钻井液连续压力波QPSK信号的构建及沿定向井筒传输特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随钻测量技术(MWD)是一种在钻井操作的同时对井下参数进行实时测量与传输的现代钻井辅助技术,依靠钻井液信道进行井下信息的遥测是目前井下随钻测量数据传输的有效方法,钻井液压力正交相移键控(QPSK)调制方式因其具有信息传输速率高和抗干扰能力强等特点,已成为钻井液信息遥测技术的发展方向。
     本文从旋转阀式钻井液连续压力波信号发生器的工作机理入手,说明了钻井液压力QPSK信号的调制过程。钻井液压力QPSK信号是基带信号根据调制规则对旋转阀转速调制产生的调相信号。基于基带信号及钻井液压力QPSK信号的信号特征分析,构建了钻井液压力QPSK信号的数学模型,并对QPSK信号的时域特性和频域特性进行了分析。研究表明,由于基带信号控制对象和控制方式不同,钻井液压力QPSK信号与常规电子通信系统的QPSK电信号在频谱分布上有一定区别,但其共同点是都存在明显的主频带,便于基带数据的频带传输,且频带跟随载波频率同步移动,有利于通过改变载频的方式避开干扰信号的影响。相对于数据的二进制差分相移键控(BPSK)调制,钻井液压力QPSK调制在相同的带宽下,信息传输速率和频带利用率均提高了一倍,只是调制后常规带宽内信号能量相对小于BPSK信号。通过对钻井液压力QPSK信号的数学分析,从理论上证明了QPSK调制技术用于井下测量数据高速率传输的可行性。
     应用流体力学理论和理想气体状态方程,分析了钻井液温度和压力沿定向井钻柱的分布规律;根据声学理论研究了定向井造斜段钻柱对钻井液压力波信号传输的影响,研究表明,由于造斜段的曲率半径远大于钻柱内径,压力波经过造斜段时的入射角接近于直角,在造斜段的钻柱内壁产生声波全反射,不会产生额外的能量损失,造斜段钻柱对信号传输的影响与垂直段相同;根据温度和压力对钻井液含气率的影响关系,建立了定向井中压力信号传递函数的数学模型,采用数值分析方法研究了钻井液压力QPSK信号自井底上传过程中,钻柱内径、载波频率、钻井液黏度及体积含气率等参数变化对信号传输的影响。
Measurement while drilling(MWD) is a kind of modern drilling assisted technique, through which down hole parameters can be measured and transferred simultaneously while drilling. On the basis of down hole information telemetry through drilling fluid channel, MWD is an effective method to transfer measured data while drilling. Enjoying the advantages of high information transferring rate and strong anti-interference, drilling fluid pressure quadrature phase shift keying (QPSK) modulation is the development trend of drilling fluid information remote measurement technique.
     According to working mechanism of rotary valve drilling fluid continuous wave signal generator the process of QPSK modulation were built. Drilling fluid pressure QPSK signals is PM signals generated by modulation on rotary valve speed by baseband signals. Based on signature analysis of baseband signals and Drilling fluid pressure QPSK signals, mathematical model of drilling fluid pressure QPSK signal was built, and, time domain and frequency characteristics of QPSK signal were analyzed. Research indicates that, since control object and control manner of baseband signal are different, drilling fluid pressure QPSK signals and the QPSK electrical signal of the conventional electronic communication system have some differences. While both of them have obvious frequency band, which can facilitates frequency band transmission of baseband data, and, frequency band moves with carrier frequency simultaneously, which can avoid the impact of interference signal on frequency band transmission data by changing carrier frequency. Under the same bandwidth, compared with binary data differential phase shift keying(BPSK), drilling fluid pressure QPSK modulation can double information transfer rate and bandwidth utilization efficiency, and modulated signal energy in regular band is just slightly smaller than that of BPSK signal. Through mathematical analysis of drilling fluid pressure QPSK signal, feasibility of QPSK modulation technique using in transferring down hole data at high speed was proved theoretically.
     Through hydrodynamic theory and equation of state of ideal gas, distribution of drilling fluid temperature and pressure along the directional well string was studied. According to acoustical theory, effect of drilling string in buildup section of directional well to signal transmission of drilling fluid pressure wave was studied. Research indicates that, radius of curvature is much bigger than string internal diameter, thus incident angle of pressure wave in buildup section is close to right angle, then total acoustic reflection is generated in inner wall of string during buildup section, and additional energy loss cannot be generated, so effect of buildup section to signal transmission is same to straight section. According to effect of temperature and pressure to drilling fluid gas-bearing ratio, mathematical model of pressure signal transfer function in directional well was obtained. Through numerical analysis method, effect of string internal diameter, carrier frequency, drilling fluid viscosity and gas fraction to drilling fluid pressure QPSK signal transmit from down hole to surface were studied.
引文
[1]布志虹,任干能,陈乐.随钻测井技术[J].断块油气田,2001,8(4):22-24
    [2]丁宇浩,李周波,马宏宇.随钻测井技术的发展[J].世界地质,2004,23(3): 371-274
    [3]苏义脑,窦修荣.随钻测量、随钻测井与录井工具[J].石油钻采工艺,2005,27 (1): 74-78
    [4]张辛耘,王敬农,郭彦军.随钻测井技术新进展和发展趋势[J].测井技术,2006, 30(1):10-15
    [5]邹德江,范宜仁,邓少贵.随钻测井技术最新进展[J].石油仪器,2005,19(5): 1-4
    [6]高永德.随钻测井在勘探开发中的应用优势分析[J].内蒙古石油化工,2008(9): 195-197
    [7]张辛耘,王敬农,郭彦军.随钻测井回顾与展望[J].测井技术信息,2006,19(5):1-8
    [8]马哲,杨锦舟,赵金海.无线随钻测量技术的应用现状与发展趋势[J].石油钻探技术,2007,35(6):112-115
    [9]刘新平,房军,金有海.随钻测井数据传输技术应用现状及展望[J].测井技术,2008, 32(3):249-253
    [10]张辛耘,郭彦军,王敬农.随钻测井的昨天、今天和明天[J].测井技术,30(6): 487-492
    [11]谢学明,梁定火,王江华.有线随钻和无线随钻测量技术在水平井中的推广应用[J].江汉石油科技,2004,14(2):54-70
    [12]卢春华,张涛,李海东.泥浆脉冲随钻测量系统研究[J].地质科技情报,2005,7增刊(4):30-32
    [13] Hutin R., Tennet R.W., Kashikar S.V.. New mud pulse telemetry techniques for deepwater applications and improved real-time data capabilities[R]. SPE 67762, 2001
    [14]潘宇,刘艳,周利军.2003年随钻测井(MWD)和地质评价新进展[J].国外油田工程,2004,20(3):15-19
    [15]石元会,刘志申,葛华,等.国内随钻测量技术引进及现场应用[M].国外测井技术,2009(196):9-13
    [16]郭彦军,张辛耘,王敬农.对我国发展随钻测井技术和装备的思考[J].石油仪器,2007,21(2):1-4
    [17] Klotz C., Bond P., Wasserman I., Priegnitz S.. A New Mud Pulse Telemetry System for Enhanced MWD/LWD Application[R]. SPE 112683, 2008
    [18] Macpherson J., Wasserman I., Hahn D., et al. Mud-pulse telemetry sees step-change improvement with oscillating shear valves[J]. Oil & Gas Journal, 106(24). 2008
    [19]刘修善,苏义脑.钻井液脉冲信号的传输特性分析[J].石油钻采工艺,2000,22 (4):8-10
    [20]刘修善,苏义脑.钻井液脉冲信号的传输速度研究[J].石油钻探技术,2000,28 (5):24-26
    [21]刘修善.钻井液脉冲沿井筒传输的多相流模拟技术[J].石油学报,2006,27(4): 115-118
    [22]沈跃,苏义脑,李林,等.钻井液连续压力波差分相移键控信号的传输特性分析[J].石油学报,2009,30(4):593-597
    [23] Shen Yue, Su Yinao, Li Gensheng, et al. Numerical modeling of DPSK pressure signals and their transmission characteristics in mud channels[J]. Petroleum Science, 2009, 6(3): 266-270
    [24]王翔,王瑞和,纪国栋.井筒内钻井液连续脉冲信号传输频率相关摩阻模型[J].石油学报,2009,30(3):444-449
    [25]刘修善,苏义脑.地面信号下传系统的方案设计[J].石油学报,2000,21(6):8-92
    [26]张涛,鄢泰宁,卢春华.无线随钻测量系统的工作原理与应用现状[J].西部探矿工程,2005(2):126-127
    [27]王广新,曹海鹏.无线随钻测井系统介绍及其应用[J].石油仪器,2008,22(1): 1-4
    [28] Detlef Hahn, Volker Peters, Cedric Rouatbi. Oscillating Shear Valve For Mud Pulse Telemetry[P]. PatentStorm, October 9, 2007
    [29]房军,苏义脑.液压信号发生器基本类型与信号产生的原理[J].石油钻探技术,2004, 32(2):41-44
    [30]李荣喜.井下旋转控制压力信号发生器的设计与研究[D].东营:中国石油大学(华东),2007
    [31]黎洪松.数字通信原理[M].西安:西安电子科技大学出版社,2005:130-158
    [32]樊昌信,曹丽娜.通信原理[M].北京:国防工业出版社,2001:12-14
    [33]王秉钧,冯玉珉,田宝玉.通信原理[M].北京:清华大学出版社.2006:239-253
    [34]吴大正,杨林耀,张永瑞.信号与线性系统[M].北京:高等教育出版社,2004: 130-193
    [35]张家海.信号与控制基础[M].北京:机械工业出版社,2008:127-128
    [36]孙东奎,董绍华.钻井液水力通信通道传输信号的时频特性分析[J].石油机械,2008, 36(4):42-44
    [37]周娟.信号分析与处理[M].北京:机械工业出版社,2002:281-288
    [38]郭仕剑,王宝顺,贺志国,等.MATLAB7.X数字信号处理[M].北京:人民邮电出版社,2006:196-199
    [39]骆康雄.井下随钻测量系统连续压力波BPSK信号传输特性的研究[D].东营:中国石油大学(华东),2007
    [40]石在虹.井筒中钻井信息的传输动态分析[J].天然气工业,2002,22(5):68-71
    [41]陈庭根,管志川.钻井工程理论与技术[M].山东东营:石油大学出版社,2000, 207-212
    [42]云庆华.无损探伤[M].北京:劳动出版社,1983:204-207
    [43]袁恩熙.工程流体力学[M].北京:石油工业出版社,2002:45-294
    [44]姜建国,曹建中,高玉明.信号与系统分析基础[M].北京:清华大学出版社,2005: 103-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700