MWD旋转阀连续压力波发生器结构研究及转子受力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随钻测量(MWD)技术是一种在钻井过程中进行井下信息实时测量和上传的现代钻井辅助技术。随钻测量通常是通过钻井液信息遥测系统进行井下数据的传输,其中钻井液压力波发生器是钻井液信息遥测系统的核心设备。为提高信息传输速率,目前先进的钻井液信息遥测系统采用基于旋转阀或振荡剪切阀的连续压力波发生器及频带方式进行井下数据的传输。本文通过对钻井液压力波的产生机理、旋转阀阀口的结构设计及旋转阀转子受力情况等进行理论研究,为钻井液连续压力波发生器的研制提供理论指导。
     根据流体力学非稳定流的水击理论研究了钻井液压力波的产生机理,构建出钻井液压力波数学模型,并结合旋转阀的特点构建出正弦压力波数学模型,研究了阀孔开度与压力幅度的理论关系。根据对四阀孔旋转阀产生水击压力的过程分析及结构特点,通过建立面积微元分别对旋转阀定、转子阀孔的结构进行了数学建模与计算,在不考虑转子机械运动特性的理想情况下,确定出产生正弦压力信号的定、转子阀孔结构与几何参数,为旋转阀转子在最小受力状况下产生正弦压力的阀孔参数设计提供了理论依据。
     根据工程流体力学的相关理论及钻井液压力波数学模型,对旋转阀转子进行了轴向受力分析,分析了在水击压力及阀孔节流阻力作用下转子受到的旋转阻力矩。数值计算表明,转子受到的轴向力主要由阀孔节流阻力产生,且随阀孔的开度呈非线性变化,当阀孔接近全关闭时,该力作用于转子止推轴承上会产生相当大的负荷及转子旋转阻力矩。通过转子的轴向受力分析,可以为止推轴承的参数确定及变阻力矩情况下转子的驱动控制方法提供理论依据。
Measure while drilling (MWD) is a kind of modern drilling supporting technology, which can real-time measure and transmit the downhole information during the drilling process. MWD usually transmits the downhole data by the drilling fluid information telemetry system, in which drilling fluid pressure wave generator is the core device. To improve the information transmission rate, the current advanced drilling fluid information telemetry system transmits the downhole data by the continuous pressure wave generator, which is based on rotary valve or oscillating shear valve, and transmits downhole data in a bandwide mode. This paper conducts the theoretical investigation on the generation mechanism of drilling fluid pressure wave, the design of the rotary valve and the force condition of the rotary valve rotor, etc, aims to provide theoretical guidance for the development of the continuous pressure wave generator.
     According to the non-steady flow water hammer theory of hydromechanics, a mathematical model of drilling fluid pressure wave is built by study of the pressure wave generating mechanism. Combining the characteristics of rotary valve, the mathematical model of sinusoidal pressure wave is built, and the theoretical relationship between the valve hole opening extent and the pressure amplitude is studied. According to the process analysis and the structural characteristics of a four-valve holes rotary valve producing the water hammer pressure, the structure and geometric parameter of the rotary valve stator and valve hole of rotor are determined by mathematical modeling and calculation respectively based on the establishment of surface micro-element in the condition of not considering the mechanical motion characteristics of the rotor. Those can provide a theoretical basis for the valve hole parameters design for the rotary valve rotor generates the sinusoidal pressure under the minimum force condition.
     According to related theories of engineering hydromechanics and mathematical model of drilling fluid pressure wave, combining with the axial force analysis on rotary valve rotor, the rotary resistive torque of rotor under the effect of water hammer pressure and the throttle resistance of valve hole is analyzed. Numerical calculations show that the axial force on the rotor is mainly generated by the throttle resistance of valve hole, and it linearly changes with the valve hole opening. When the valve hole almost all shuts down, this force will have a considerable load and rotor rotary resistive torque on the rotor thrust bearing. Through the axial force analysis of the rotor, it will provide theoretical basis for the determination of the thrust bearing parameters and the drive and control method of the rotor in the case of variable resistive torque.
引文
[1]苏义脑.油气井工程中的一个新领域—井下控制工程学浅谈[J].地质科技情报,2005,24(3):1-8
    [2]沈忠厚,黄洪春,高德利.世界钻井技术新进展及发展趋势分析[J].中国石油大学学报(自然科学版),2009,33(4):64-70
    [3]库里奇茨基.定向斜井与水平井钻井的地质导向技术[M].北京:石油工业出版社,2003:12-15
    [4]秦绪英,肖立志,索佰峰.随钻测井技术最新进展及其应用[J].勘探地球物理进展,2003,26(4):313-322
    [5]苏义脑.随钻测量、随钻测井与录井工具.石油钻采工艺[M].北京:石油工业出版社,2005:21
    [6]马哲,杨锦舟,赵金海.无线随钻测量技术的应用现状及发展趋势[J].石油钻探技术,2007,35(6):112-115
    [7]王瑞和,李明忠.石油工程概论[M].东营:石油大学出版社,2001:12-14
    [8]陆洪芳.国内外石油发展现状简析[J].潍坊教育学院学报, 2000,13(3):20-22
    [9]丁永浩,李周波,马宏宇.随钻测井技术的发展[J].世界地质,2004,23(3):271-274
    [10]石元会,刘志申,葛华,等.国内随钻测量技术引进及现场应用[J].国外测井技术,2009,169:9-13
    [11]吕海川,窦修荣.CGMWD新型正脉冲无线随钻测量系统及应用[J].石油仪器,2005,20(6):33-37
    [12]骆康雄.井下随钻测量系统连续压力波BPSK信号传输特性的研究[D].中国石油大学(华东)硕士学位论文.东营:石油大学出版社,2008,4:1-46
    [13]潘宇,刘艳,周利军.2003年随钻测井(MWD)和地层评价新进展[J].国外油田工程,2004,20(3):15-19
    [14]卢春华,张涛,李海东.泥浆脉冲随钻测量系统研究[J].地质科技情报,2005,24(2):30-32
    [15] Lubinski A. A Study of Buckling of Rotary Drilling String. Drilling and Production Practice[M], 1950: 178-214
    [16]房军,苏义脑.随钻测量阀控式液压信号发生器动态数学模型[J].石油机械,2004,32(6):26-28
    [17] Hutin R., Tennent R.W., Kashikar S.V.. New Mud Pulse Telemetry Techniques for Deepwater Applications and Improved Real-Time Data Capabilities[R]. SPE 6767762, 2001
    [18]王智明,菅志军,李相方,等.连续波钻井液脉冲发生器结构设计探讨[J].石油机械,2007,35(12):56-58
    [19]苏义脑.关于井眼轨道控制研究的新思考[J].石油学报,1993,14(4):117-123
    [20]李荣喜,房军.井下旋转压力信号发生器的仿真[J].石油矿场机械,2007,36(2):45-47
    [21]蔡文军,王平.机械式无线随钻测斜仪结构原理及性能特点[J].石油机械,2005,33(9):49-50
    [22] Eric L., Steve R.G.. Pressure Pulse Generator For Downhole Tool[P]. United States Patent: US 6970398 B2, Nov.29, 2005
    [23] Keith A.M.. Pressure Pulse Generator For Measurement -While -Drilling Systems Which Produces High Signal Strength And Exhibits High Resistance To Jamming [P]. United states patent: US 6219301 B1, Apr.17, 2001
    [24] Detlef H., Hannover, V.. Oscillating shear valve for mud pulse telemetry[P]. United states patent: US 6626253 B2, Sep.30, 2003
    [25]王智明,菅志军,李相方,等.连续波高速率泥浆脉冲器设计研究[J].石油天然气学报,2008,30(2):611-613
    [26] Michael F., Neal G.S., Wilson C.C. et al. Magnetorheological Fluid Controlled Mud Pulser[P]. United states patent: US 7082078 B2, Jul.25, 2006
    [27]房军,苏义脑.液压信号发生器基本类型与信号产生的原理[J].石油钻探技术,2004,32(2):39-41
    [28]袁恩熙.工程流体力学[M].石油工业出版社,1986:171-182
    [29]孙玉东,刘忠族,刘建湖,等.水锤冲击时管路系统流固耦合响应的特征线分析方法研究[J].船舶力学,2005,9(4):130-137
    [30]韩文亮,费祥俊,任裕民.关于浆体水击压力波波速的实验研究[J].水利学报,1990,8(11):41-47
    [31] Gearhart M., Moseley L.M., Foster M.. Current State of theArt of MWD and Its Application in Exploration and DevelopmentDrilling[R]. SPE 14071, 1986
    [32] David M., Lafayette L.. Sinusoidal Presssure Pulse Generator For Measurement WhileDrilling Tool[P]. United states patent: US 4847815, Jul.11, 1989
    [33]曹慧哲,贺志宏,何钟怡.有压管道水击波动过程及优化控制的解析研究[J].工程力学,2008,25(6):22-26
    [34]沙毅,王春林,刘涛,等.圆管流动水击压力波测量及水力计算[J].实验力学,2007,22(5):527-533
    [35] Wilson C.C., Thomas E.R.. Turbo Siren Signal Generator For Measurement- While-Drilling Systems[P]. United states patent: US 5740126, Apr.14, 1998
    [36] Lubinski A. A Study of Buckling of Rotary Drilling String, Drilling and Production Practice[M]. 1950:178-214
    [37]杨宝奎,朱满林,程虹,等.水锤计算中压力管道的分段问题研究[J].水利水电技术,2007,38(1):53-57
    [38]胡明祥.对节流孔口流量特性的讨论[J].鄂州大学学报,2001,8(4):60-61
    [39]华晔,廖伟丽. CFD技术在管道阀门水击计算中的应用[J].电网与清洁能源,2008,25(3):72-75
    [40]孙国平,姚钟麟,石成江.旋转剪切阀门的设计与实验研究[J].抚顺石油学院学报,2003,23(1):49-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700