryakov, V A, Robertson, J O. Origin and prediction of abnormal formation pressure [M]. Elsevier Scientific Publishing Company,2002.
    [130]Jose M Carcione, Hans B Helle, Nam H Pham, et al. Pore pressure estimation in reservoir rocks from seismic reflection data [J]. Geophysics,2003,68(5):1569-1579.
    [131]Winthaegen P L M, Verweij J M. Estimating regional pore pressure distribution using 3D seismic velocities in the Dutch Central North Sea Graben [J]. Journal of Geochemical Exploration,2003,68(5):203-207.
    [132]Hermanrud, C., L. Wensaas, G. M. G. Teige, E. Vik, H. M. N. Shale porosities from well logs on Haltenbanken (offshore mid-Norway) show no influence of overpressuring, in B. E. Law, G. F. Ulmishek, and V. I. Slavin, eds. Abnormal pressures in hydrocarbon environments:AAPG Memoir 70,1998,35-63.
    [133]Teige G M G, Hermanrud C, Wensaas L, et al. The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales [J]. Marine and Petroleum Geology,1999,16(4):321-335.
    [134]Guo Xiaowen, He Sheng, Liu Keyu, et al. Oil generation as the dominant overpressure mechanism in the Cenozoic Dongying depression, Bohai Bay Basin, China [J]. AAPG Bulletin,2010,94(12):1859-1881.
    [135]Teige, G. M. G.,Hermanrud, C.,Wensaas, L., et al. The lack of relationship between overpressure and porosity in North Sea and Haltenbanken shales[J]. Marine and Petroleum Geology,1999,16(4):321-335.
    [136]Slavin,V.I.,Smirnova,E.M.. Abnormally high formation pressure:origin, prediction, hydrocarbon field development, and ecological problems. In:Law, B.E.,Ulmishek,G.F.,Slavin,V.I., eds., Abnormal Pressures in Hydrocarbon Environments. American Association of Petroleum Geologists Memoir[J].,1998,70:105-114.
    [137]Prasad M, Meissner R. Attenuation Mechanisms in sands-laboratory versus theoretical data[J]. Geophysics,1992,57(5):710-719.
    [138]Prasad M. Acoustic measurements in unconsolidated sands at low effective pressure and overpressure detection [J]. Geophysics,2002,67(2):405-412.
    [139]Dutta N C. Geopressure prediction using seismic data:Current status and the road ahead [J]. Geophysics,2002,67(6):2012-2041.
    [140]朱广生,刘鹏,潘正中,等.地震分辨率对速度计算精度的影响[J].河南石油,2001,15(3):7-10.
    [141]张文准,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.
    [142]刘斌,沈昆.包裹体流体势图在油气运聚研究方面的应用[J].地质科技情报, 1995,14(3):39-43.
    [143]Goldstein R H. Fluid inclusion in sedimentary and diagenetic systems[J]. Lithos,2001, 55:159-193.
    [144]Munz I A. Petroleum inclusions in sedimentary basins:systematics, analytical methods and application[J]. Lithos,2001,55:195-212.
    [145]Burruss R C. Hydrocarbon fluid in studies of sedimentary diagenesis[G]//Hollister L S, Crawford M L. Fluid inclusions:Applications to petrology. Mineralogical Association of Canada Short Course Notes,1981:138-156
    [146]Burruss R C. Practical aspects of fluorescence microscopy of petroleum fluid inclusion[A]//Barker C E, Kopp O C, et al. Luminescence microsoopy and spectrosoopy: Qualitative and quantitative applications[R]. SEPM Short Course,1991,25:1-7.
    [147]李纯泉,陈红汉,陈汉林.塔河油田奥陶系有机包裹体的油气指示意义[J].天然气工业,2004,24(10):24-26.
    [148]李荣西,金奎励,廖永胜.有机包裹体显微傅立叶红外光谱和荧光光谱测定及其意义[J].地球化学,1998,27(3):244-245.
    [149]叶松,张文淮,张志坚.有机包裹体荧光显微分析技术简介[J].地质科技情报,1998,17(2):76-80.
    [150]李纯泉,陈红汉,刘惠民.利用油包裹体微束荧光光谱判识油气充注期次[J].地球科学-中国地质大学学报,2010,35(4):657-662.
    [151]杨杰,陈丽华.利用荧光光谱进行原油测定及对比的方法[J].石油勘探与开发,2002,29(6):69-71.
    [152]陈红汉.油气成藏年代学研究进展[J].石油与天然气地质,2007,28(2):143-150
    [153]赵靖舟,李秀荣.成藏年代学研究现状[J].新疆石油地质,2002,23(3):257-261
    [154]Falvey, D. A., and Middleton, M. F. passive continental margins:evidence for a prebreakup deep crustal metamorphic subsidence mechanism[C].25th international geological congress, colloque C3.3. Geology of Continental Margins [A],1981, Supplement to 4:103-114.
    [155]吴智平,韩文功.济阳坳陷早晚第三纪沉积间断地层剥蚀量研究[J],中国海上油气(地质),2000,14(5):320-324.
    [156]石广仁.油气盆地数值模拟方法(第三版)[M].北京:石油工业出版社,2004,1-279.
    [157]Tissot B P, Pelet R and Ungerer PH. Thermal history of sedimentary basin, maturation indices, and kinetics of oil and gas generation [J]. AAPG Bulletin,1987,71(12):1445-1466.
    [158]Ungerer P. State of the art of research in kinetic modelling of oil formation and explusion[J]. Organic Geochemistry,1990,16(1-3):1-25.
    [159]Munz, I. A., Johansen, H., Holm, K., et al. The petroleum characteristics and filling history of the Fry field and the rind discovery, Norwegian north sea [J].Marine and Petroleum Geology,1999,16:633-651.
    [160]Okubo, S. Effects of thermal cracking of hydrocarbons on the homogenization temperature of fluid inclusions fromthe Niigata oil and gas fields, Japan [J]. Applied Geochemistry,2005, 20:255-260.
    [161]欧光习,李林强,孙玉梅.沉积盆地流体包裹体研究的理论与实践[J].矿物岩石地球化学通报,2006,25(1):1-8
    [162]张金亮.利用流体包裹体研究油藏注入史[J].西安石油学院学报,1998,13(4):1-4.
    [163]陈文学,李永林,张辉,等.焉耆盆地侏罗系包裹体与油气运聚期次的关系[J].石油与天然气地质,2002,23(3):241-247.
    [164]Middlelon D, Parnell J, Carey P, et al. Reconstruction of fluid migration history northwest Ireland using fluid inclusion studies [J]. Journal of Geochemical Exploration,2000, 69(70):673-667
    [165]Kelly J., Parnell J., Chen H H. Application of fluuid inclusion to studies of fractured sandstone reservoirs[J]. Joural of Geochemical exploration,2000,69:705-709.
    [166]郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):11-17
    [167]郝芳.超压盆地生烃作用动力学与油气成藏机理[M].科学出版社.2005.2,27-29
    [168]Luo X R and G Vasseur, Geopressuring mechanism of organic matter cracking:numerical modeling[J]. AAPG Bulltin,1996,80(6):856-874
    [169]Shi Y L, Wang C Y. Pore pressure generation in sedimentary basins:overloading versus aquathermal[J]. Journal of Geophysical Research,1986,91:2153-2162
    [170]Chilingar G V, Serebryakov V, Robertson J O(著).赵文智,柳广弟,苗继军,等(译).异常地层压力成因与预测[M].北京:石油工业出版社,2004,92-112.
    [171]Robert, R. B., and F. G. Anthony. Primary Migration by Oil-Generation Microfracturing in Low-Permeability Source Rocks:Application to the Austin Chalk, Texas[J]. AAPG Bulletin, 1999,83(5):727-756.
    [172]张林哗,蒋有录,刘华.东营凹陷油源特征分析[J],石油勘探与开发,2003,20(6):61-64.
    [173]陈发景,田世澄.压实与油气运移[M].武汉:中国地质大学出版社,1989,63-95.
    [174]朱芳冰,田世澄.莺歌海盆地泥岩压实特征与油气初次排运[J].中国海上油气(地质),1998,12(5):307-311.
    [175]王新征.断陷湖盆缓坡带油气成藏机理与油气分布特征研究—以东营凹陷为例[M]北京:石油工业出版社,2005.88-90.
    [176]蒋启贵,李志明,张彩明,等.东营凹陷烃源岩轻烃特征[J].地质科技情报,27(5),2008,87-91.
    [177]郭汝泰,王建宝,高喜龙,等.应用激光探针技术评价烃源岩成熟度—以东营凹陷生油岩研究为例[J].自然科学进展,2003,13(6):626-630.
    [178]Waples D W.Time and temperature in petroleum formation:application of Lopatin's method to petroleum exploration[J]. AAPG Bulletin,1980,64(6):916-926.
    [179]Sweeny J J, Burnham A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin,1990,74(10):1559-1570.
    [180]Suzuki N, Matsubayashi H, Waples D W. A simple model of vitrinite reflectance [J]. AAPG Bulletin,1993,77(9):1502-1508.
    [181]Burnham A K, Sweeny J J. A chemical kinetic model of vitrinite maturation and reflectance[J]. Geochimica et CosmochimicaActa,1989,53:2649-2657.
    [182]Cooles P, Mackenzie A S and Quigley T M. Calculation of petroleum masses generated and expelled from source rocks[J]. Organic Geochemistry,1986,10:235-245.
    [183]Mackenzie A S and Quigley T M. Principles of geochemical prospect appraisal[J]. AAPG Bulletin,1988,72(4):399-413
    [184]Guo xiaowen, He sheng, Zheng lunju, et al. Quantitative estimation of overpessure cause by oil generation in petroliferous basins[J]. Organic geochemistry,2011,42(11):1343-1350.
    [185]庞雄奇.地质过程定量模拟[M].北京:石油工业出版社,2003:300-301.
    [186]李鹤永,刘震,马达德,等.柴西地区古流体势场演化对油气成藏的控制作用[J].石油大学学报(自然科学版),2005,29(3):11-16.
    [187]Hubbert M L. Entrapment of petroleum under hydrodynamic condition[J]. AAPG Bull, 1953,37(8):1954-2026.
    [188]England W A, Mackenzie A S, Mann D M, et al. The movement and entrapment of petroleum fluids in the subsurface [J]. Journal of the Geological Society,1987,144: 327-347.
    [189]Cartwright J A. Episodic basin-wide fluid explusion from geopressured shale sequences in the North Sea Basin[J]. Geology,1994,22:447-450.
    [190]Qilin Xiao, Sheng He, Zhi Yang, et al. Petroleum secondary migration and accumulation in the central Junggar Basin, northwest China:Insights from basinmodeling[J]. AAPG Bulletin, 2010,94(7):937-955
    [191]肖军,王华,郭齐军,等.南堡凹陷温度场、压力场及流体势模拟研究-基于basin2模拟软件[J].地质科技情报,2003,22(1):67-74.
    [192]张冀北,王睿.民丰洼陷油气分布成因及流体势计算修正[J].油气地质与采收率,2003,10(增刊):8-9.
    [193]石广仁,张庆春,马进山,等.三维三相烃类二次运移模型[J].石油学报,2003,24(2):38-42.
    [194]杨占龙,陈启林,郭精义,等.流体势分析技术在岩性油气藏勘探中的应用[J].石油实验地质,2007,29(7):623-627.
    [195]何胡军,史忠生,史军,等.油势场的研究与应用[J].西安石油学院学报(自然科学版),2003,18(4):30-32.
    [196]谢启超,刘震.渤南坳陷流体势演化与油气运聚[J].新疆石油地质,2004,25(5):486-488.
    [197]生界油气成藏史数值模拟[J].石油学报,2006,27(1):24-29.
    [198]郭小文,何生,侯宇光.板桥凹陷沙三段油气生成、运移和聚集数值模拟[J].地球科学-中国地质大学学报,2010,35(1):115-123.
    [199]Dahlberg, E C. Applied Hydrodynamics in Petroleum Exploration,2nd Ed., Springer-Verlag, New York,1995,295
    [200]Willis, D G. Entrapment of petroleum, in Moody, G. B. (Ed.):Petroleum Exploration Handbook:A Practical Manual Summarizing the Application of Earth Sciences to Petroleum Exploration. McGraw Hill,1982,6-1-6-68.
    [201]Davis, R W. Analysis of hydrodynamic factors in petroleum migration and entrapment[J], AAPG Bull.,1987,71,643-649.
    [202]朱光有,金强.东营凹陷两套优质烃源岩层地质地球化学特征研究[J].沉积学报,2003,21(3):506-512.
    [203]任拥军,周瑶琪,查明,等.东营凹陷古近系烃源岩成熟度特征[J].中国石油大学学报(自然科学版),2006,30(2):6-10.
    [204]杨子成,张金亮.东营凹陷南斜坡原油生物标志物特征和油源对比[J].中国海洋大学学报,2008,38(3):453-460.
    [205]谭丽娟,蒋有录,苏成义,等.东营凹陷博兴地区烃源岩和油源特征[J].中国石油大学学报(自然科学版),2002,26(5):1-4.
    [206]Eadington P J, Hamilton P J, Bai G P. Fluid history analysis:a new concept for prospect evaluation[J]. The APEA Journal,1991,31(1):282-294.
    [207]李思田,路凤香,林畅松.中国东部及邻区中新生代盆地演化及地球动力学背景[M].湖北武汉:中国地质大学出版社,1994,1-10.
    [208]何生,唐仲华.松南十屋断陷低压系统的油气水文地质特征[J].地球科学—中国地质大学学报,1995,20(1):79-84.
    [209]蔡春芳,王国安,何宏.库车前陆盆地流体化学、成因与流动[J].地质地球化学,2000.28(1):58-63.
    [210]孙向阳,刘方槐.沉积盆地中地层水化学特征及其地质意义[J].天然气勘探与开发,2001,24(4):47-53
    [211]曾溅辉.东营凹陷第三系流体物理化学场及其演化特征[J].地质论评,2000,46(2):212-219
    [212]查明,陈中红.山东东营凹陷前古近系水化学场、水动力场与油气成藏[J].现代地质,2008,22(4):567-575
    [213]王伟,纪友亮,张善文.胜利油区古近系地层水性质对储层物性的影响[J].高校地质学报,2007,13(4):714-721
    [214]Xinong Xie, Zhonghai Fan, Xiaofeng Liu, et al. Geochemistry of formation water and its implication on overpressured fluid flow in the Dongying Depression of the Bohaiwan Basin, China[J]. Journal of Geochemical Exploration,2006,89:432-435
    [215]M. Lee Davissson & Robert E. Criss. Na-Ca-Cl relation in basinal fluids. Geochimica et Cosmochimica Acta.1996,60(15):2743-2752
    [216]孙雄,洪汉净.构造应力场对油气运移的影响[J].石油勘探与开发,1988,25(1):1-6
    [217]华保钦.构造应力场、地震泵和油气运移[J].沉积学报,1995,13(2):77-85
    [218]Hooper E C D. Fluid migration along growth faults in compacting sediments [J]. Petroleum Geology,1991,4(2):161-180
    [219]Roucher R H. Stress fields, a key to oil migration [J]. AAPG Bulletin,1981,65(1):74-85
    [220]Lionel Catalan, Fu Xiaowen, Ioannis Chatzis, et al. An experimental study of secondary oil migration[J]. The AAPG Bulletin,1992,76(5):638-650.
    [221]Okui A, Siebert R M, Matsubayashi H. Simulation of oil expulsion by 1-D and 2-D basin modeling-saturation threshold and relative permeabilities of source rock[G], Duppenbecker S J, Iliffe J E. Basin modeling:Practice and practice and progress. London Geological Society, Special Publications 141,1998:45-72.
    [222]石广仁,张庆春.烃源岩压实渗流排油模型[J].石油学报,2004,25(5):34-37.
    [223]卓勤功,隋风贵.东营凹陷砂岩透镜体油藏油源新认识及其石油地质意义[J].油气地质与采收率,2007,14(5):8-11.
    [224]庞雄奇,罗群,姜振学,等.叠合盆地断裂上、下盘油气差异聚集效应及成因机理[J].地质科学,2003,38(3):297-306.
    [225]包友书,张林晔,张守春,等.东营凹陷深部异常高压与岩性油气藏的形成[J].新疆石油地质,2008,29(5):585-587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700