钻井液连续波发生器设计与信号传输特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以提高随钻测量钻井液连续波信息传输系统的传输速率为目的,围绕连续波发生器的设计和信号传输特性展开了若干关键问题的研究。在连续波发生器转阀阀口形状设计与优化、连续波发生器负载特性分析、连续波发生器转阀冲蚀预测与缓解、连续波发生器机械结构与控制系统设计、钻井液信道中信号的反射与叠加几个方面取得了较大研究进展,并且针对信号波形、水力转矩与信号的反射叠加开展了地面水力环路与风洞模拟实验研究。主要研究进展总结如下:
     1转阀阀口形状设计与优化
     根据信号与系统的基本理论确定了与连续波发生器转阀设计有关的几个特征量,在最小、最大开度准则的基础上提出了相关系数最大的设计准则;建立了不同阀口形状的转阀通流面积的参数化计算模型,根据最小、最大开度准则和相关系数最大准则建立了转阀阀口形状的优化模型,并进行了优化,理论分析表明优化结果可以获得较理想的信号波形;根据通流面积参数化计算模型的启示,提出了一种理论上可以获得理想正弦波的曲线阀口的设计方法,并进行了风洞实验,结果表明该曲线阀口可以获得较好的正弦波信号;分析了定转子轴向间隙、信号频率对压力波信号品质的影响规律,通过对非定常伯努利方程的分析解释了实验中所发现的压力波信号幅值随频率的增加而有所下降的现象。
     2连续波发生器的负载特性分析
     提出了大开度双边节流口射流角的计算方法,为通过理论计算作用在转阀上的水力转矩提供了基础;根据射流的基本理论,在动量矩定理的基础上,推导了作用在转阀上的水力转矩的理论计算公式;并用CFD数值仿真研究了各种因素对转阀水力转矩的影响规律,即,作用在转阀上的水力转矩随信号频率的增加而增加、随定转子轴向间隙、转阀阀瓣个数的减小而增加;分析了不同信号调制方式下作用在转阀上的惯性转矩,结果表明对于相位调制方式惯性转矩与信号频率的平方成正比,与阀瓣的个数成反比;通过CFD数值仿真找出了出现反向轴向力的位置与力的大小,为信号发生器的结构设计提供指导。
     3转阀的冲蚀预测与缓解
     本文利用Fluent中的UDF解决了转阀三维冲蚀变形的预测问题,结果表明,考虑冲蚀变形的冲蚀预测在冲蚀的初始阶段与没有冲蚀变形的冲蚀预测结果相差不大,随着阀口冲蚀变形的增加,转子上冲蚀最严重的位置从阀口棱边转移到阀瓣侧壁上;利用固体颗粒在非牛顿流体中的曳力公式来计算固体颗粒在钻井液中的运动轨迹,结果表明,钻井液的非牛顿特性对其中的固体颗粒运动轨迹影响显著;建立了钻井液中粒度小于40微米固体颗粒的冲蚀预测模型,计算结果与离散相模型的结果叠加,可以获得较好的预测结果;针对连续波发生器工作过程中存在的堵塞、冲蚀问题,利用液压流体力学的基本理论,提出了节流口串联的转阀结构形式,研究结果表明,节流口串联的结构形式可以增大转阀的最小通流面积,降低流过转阀的钻井液流速,从而减少堵塞发生的概率,减弱了钻井液与固体颗粒对转阀的冲蚀作用。
     4连续波发生器的结构与控制系统设计
     在转阀阀口形状与转阀负载转矩研究的基础上进行了连续波发生器的结构设计;在正脉冲信息传输系统的通信协议基础上构思了用于连续波信息传输的通信协议,并在通信协议的基础上构思了连续波发生器的整体控制流程;进行了驱动电机控制系统的硬件与软件的设计;建立了连续波发生器的动态仿真模型,分析了不同控制方式的动态特性,结果表明包含速度特性的位置闭环控制方式可以获得较准确的相位调制信号和较小的动态转矩。
     5连续波信号的传输特性分析
     连续波信号的传输特性是连续波信息传输成败的关键环节,信号衰减是连续波信息传输中的固有问题、不可避免,而信号的反射与叠加却是一把双刃剑,运用、处理不当就会导致信息传输失败,反之则可以改善信息的传输条件,提高信息的传输速率。本文建立了钻井液信道的多层耦合传输模型,分析了多层耦合作用对压力波传播速度的影响;建立了钻头的反射模型,分析了钻头反射对转阀上游信号的影响;建立了复杂管路的传递函数模型,利用所建立的传递函数模型可以组装成不同的钻井液信息传输通道来预测地面接收到信号的频谱,为连续波信号载波频率的选择提供依据。
     6连续波信息传输系统的模拟实验研究
     在储建学院多相流实验环路的基础上进行了连续波信息传输系统地面实验环路的设计与改造;进行了风洞实验的相似设计与数据采集系统的软件设计;进行了压力波信号波形实验,实验结果表明:曲线阀口可以获得较理想的压力信号波形,CFD计算结果与实验结果基本相符;进行了作用在转阀上的水力转矩实验,分析了影响转阀水力转矩的几种因素;进行了压力波信号的反射、叠加实验,分析了连续波信号发生器启动过程对压力波信号的影响,分析了压力波信号的主要反射源——钻头处的反射特性,结果表明钻头处的反射边界近似为闭口反射边界。
The dissertation is aimed at improving the data transmission rate of MWD drilling fluid continuous-wave information transmission system and some key issues are investigated centered on the design of continuous-wave generator and signal transmission characteristic. The main research achievements include the design and optimization of rotary valve orifice, the load characteristics analysis of continuous-wave generator, the erosion prediction and weakening of rotary valve, the design of continuous-wave generator, the conception and design of continuous-wave generator control system, the reflection and superposition of continuous-wave signal. Finally, the water flow loop and wind tunnel is used to do the surface simulation experiment studies of the signal waveform, hydraulic torque, reflection and superposition of signal. The main works are summarized as follows:
     1 Design and optimization of rotary valve orifice
     Several characteristic parameters related to the design of rotary valve are determined according to the basic theory of signal and system. The design criterion of maximum correlation coefficient is proposed based on the minimum and maximum opening criterion. The parametric calculation model of rotary valve flow area with different orifice shape is established, after that, the optimization model of the shape of rotary valve orifice is built up according to the criterion mentioned above. The design method of curve orifice which can be used to get the ideal sinusoidal pressure is inspired by the parametric calculation model. The affecting factors of the signal quality are analyzed, and the phenomenon that the pressure amplitude decreases with the signal frequency increase in experiment is interpreted by the unsteady Bernoulli equation.
     2 Load characteristics analysis of continuous-wave generator
     The calculation mechod for the jet angle of dual side orifice with wide opening is proposed which is the basic of the theory calculation for the hydraulic torque acted on the rotary valve. The theory calculation of the hydraulic torque is done based the angular momentum theorem and jet theory. The effect laws of several factors on the hydraulic torque is studied by the CFD simulation, the results show that the torque increases with the increase of signal frequency, the decrease of the number of valve lobe, and the gap between stator and rotor. The occurred position and value of the reverse axial force is analyzed.
     3 Erosion prediction and weakening of rotary valve
     The prediction of 3D erosion deformation is made by the UDF in Fluent. The result shows that the prediction with deformation is similar with the prediction without deformation in the starting stage of erosion, and then, the maximum erosion occurred position is transferred with the erosion deformation of the orifice increase. The drag force of particle in the Non-Newtonian fluid is used to calculate the trajectory, and get the different results from that in the Newtonian fluid. The erosion model of the particles whose size are smaller than 40μm is established, the prediction result is added to the discrete phase result to get the finally erosion prediction. The series orifice rotary valve is proposed to solve the jam and erosion problems.
     4 Structure and control system design of continuous-wave generator
     continuous-wave generator is designed based on the studies of orifice shape and hydraulic torque. The communication protocol of the continuous-wave information transmission system is conceived according to the positive pulse information transmission system, and the control flow of continuous-wave generator is conceived, too. The hardware and software of motor control system is designed, and the dynamic simulation model of continuous-wave generator is built up to analyse the dynamic performance under different control pattern, the results show that the precise phase shift key signal and lower dynamic torque can be attained by using the position closed-loop control pattern including the velocity characteristic.
     5 Analysis of continuous-wave signal transmission characteristic
     The transmission characteristic of continuous-wave signal is the key step in the continuous-wave transmission. The attenuation of the signal is the inherent and inevitable problem, however, the reflection and superposition is a double-edged sword, if it is used properly, the data transmission rate may be increased, otherwise, no signal will be got in the surface. The multilayer coupled waveguide model of the drilling fluid tunnel is built up, and the influence of the coupling effect on the transmission speed of the pressure is analyzed. The influence of the reflection on the upstream signal of the generator is analyzed by establishing the reflection model of the drill bit. The transfer function of complex system is built up and is used to select the carrier frequency for the Continuous-wave information transmission.
     6 Simulation experiment of continous-wave information transmission system
     The experiment equipments for continous-wave information transmission is designed and rebuilt based on Multiphase Flow Loop. The similar design of the wind tunnel and the software design of the data acquisition system are performed. The signal waveform experiment is performed, the results show that the curve orifice can get good pressure wave and the results of CFD conform to the experiment results. The experiment of hydraulic torque on the rotary valve is performed, and the influence factors on the hydraulic torque are analyzed. The experiment of reflection at the drill bit is done, and the influence of the start stage of the rotary valve on the pressure signal is analyzed. The reflection characteristics of the main reflection source, drill bit, is analyzed, and results show that the boundary condition of the drill bit can be seen as the closed-end boundary.
引文
[1]苏义脑,窦修荣.随钻测量、随钻测井与录井工具[J].石油钻采工艺, 2005, 27(1):74-78.
    [2] Wallace R G. High Data Rate MWD Mud Pulse Telemetry[Z]. U.S. Department of Energys Natural Gas Conference, Houston, Texas, 1997.
    [3] Michael J, Prideco G, David R H. Intelligent Drill Pipe Creates the Drilling Network[R].SPE 80454.
    [4] Reeves M, Macpherson J, Zaeper R, et al. High-Speed Drillstring Telemetry Network Enables New Real-Time Drilling and Measurement Technologies[R].IADC/SPE 99134.
    [5] Wolter H, Gjerding K, Reeves M, et al. The First Offshore Use of an Ultrahigh-Speed Drillstring Telemetry Network Involving a Full LWD Logging Suite and Rotary-Steerable Drilling System[R]. SPE 110939.
    [6] Ali T H, Hood J A, Srinivasan A, et al. High Speed Telemetry Drill Pipe Network Optimizes Drilling Dynamics and Wellbore Placement[R]. IADC/SPE 112636.
    [7]杨兴琴,姜虻,赵滨伟.随钻数据传输新技术[J].石油仪器, 2004, 18(6):26-27.
    [8]李俊波,贾振尧,朱红莲.实现井下网络的遥测钻杆技术[J].石油机械, 2004, 32(5):63-64.
    [9]石崇东,张绍槐.智能钻柱设计方案及其应用[J].石油钻探技术, 2004, 32(6):7-10.
    [10]肖仕红,梁政,任连城.智能钻杆电缆传输电接头设计[J].石油钻采工艺, 2007, 29(1):28-30.
    [11]吴仲华,孙浩玉,张世平,朱政.电磁感应式随钻数据传输系统的研究[J].石油机械, 2009, 37(7):58-60.
    [12] Shah Vimal, Gardner W, Johnson D H, Sinanovic S. Design Considerations for a New High Data LWD Acoustic Telemetry System[R]. SPE 88636.
    [13] Neff J M, Camwell P L. Field-Test Results of an Acoustic MWD System[R]. SPE/IADC 105021.
    [14]邵养涛,姚爱国,张明光.电磁波随钻遥测技术在钻井中的应用于发展[J].煤田地质与勘探, 2007, 35(3):77-80.
    [15]李田军,鄢泰宁.试论欠平衡钻井中应用电磁波随钻测量技术的若干问题[J].地质科技情报, 2005, 24(增刊):37-39.
    [16]张进双,赵小祥,刘修善. ZTS电磁波随钻测量系统及其现场试验[J].钻采工艺, 2005, 28(3):25-27.
    [17]卢春华,张涛,李海东.泥浆脉冲随钻测量系统研究[J].地质科技情报, 2005, 24(7增刊): 30-32.
    [18]张涛,鄢泰宁,卢春华.无线随钻测量系统的工作原理与应用现状[J].西部探矿工程, 2005(2): 126-128.
    [19] Arps J J, Arps J L. The Subsurface Telemetry Problem - A Practical Solution [J]. Journal of Petroleum Technology, 1964, Oct:487-493.
    [20] Spinnler R F. Pilot Operated Mud-Pulse Valve [P]. United States: 3958217, 1976.
    [21] Barron C D. Pilot Operated Mud Pulse Valve and Method of Operating the Same [P]. United States: 4742498, 1988.
    [22] Barron D C, Gardner, R W. Mud Operated Pulser [P]. United States: 5586084, 1996.
    [23]吕海川,窦修荣. CGMWD新型正脉冲无线随钻测量系统及应用[J].石油仪器, 2006,20(6):33-34,37,2.
    [24] Dailey P E. Pilot Valve Initiated Mud Pulse Telemetry System [P]. United States: 4401134, 1983.
    [25] Dailey P E. Mud Energized Electrical Generating Method and Means [P]. United States: 4515225, 1985.
    [26] Hahn D, Peters V, Rouatbi C, Scholz E. Reciprocating Pulser for Mud Pulse Telemetry [P]. United States: US7417920B2, 2008.
    [27] Lerner D, Masak P. Integrated Modulator and Turbine-Generator for A Measurement While Drilling Tool [P]. United States: 5517464, 1996.
    [28] Ritter T E. Fluid Driven Siren Pressure Pulse Generator for MWD and Flow Measurement Systems[P]. United States:5636178, 1997.
    [29] Chin W C, Ritter T E. Turbo Siren Signal Generator for Measurement While Drilling Systems [P]. United States: 5740126, 1998.
    [30]徐秀杰,陈若铭,罗良波等. HZMWD无线随钻测量与传输系统的研制与应用[J].新疆石油天然气, 2008, 4(4):66-68,76.
    [31]王德胜,徐秀杰,李伟等. Slim 1 MWD仪器的推广与应用[J].新疆石油天然气, 2003, 13(3):5-7.
    [32] Turner W E, Biglin Jr. D P. Method and Apparatus for Transmitting Information to The Surface from A Drill String Down Hole in A Well [P]. United States: US6714138B1, 2004.
    [33]李军,马哲,杨锦舟等.一种新型的MWD无线随钻测量系统[J].石油仪器, 2006, 20(2):30-32.
    [34] Perry C A, Burgess D E, Turner W E. Rotary Pulser for Transmitting Information to The Surface from A Drill String Down Hole in A Well [P]. United States: US7327634B2, 2008. [ 35 ] Malone D, Johnson M. LoggingWhile Drilling Tools, Systems, and Methods Capable of Transmitting Data at A Plurality of Different Frequencies [P]. United States: 5375098, 1994.
    [36] Hahn D, Peters V, Rouatbi C, Eggers H. Oscillating Shear Valve for Mud Pulse Telemetry and Associated Methods of Use [P]. United States: US6975244B2, 2005.
    [37]王智明,菅志军,李相方等.连续波高速率泥浆脉冲器设计研究[J].石油天然气学报(江汉石油学院学报), 2008, 30(2):611-613.
    [38] Klotz C, Hahn D. Highly Flexible Mud-Pulse Telemetry: A New System [J]. SPE, 113258.
    [39]房军,苏义脑.二通阀进液控制式信号发生器非线性状态方程[J].石油钻采工艺, 2004, 26(2):5-8,80.
    [40]房军,苏义脑.随钻测量阀控式液压信号发生器动态数学模型[J].石油机械, 2004, 32(6):26-28.
    [41]房军,苏义脑.二通阀回液控制式信号发生器非线性状态方程[J].石油钻采工艺, 2004, 26(3):7-8,81.
    [42]王佐祥,房军. HDS1信号发生器脉冲响应速度的影响因素分析[J].石油矿场机械, 2006, 35(3):49-52.
    [43]刘修善,岑章志,苏义脑.钻井液脉冲传输速度的影响因素分析[J].石油钻采工艺, 1999, 21(5): 1-4,9.
    [44]刘修善,郭均.钻井液脉冲传输速度的分布规律研究[J].钻采工艺, 2000, 23(4): 74-76.
    [45]刘修善,苏义脑.泥浆脉冲信号的传输速度研究[J].石油钻探技术, 2000, 28(5):24-26.
    [46]石在虹,刘修善.井筒中钻井信息的传输动态分析[J].天然气工业, 2002, 22(5):68-71.
    [47]刘修善.钻井液脉冲沿井筒传输的多相流模拟技术[J].石油学报, 2006, 27(4):115-118.
    [48]王翔,王瑞和.钻井液连续脉冲信号频域传输速度影响因素[J].中国石油大学学报(自然科学版), 2008, 32(5): 54-57,66.
    [49]王翔.钻井液连续脉冲信号频域传输速度计算模型[J].西南石油大学学报(自然科学版), 2009, 31(3):138-141.
    [50] Lee H Y. Drillstring Axial Vibration and Wave Propagation in boreholes [D]. Gambridge: Massachusetts Institute of Technology, 1991.
    [51] Lea S H. A Propagation of Coupled Pressure Waves in Borehole with Drillstring[C]. SPE 37156, 1996:963-972.
    [52] Kytomaa H K. An Acoustic Model of Drilling Fluid Circuits for MWD Communication[R]. SPE 28015, 1994.
    [53]李荣喜,房军.井下旋转压力信号发生器的仿真[J].石油矿场机械, 2007, 36(2):45-47.
    [54] Malone D. Sinusoidal Pressure Pulse Generator for Measurement While Drilling Tool [P]. United States: 4847815, 1989.
    [55] Lavrut E, Kante A, Rellinger P, Gomez S R. Pressure Pulse Generator for Downhole Tool [P]. United States: US6970398B2, 2005.
    [56]姜继海,宋锦春,高常识.液压与气压传动[M].北京:高等教育出版社, 2002:37. [ 57 ]房军,苏义脑.液压信号发生器基本类型与信号产生的原理[J].石油钻探技术, 2004,32(2):39-41.
    [58]董在望,陈雅琴,雷有华等.通信电路原理[M].第2版.北京:高等教育出版社, 2002:6.
    [59]唐焕文,秦学志.实用最优化方法[M].第3版.大连:大连理工大学出版社, 2004:244-256.
    [60]贾朋,房军.钻井液连续波发生器转阀设计与信号特性分析[J].石油机械, 2010,38(2):9-12.
    [61] Chin, W.C. MWD Siren Pulser Fluid Mechanics[J]. Petrophysics, 2004, 45(4):363-379.
    [62]盛敬超.液压流体力学[M].北京:机械工业出版社, 1980:102.
    [63]吴望一.流体力学(下册)[M].北京:北京大学出版社, 2004:30.
    [64] Dias F, Elcrat A R, Trefelhen L N. Ideal Jet Flow in Two Dimensions [J]. J. Fluid Mech, 1987, 185:275-288.
    [65] Classical Free-Streamline Flow Over A Polygonal Obstacle [J]. Journal of Computational and Applied Mathematics, 1986, 14:251-256.
    [66]刘大恺.水力机械流体力学[M].上海:上海交通大学出版社, 1988.
    [67]平浚.射流理论基础及应用[M].北京:宇航出版社, 1995.
    [68]王智明,菅志军,李相方等.连续波钻井液脉冲发生器结构设计探讨[J].石油机械, 2007, 35(12):56-58.
    [69] Finnie I. The Mechanism of Erosion of Ductile Metals[C]. Proceedings of 3rd US National Congress of Applied Mechanics, 1958:527-532.
    [70] Badr H M, Habib M A, Ben-Mansour R, Said S A M. Effect of Flow Velocity and Particle Size on Erosion in A Pipe with Sudden Contraction[C]. The 6th Saudi Engineering Conference, 2002, 5:79-95.
    [71] Bitter J G A. A Study of Erosion Phenomenon: Part I[J]. Wear, 1963, 6(1):5-21.
    [72] Bitter J G A. A Study of Erosion Phenomenon: Part I[J]. Wear, 1963, 6(3):169-190.
    [73] Tilly G P. A Two Stage Mechanism of Ductile Erosion[J]. Wear, 1973, 23(1):87-96.
    [74] Edwards J k, Jeremy K, McLaury B S, et al. Supplementing a CFD Code with Erosion Prediction Capabilities[C]. In Proceedings of ASME FEDSM’98: ASME 1998 Fluids Engineering Division Summer Meeting, 1998.
    [75] Edwards J K, McLaury B S, Shirazi S A. Evaluation of Alternative Pipe Bend Fittings in Erosive Service[C]. In Proceedings of ASME FEDSM’00: ASME 2000 Fluids Engineering Division Summer Meeting, 2000.
    [76] Haugen K, Kvernvold O, Ronold A, and Sandberg R. Sand Erosion of Wear-Resistant Materials: Erosion in Choke Valves[J]. Wear, 1995, 186-187:179-188.
    [77] Meng H, Ludema K. Wear Models and Predictive Equations: Their Form and Content[J]. Wear, 1995, 181-183:443-457.
    [78] Zhang Yongli. Application and Improvement of Computational Fluid Dynamics (CFD) in Solid Particle Erosion Modeling[D]. The University of TULSA, 2006.
    [79]鄢捷年.钻井液工艺学[M].东营:中国石油大学出版社, 2006:151.
    [80]岳湘安.液固两相流基础[M].北京:石油工业出版社, 1996:2-3.
    [81] Grant G, Tabakoff W. Erosion Prediction in Turbomachinery Resulting from Environmental Solid Particles[J]. Journal of Aircraft, 1975, 12(5):471-478
    [82] Arefi B, Settari A, Angman P. Analysis and Simulation of Erosion in Drilling Tools[J]. Wear, 2005, 259:263-270.
    [83] Wilson K C, Thomas A. A new analysis of the turbulent flow of Non-Newtonian Fluids [J]. Canadian J. of Chem. Eng., 1985(63):539-546.
    [84] Huhtanen J-P T, Karvinen R J. Interaction of Non-Newtonian Fluid Dynamics and Turbulence on the Behavior of Pulp Suspension Flows[J]. Annual Transactions of The Nordic Rheology Society, 2005, 13:177-186.
    [85]陈家琅,刘永建,岳湘安.钻井液流动原理[M].北京:石油工业出版社,1997:367.
    [86] Brown G. Erosion Prediction in Slurry Pipeline Tee-Junctions[C]. Second International Conference on CFD in The Minerals and Process Industries CSIRO, 1999:237-242.
    [87]许卫疆,车得福,徐通模.沙粒的松弛过程[J].西安交通大学学报, 2005, 39(5):536-539.
    [88] Moriarty K A. Pressure Pulse Generator for Measurement-While-Drilling Systems Which Produces High Signal Strength and Exhibits High Resistance to Jamming[P]. United States: 6219301B1, 2001.
    [89] Patton B J, et al. Development and Successful Testing of a Continuouse-Wave, Logging–While-Drilling Telemetry System[J]. Journal of Petroleum Techonology, 1977, Oct: 1214-1221.
    [90]王智明,菅志军,李相方等.连续波高速率泥浆脉冲器设计研究[M].石油天然气学报(江汉石油学院学报), 2008, 30(2):611-613.
    [91]菅志军,王智明,贺麦红等.连续波钻井液脉冲发生器用磁力耦合器设计[J].石油机械, 2008, 36(11):35-36,59.
    [92]王锡洲.捷联式自动垂直钻井系统的研制及现场试验[J].石油钻探技术, 2010, 38(3):13-16.
    [93]姜燕平.旋转变压器原理及其应用[J].电气时代, 2005, (10):98-99.
    [94] Martin C A, Philo R M, Decker D P, Burgess T M. Innovative Advances in MWD[R]. SPE 27516, 1994.
    [95]董海平.新型正脉随钻测斜仪地面硬件系统的设计开发和井下控制器的研究[D],北京:中国科学院渗流流体力学研究所, 2001.
    [96]彭元超.旋转导向钻井闭环监控系统理论与技术研究[D].西安石油大学, 2007.
    [97]刘修善,苏义脑.地面信号下传系统的方案设计[J].石油学报, 2000, 21(6):88-92.
    [98] ATMEL. AVR492: Brushless DC Motor Control using AT90PWM3/3B[Z]. AVR Microcontrollers.
    [99]崔兵兵.基于DSP及轴角数字转换器的直流无刷电机控制系统研究与设计[D].陕西科技大学, 2008.
    [100]刘永江.基于旋转变压器的位置检测方法及其应用[D].华中科技大学, 2003.
    [101] TAMAGAWA TRADING CO., LTD. AU6802 DataSheet[Z]. http://www.tamagawa-seiki.co.jp.
    [102] ANALOG DEVICES. Variable Resolution, Monolithic Resolver-to-Digital Converter[Z].
    [103] Intersil. Precision Waveform Generator/Voltage Controlled Oscillator[Z].ICL8038 Manual, 2001.
    [104] International Rectifier. 3-PHASE BRIDGE DRIVER:IR2136 Datasheet[Z].
    [105]楚斌. IR2110功率驱动集成芯片应用[J].电子工程师, 2004, 30(10):33-35.
    [106]常杰锋.测井仪器通用CAN总线接口设计与实现[D].华中科技大学, 2007.
    [107]薛晓明,杨长江.无刷直流电机建模研究[J].电机与控制学报, 2009, 23(6).
    [108]王雷.无刷直流电动机调速系统的研究[D].浙江大学电气工程学院,2008.
    [109]李强,无位置传感器无刷直流电动机运行理论和控制系统研究[D],东南大学, 2005.
    [110] Hutin R, Tennet R W, Kashikar S V. New Mud Pulse Telemetry Techniques for Deepwater Applications and Improved Real-Time Data Capabilities [R]. SPE 67762, 2001.
    [111]刘修善,苏义脑.钻井液脉冲信号的传输特性分析[J].石油钻采工艺, 2000, 22(4):8-10.
    [112]王翔,王瑞和,纪国栋.井筒内钻井液连续脉冲信号传输频率相关摩阻模型[J].石油学报, 2009, 30(3):445-448.
    [113] Zielke W. Frequency-Dependent Friction in Transient Pipe Flow [J]. ASME J. Basic Eng, 90(1):109-115.
    [114] Vardy A E, Brown J M B. Transient Turbulent Friction in Smooth Pipe Flows[J]. Journal of Sound and Vibration, 2003, 259(5):1011-1036.
    [115] Lee H Y. Drillstring Axial Vibration and Wave Propagation in boreholes [D]. Gambridge: Massachusetts Institute of Technology, 1991.
    [116] Lea S H. A Propagation of Coupled Pressure Waves in Borehole with Drillstring[C]. SPE 37156, 1996:963-972.
    [117]沈跃,苏义脑,李林等.钻井液连续压力波差分相移键控信号的传输特性分析[J].石油学报, 2009, 30(4):593-597,602.
    [118]刘新平. DSP控制连续波信号发生器机理与风洞模拟试验研究[D].中国石油大学(华东), 2009.
    [119]仇伟德.机械振动[M].东营:石油大学出版社, 2001:147.
    [120] (美)艾伦·波普.低速风洞试验[M].彭锡铭,严俊仁等译.北京:国防工业出版社,1980.
    [121]王勋年.低速风洞试验[M].北京:国防工业出版社, 2002.
    [122]卫军锋.正弦型风谱的风洞实验与数值模拟研究[D].西安:西安建筑科技大学, 2003.
    [123]汤宝平.新一代虚拟仪器-智能控件化虚拟仪器系统的研究[D].重庆大学, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700