机械式无线随钻测斜仪系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有测斜技术存在的不足和石油钻井工程上特殊复杂直井测斜的需要,开展机械式无线随钻测斜技术研究工作,提出一种新的机械式无线随钻测斜仪设计方案,对机械测斜原理、井斜信息转换与控制技术、钻井液脉冲信息传输理论和脉冲发生器的工作原理,以及机械测斜机构、编码控制与放大机构、往复节流型脉冲发生器等关键部件的结构设计方法进行深入研究,并成功研制机械式无线随钻测斜仪。通过研究,取得一些具有工程应用价值的成果,归纳如下:
     1机械式无线随钻测斜仪总体设计方案研究
     在对现有测斜仪器调研分析的基础上,改变传统的电子测斜技术思路,在国内率先开展机械式随钻测斜技术的研究,提出了机械式无线随钻测斜仪的总体设计方案。其基本思路是:井下仪器采用纯机械结构,利用精密机械机构测量井斜;采用钻井液脉冲技术在地面与井下之间传输井斜信息。综合考虑设计、加工制造技术和钻井工程上对测斜仪器的要求,确定了仪器的主要技术参数:精度为0.5°和1.0°两种,测量范围为0~17°,最高工作温度260℃,最大应用井深为7000m。对井斜测量技术、脉冲发生技术、井斜与脉冲对应关系等关键技术的实现方案进行了研究,提出了具体的实施方案。
     2钻井液脉冲传输理论及脉冲发生器的设计研究
     钻井液主要由液体、固体组成,并含有少量的气体。考虑液、固、气三相共存情况下,将钻井液流动看作一维伪均质流,推导出钻井液脉冲的传输速度计算公式,分析了影响脉冲传输速度的因素。结果表明,钻井液各组分含量、钻柱的几何尺寸等参数对脉冲传输速度均有影响,其中气体含量影响最为严重。
     基于水锤瞬变分析方法建立了钻井液脉冲传输瞬变分析模型,得到脉冲传输瞬变分析基本方程,并用特征线法进行了求解。建立起带有脉冲器的钻井液循环系统简化分析模型,整个系统可分为钻井泵至空气包、空气包至钻杆、钻杆至钻铤、钻铤至脉冲发生器、脉冲发生器至钻头等五部分,确定了钻井泵出口、空气包、钻杆与钻铤连接处、脉冲发生器和钻头处的边界条件。在此基础上编制出分析求解钻井液脉冲传输瞬变分析的计算机程序。分析表明,钻井液脉冲在传播的过程发生衰减。脉冲强度与频率是钻井液脉冲的两个重要特性,对脉冲强度的衰减规律进行研究,分析了影响脉冲衰减的因素。结果表明,脉冲频率和钻井液的动力粘度严重影响脉冲强度的衰减。
     机械式无线随钻测斜仪的信息传输采用正脉冲信号,脉冲发生器为往复节流型正脉冲发生器。对脉冲发生器的工作原理、结构设计计算方法等进行了深入研究。设计了一种用于辅助脉冲发生器工作的液压阻尼器,分析了阻尼性能对脉冲器性能的影响。对往复节流型正脉冲发生器脉冲强度和频率的计算方法进行研究,得到的脉冲强度、频率与钻井液排量的关系对脉冲发生器的设计与现场使用具有重要的指导意义。应用流体有限元分析方法对脉冲发生器的工作过程进行了数值仿真,根据仿真结果对脉冲产生过程中脉冲强度的变化及脉冲阀的受力情况进行了分析,并与理论计算结果进行了对比。结果表明,数值仿真结果更符合实际。基于以上研究工作,对往复节流型正脉冲发生器进行了优化设计,并分析了其性能。
     3机械测斜与信息转换技术研究
     对机械测斜技术进行研究,设计了一种基于重力原理的摆锤—阶梯环机械测斜机构,给出该机构各结构参数的设计计算方法。对测斜机构进行了结构仿真分析,结果表明,测斜机构的最高精度为0.2°,其结构尺寸对仪器的测量精度及测量范围有显著影响。在实际结构设计时需综合考虑测量精度、可靠性及现场要求等因素,合理确定结构参数。
     采用机械方式实现井斜信息的转换,基本思路是:将测斜机构测得的井斜信息转换为位移变化并进行放大,用位移变化量控制脉冲发生器的工作。研制了一种机械编码控制与行程放大机构,建立了该机构的运动分析模型,给出了结构设计计算方法。通过测斜机构与机械编码控制与行程放大机构的组合设计,可以实现井斜测量、信息转换和控制等功能,对组合设计进行了结构设计仿真。
     4机械式无线随钻测斜仪研制及应用
     在以上研究的基础上,进行机械式无线随钻测斜仪的整体结构设计,设计了一种基于浮动密封原理的自动补偿恒压差近平衡密封系统,还对仪器的工作状态进行了详细分析。室内和现场试验表明,仪器各项性能指标均达到设计的要求,且具有很好抗高温性能和现场适用性,能够满足直井随钻测量的需要,解决了高温高压井、深井、超深井测斜的难题。目前,研制的仪器已现场应用40口井,创造了国内高温、高压、深井测斜的记录,取得显著的经济和社会效益。
In order to overcome the shortage of existed techniques for measuring deviation of oil well and to meet the requirement of complex vertical wells, research on a new technology which measure the deviation of vertical wells while drilling by mechanical apparatus is performed and an innovative design scheme of the Mechanical Wireless Inclinometer(MWI) was presented. Based on the investigation on principle for measuring the deviation, technique for information transition and control, theory of mud pulse transmission, principle of pulse generator and design method of the key mechanisms including the deviation-measuring unit, the mechanical coded control unit and the mud pulse generator, a new type of MWI was developped successfully. The main work is summarized as follows
     1 Research on Design Scheme of MWI
     Based on the innovative idea, research on technique for measuring the devition of the vertical wells using mechanical apparatus was carried on and a design scheme of MWI was presented, by which the downhole apparatus is a mechanical unit, measuring the deviation by precise mechanism and transferring the information from bottom of the well to ground by mud pulse technology. Considering the design and manufacture of MWI and the requirement of drilling engineering, the technical parameters and the detailed implementary schemes of the key techniques such as measuring the devition, generating the pulse and corresponding relation of the inclination and the pulses were presented.
     2 Research on Theory of Mud Pulse Transmission and Design Method of Pulse Generator
     Drilling fluid mainly consists of liquid, solid and a little air. Regarding drilling fluid as one dimension bogus homogeneous flow, a formula for calculating transfers speed of mud pulse was derived. Analysis on influence of various factors to speed shows that the content of liquid, solid, gas influenced the speed and the influence of gas is most serious.
     By applying the method for transient analysis of waterhammer, the basic equations for describing the transient characteristic of mud pulse were established and the equations can be solved by using method-of-characteristics. The simplification model for drilling fluid circulation system with pulse generator was set up, dividing the circulation system into five sections: from mud pump to air tank, from air tank to dilling pipe, from drilling pipe to drilling collar, from drilling to pulse generator, from pulse generator to bit. Based on analysis on the boundary conditions of every section, the computer program to solve the basic equations using the method-of-characteristics and method-of-difference was designed. Analysis result shows that attenuation will occur during the pulse transmission in drilling fluid. The amplitude and frequence are two important characteristic of mud pulse. Attenuation law of mud pulse was studied. analysis on various factors influencing attenuation shows that frequence of pulse and viscosity of drilling fluid affect attenuation of pulse seriously.
     Positive pulse signal was adopted to transmit information from bottom of the well to ground and a simple reciprocating throttled positive pulse generator was developed. The principle and design method of pulse generator were investigated. A damper providing work condition for pulse generator was designed, analyzing the damping characteristic of the damper and its effect to pulse generator. Method for calculating the amplitude and frequence of pulse was studied. and the relation between amplitude, frequence of pulse and drilling fluid displacement was obtained. It could be guidance for design and application of pulse generator. The process of generating the pulse was simulated using FEM to understanding the amplitude of pulse and the force that drilling fluid act on the pulse valve. Comparison shows that result of simulation was better than theoretical calculation. Finally, the structure of the reciprocating throttled positive pulse generator was optimized.
     3 Research on Techniques for Deviation Measurement and Information Transformation Based on the gravity principle, a mechanism called deviation-measuring unit, which consists of a pendulum and a sries of graduated stop shoulder, was developed and the method for structure design and calculation of the unit was presented. Structure simulation on deviation-measuring unit shows that the best precision of the unit is 0.2°, and the unit’s structure size influence the precision and measurement range of the unit markedly. The structure pasrameter should be determined according to the precision and reliability of the unit and field requirement.
     The way of information transforming is realized by a mechanism called mechanical coded control unit, which transform the inclination information into variety of displacement and enlarge it, the enlarged displacement can control pulse generator to produce pulses. The principle and structure of the mechanical coded control unit were described. Based on the analysis on kinematic relation of all parts, the method for structure design and calculation was given. Assembled structure of the deviation-measuring unit and the mechanical coded control unit can achieve the function of measuring the deviation and transforming the information. 4 Development of MWI and Its Application
     Based on all these research, the whole structure of MWI with a self-compensating constant-pressure-difference seal system was developped successfully. Lab and field test shows that all the performance and index of MWI attain the expected purpose, and it can satisfy the demand of measuring the deviation of vertical well while drilling, especially to high temperature & high pressure well, deep well and super-deep well because of its very good anti-heat capability and field applicability. It has a good application in 40 oil wells and set up the record for measuring deviation in heat well, high pressure well and deep well, which produce remarkable economic and social benefit.
引文
[1] 苏义脑. 油气直井防斜打快技术. 北京:石油工业出版社,2003:1~15
    [2] 汪海阁, 苏义脑. 直井防斜打快理论研究进展. 石油学报,2004,25(3):86~90
    [3] 高宝奎, 高德利. 直径防斜原理综述. 石油钻采工艺,1996,18(6):8~13
    [4] 孙岿. 防斜打快技术现状与对策. 石油天然气工业,2003,23(3):67~69
    [5] 张绍槐, 张洁. 21世纪中国钻井技术发展与创新. 石油学报,2001,22(6):63-68
    [6] 桂德洙. 浅谈钻井测斜仪. 石油钻采工艺,1999,21(5):45~49
    [7] 王宁. 水平井随钻测量技术. 水平井配套技术专题调研报告集,1992
    [8] 赵金州, 赵金海. 胜利油田深井超深井钻井技术. 石油钻探技术,2005,33(5):56~61
    [9] 王斌编著. 定向钻井测量仪器. 北京:石油工业出版社,1990:22~60
    [10] 王若. 随钻测量技术发展史. 石油仪器, 2001, 15(2):5~7,15
    [11] 赖信坚. 随钻测量技术与传感器原理探讨. 石油钻采工艺, 1991, 13(4): 9~17
    [12] 田树林. SDI-MWD无线随钻测量仪信号质量的影响因素分析及控制. 石油钻探技术,2004,32(4):78~79
    [13] 苏义脑, 窦修荣. 随钻测量、随钻测井与录井工具. 石油钻采工艺,2005,27(1):74~78
    [14] 张涛, 鄢泰宁, 卢春华. 无线随钻测量系统得工作原理及应用现状. 西部探矿工程. 2005,105(2):126~128
    [15] 熊育坤. 国外井下随钻测量传输系统概述. 石油机械,1990,18(4):23~26
    [16] Mcdonald W J. Four Different Systems Used for MWD. Oil & Gas J., 1978, 76(14):115~124
    [17] Gearhart, M., Moseley, L.M., Foste, M. Current State of the Art of MWD and Its Application in Exploration and Development Drilling. International Meeting on Petroleum Engineering , Beijing, China, March 17-20, 1986
    [18] Bernd Schmalhorst, Eberhard Brommundt, Andreas Baumgart, Uwe Richter. Drilling Dynamics in the Presence of Mud Flow. IADC/SPE Drilling Conference, New Orleans, Louisiana, 23-25 February, 2000, 1~12
    [19] Marvin, Ziemer, Kelly A., Knight, Orien M. Mud Pulse MWD Systems Report . JPT 1981
    [20] Chen, S.J., Aumann, J.T. Numerical Simulation of MWD Pressure Pulse Transmission. SPE 14324, Society of Petroleum Engineers 60th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Las Vegas, NV September 22-25, 1985
    [21] Soulier, Louis, Lemaitre, Michel.. E.M. MWD Data Transmission Status and Perspectives. SPE/IADC Drilling Conference, Amsterdam 23-25 1993, 121~127
    [22] Lea, Svein-Helge,Kyllingstad, Age. Propagation of Coupled Pressure Waves in Borehole with Drillstring. SPE International conference on Horizontal Well Technology, Calgary, Canada, 18-20,November 1996, 963~972
    [23] Harrison, W. H., Mazza, R. L., MWD technology status. SPE/IADC Drilling Conference, Houston, Texas, 1990, 14~18,
    [24] Smith, H. C.,Toroidal Coupled Measurements While Drilling, SPE/IADC Drilling Conference,, New Orleans, La, 1983, 55~58
    [25] Carter, J. A., Experimental and Theoretical Study of Mud Pulse Propagation. Thesis of master degree, Louisiana State University, 1986
    [26] Somogyi, Dezso, Theoretical and Experimental Analysis of Pressure Pulse Transmission in Non-Newtonian Pipe Flow. Thesis of Doctor Degree, University of Alabama in Huntsville, 1987
    [27] Desbrandes, R., Bourgoyne, A. T. J., Carter, J. A. MWD Transmission Data Rate Can be Optimized. Petroleum Engineer International, 1987; 59(6): 45-52
    [28] Desbrandes, R.: Status Report: MWD Technology (Part 2- Data Transmission), Petroleum Engineer International, 1988, 60(10): 48-54
    [29] Chen, S.J., Aumann, J.T. Numerical Simulation of MWD Pressure Pulse Transmission. SPE 14324, Society of Petroleum Engineers 60th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Las Vegas, NV September 22-25, 1985
    [30] 刘修善,苏义脑. 钻井液脉冲传信号的传输特性分析. 石油钻采工艺, 2000, 22(4):8~10
    [31] 何书山,刘修善. 钻井液正脉冲信号的衰减分析. 钻采工艺, 2001, 24(6):1~3, 12
    [32] 刘修善,郭钧. 钻井液脉冲传输速度的分布规律. 钻采工艺, 2000, 23(4), 74~76
    [33] 刘修善,岑章志,苏义脑. 钻井液脉冲传输速度的影响因素分析. 石油钻采工艺, 1999, 21(5):1~4, 9
    [34] 房军,苏义脑. 随钻测量阀控制液压信号发生器动态数学模型. 石油机械,2004, 32(6):26~28
    [35] 房军,苏义脑. 液压信号发生器基本类型与信号产生的原理. 石油钻探技术,2004, 32(2):39~41
    [36] Anderson Charles Abernethy. Inclinometer. European Patent, No. 0474459 A2,1992
    [37] Charles A. A., Alan Martyn. Downhole Tool. United States Patent, No. US 6289596 B1, 2001
    [38] 陈中仪. 自调机械式随钻测斜仪. 中国实用新型专利, 专利号:CN86207607U,1987
    [39] 蔡文军,王平,陈国明等. 机械式无线随钻测斜仪设计方案及关键技术, 石油学报, 2005, 27(2):103~106
    [40] 刘修善,苏义脑. 地面信号下传系统的方案设计. 石油学报,2000,21(6):88-92
    [41] B. B. 库里奇次基著. 鄢泰宁, 郭湘芬等译. 定向斜井与水平井地质导向技术. 北京:石油工业出版社,2003:79~87
    [42] McDonald W J and Ward C E. Borehole telemetry system is key to continuous down-hole drilling measurement. Oil & Gas J., 1975, 73(37):111~118
    [43] 张进双,赵小详,刘修善. ZTS电磁波随钻测量系统及其现场试验. 钻采工艺,2005, 28(3): 25~27
    [44] 熊皓,吴斌杰. 随钻测量电磁传输信道研究. 地球物理学报,1997, 40(3): 431~440
    [45] 熊皓,吴明义,深井钻探的随钻电磁信息传输,中国地球物理学会年刊,北京:地震出版社,1993:35~46
    [46] 果明明,刘文彦等. 钻孔无电缆电信号通道的研究. 遥测遥控,1997,18(3):12~16
    [47] M. J. 埃克诺米德斯等著. 万仁溥,张琪编译,油井建井工程. 北京:石油工业出版社,2001:73~100
    [48] 赵金州,张桂林等编. 钻井工程技术手册. 北京:中国石化出版社,2005:720~728
    [49] 杨林, 张凤华, 唐川林等. 浆体管道输送水击压力波波速的探讨. 力学与实践, 2002, 24(5):28~31
    [50] 杨林, 张凤华, 唐川林. 伪均质流浆体水击波速的影响因素分析. 矿山机械, 2002, 30(11):28~30
    [51] 丁宏达. 浆体管道水击波波速计算的比较与研究. 冶金矿山设计与建设,1995, 31(3):13~16
    [52] 韩文亮,费祥俊,任裕民. 浆体水击压力波波速的实验研究. 水利学报,1990. 11
    [53] Streeter V. L.. Fluid Transients. 6th ed., MacGraw-Hill Book Co., New York, 1979, 6~40
    [54] Wylie E. B, Streeter V. L. Fluid Transients in System. FEB Press, Ann Arbor, Michigan, 1983, 17~63
    [55] 张国忠编著. 管道瞬变流动分析. 东营:石油大学出版社,1994:1~58
    [56] Watters G Z. Analysis and Control of unsteady Flow in Pipeline. Journal of Hydraulics Division, 1972, 102(5):80~86
    [57] 王学芳, 叶宏开等. 工业管道中的水锤. 北京:科学出版社,1995:9~78
    [58] 周雪漪. 计算水力学. 北京:清华大学出版社,1995:203~225
    [59] 刘竹溪, 刘光临. 泵站水锤及其防护. 北京:水利电力出版社,1988:1~27
    [60] Streeter V. L. Water hammer Analysis Including Friction, Journal of Hydraulics Division, 1962, 88(5):22~26
    [61] 鄂学全, 刘国华, 王薇 等. 特征线法分析长距离输油管道的流动瞬变过程. 水动力学研究与进展, A辑, 1998, 13(4):430~439
    [62] Robert T. Pipeline Hydraulic Surges Are Shown in Computer Simulations. Oil & Gas Journal. 1976. 74(47):34~39
    [63] 赵东瑞译,管道水击压力的计算. 油气储运,1996, 15(1):59~60
    [64] 韩文亮,董曾南,柴宏恩. 含高浓度固体物料管流中水击规律.中国科学,E辑,1998, 28(2):183~192
    [65] 韩文亮,董曾南,柴宏恩等. 伪均质固液两相流水击压力的计算方程及验证.中国科学E辑,2000, 30(5):473~480
    [66] 刘刚,蒲家宁. 长输管道水力瞬变仿真. 油气储运,2000,19(3):16~19,20
    [67] 王平, 蔡文军, 陈国明等. 机械测斜机构的原理及结构设计仿真. 石油矿场机械, 2005,34(6):42~44
    [68] 蔡文军, 王平. 机械式无线随钻测斜仪结构原理与性能特点, 石油机械, 2005, 33(9):49~50
    [69] 雷天觉. 液压工程手册. 北京:机械工业出版社,1990:1653~1658
    [70] 王钧功. 液压阻尼器研究. 液压气动与密封,18(1 ), 1998, 15~17,21
    [71] 蔡文军, 王平等. 石油井下工具用液压阻尼器研制. 液压与气动, 2005, 27(9):30~32
    [72] 蔡文军, 王平等. 一种液压阻尼器的就阻尼结构及阻尼性能分析. 机床与液压, 2006, 24(6):149~150,153
    [73] 赵怀文,陈智喜编. 液压与气动. 北京:石油工业出版社,1988:28~33
    [74] 盛敬超编. 液压流体力学. 北京:机械工业出版社,1980:112~160
    [75] 金朝铭. 液压流体力学. 北京:国防工业出版社,1992:137~143,206~213
    [76] 袁恩熙编. 流体力学. 北京:石油工业出版社,1994:120~122
    [77] 万邦烈,李继志. 石油矿场水力机械. 北京:石油工业出版社,1994:15~50
    [78] 顾永泉. 流体动密封. 东营:石油大学出版社,1990:135~150 [79 刘令勋, 刘英贵. 动态密封设计技术. 北京:中国标准出版社,1993:180~200
    [80] 严志光. 润滑材料与润滑技术. 北京:中国石化出版社,2000:199~205
    [81] 蔡文军,王平等. 机械式无线随钻测斜仪及其应用, 石油钻探技术, 2005, 33(1):39~40
    [82] 刘以明, 蔡文军等. Power V和机械式随钻测斜仪在黑池1井的应用, 石油钻探技术, 2006, 34(1):71~73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700