面向微孔钻削的DSP全功能在线监控系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各种微孔加工方法中,钻削加工可以获得较好的加工质量和较高的生产效率,但是微孔钻削时钻头极易发生折断,且钻头一旦折断,很难从工件中取出,常以工件的报废而告终。
     基于主电机电流的微孔钻削在线监控可以提高钻削加工的效率以及自动化程度,本文提出了一个全部由DSP控制的微孔钻削主轴电机电流在线监控系统,该系统由硬件部分和软件部分组成。硬件部分包括自动进给钻床,霍尔电流传感器,TMS320F2812DSP开发板;软件部分是以CCS软件为编程基础,Matlab为开发工具的集成开发系统,且采用了小波变换处理方法,对数据信号的各个频域成分进行了分析,这样有利于我们进一步对各种高、低频信号的具体分析,实现对电压信号的采集、小波滤波、存储、显示、监控。
     本文研制了以DSP为控制核心的全功能微孔钻削在线监控系统,系统可以不依赖PC机而独立运行。对微钻头钻削折断时主轴电机电流增量极限值的分布规律进行了研究,验证了极限值服从三参数威布尔分布的结论。根据可靠性理论,建立了微孔钻削主轴电机电流在线监测的数学模型,得出在一定可靠度水平下计算监测阈值的公式,获得了以主电机电流增量为监控阈值的一种有效方法,实验验证了DSP全功能微孔钻削在线监控系统的可行性。
Microcellular Processing is widely used and take a great proportion in Micro Precision Machining with the precision and miniaturization and integration of modern industrial manufacturing.The high-speed drilling, compared to laser processing, electron beam and electrical discharge machining, take advantages in its low cost, flexible operation, high accuracy hole wall and disadvantages in its easily broken bit and dispersion lifespan. At present, monitoring system, composed of computer, data acquisition cards, single-chip, which controls the microporous process by testing drilling parameters, is the most widely use of Micro-hole Drilling in Online Monitoring. Such monitoring device characters relatively low computational speed, inadequate hardware resources, and relatively simple instruction, unsuitable for a weak, fast digital signal processing and control, all these undoubtedly reduce the real-time system and the utilization of the bit. Therefore, the development trend of on-line monitoring technique is to exploit monitoring system adopting hardware platform with higher speed to treat the weak, fast digital signal.
     With the sophistication of DSP technology development, DSP digital signal processing have strong advantages than the IPC, single-chip and other systems. In this paper, I set a multi-functional on-line monitoring control system platform that concludes human-computer interaction and human-machine communication cored in DSP TMS320F2812. This system can control sports feeding system and tool wear warning by monitoring the spindle motor current signal and Micro-hole Drilling tool condition. This system integrates DSP technology, power technology, sensor technology, electrical and mechanical control techniques, study the micro-hole drilling full-featured online monitoring system in the following areas: hardware, software, digital signal processing, study the system-curing process, in accordance with the experimental data and reliability theory to determine the threshold monitoring.
     The hardware system includes: Micro-drilling machine, Hall Current Sensor, TMS320F2812 board control functions, the system power supply, power amplifier and so on. In this paper, I focus on the main function of the system board, design and explain its reset circuit, clock circuit, A / D sampling interface, both inside and outside the extended memory, DSP simulation interface (JTAG), LCD display and keyboard input output control device. The highly integrated DSP platform simplify the monitoring system and improve the monitoring performance.
     Software system is designed by the integrated development platform based on MATLAB and supplemented by CCS. I graphically design DSP control procedures, and set algorithm model under the integrate exploit environment of the DSP2812 progrmme platform designed by the MATLAB-c2000lib, and simulate monitoring system in Simulink environment. After stimulation, the executable code is got and loaded to the target DSP board which running automatically. and proceed hardware connections, program run and debug consequently by applying Real-Time Workshop. By detecting the function of the entire system and procedures for the operation, confirmed the feasibility of monitoring system. Finally, use the CCS platform develope the LCD display output and keyboard input to control peripheral procedures and software systems to curing dsp chip.
     Wavelet treatment is adopted to analyze signal. The real-time analysis of the signal using wavelet method is more accurate and reliable. Such more reliable monitoring signal could be got in order to enhance the preciseness and the reliability of the whole system.
     Test results show that the multi-functional micro-drilling monitoring system based on TMS320F2812 could collect, filter, and compute on the current signal of the spindle motor. This system can also forecast the state of the bits, which has provided a more efficiency way for the on-line monitoring for the drilling process. DSP reduces the difficulty of monitoring methods before with less equipments and higher mobility. Besides, this method improves the monitoring speed, providing the whole system with the feature of real-time.
     At last, we made the conclusion that the limit of the difference of motor voltages obeys the Weibull distribution, according to the experiments and K-S testing to which the mould of the on-line monitoring was established.
     In this paper, experiments were made to test the threshold of on-line monitoring system under different reliability level, taking the reliable voltage difference as monitoring threshold. Which can avoid the broken of drill in drilling effectively under expectation. The new system is real-time, reliable and effective.
引文
[1] Yang Zhaojun,Li Wei,Chen Yanhong,Wang Lijiang. Study for increasing micro-drill reliability by vibrating drilling[J].Reliability Engineering and System Safety. 1998,61:229-233.
    [2]杨兆军,王勋龙.微小孔钻削加工的难点及其技术对策[J].机械工程师,1997(5):15-16.
    [3] K.Mori,N.Kasashima,J.C.Fu,K.Muto.Prediction of small drill bit breakage bywavelet transforms and linear discriminant functions[J].International Journal of Machine Tools&Manufacture,1999,39:1471-1484.
    [4]杨兆军,杨永海,王伟国.微孔钻削的在线实时监测[J].吉林大学学报(工学版),2003(2):35~37.
    [5]孙宝元.切削状态智能监控技术[M].大连:大连理工大学出版社,1999.
    [6]刘志艳,王军等.钻头破损在线监测及其系统的研究[J].燕山大学学报,1998,22:127-128.
    [7]曾忠,黎永明.微孔加工技术的现状[J].磨床与磨削,1997,4:20-23.
    [8]李雪.基于主轴电机电流的微孔钻削在线监测[D].吉林大学硕士学位论文,2005,6.
    [9]徐春广,王信义,肖定国.切削状态在线监测的新方法[J].北京理工大学学报,1994(2):48-50.
    [10]黄杨晖,戴曙光.DSP在电机控制系统中的应用与研究[J].仪器仪表学报,2003,8,24(4).
    [11]陈兴文、刘燕.大型旋转机械运行状态在线监测系统的数据采集卡设计[J].现代机械,2005(1):34-3.
    [12]董光波,谢桂海,孙增圻.基于DSP和小波分析技术的实时噪声消除系统[J].计算机工程,2006,2.
    [13]鄂世举,杨兆军,朱先勇.微小孔钻削力检测系统的研制. 2002,6:22-23.
    [14]杨兆军,罗艳春,孙航.基于神经网络的微孔钻削力的实时监控[J].控制技术与自动化,2005(5):40-42.
    [15] Man Sheel Cheong,Dong-Woo Cho,Kornel F. Ehmann. Identification and control for micro-drilling productivity enhancement[J]. International Journal of Machine Tools & Manufacture,1999,39:1539–1561.
    [16] Franco-Gasca , Luis Alfonso.Sensorless tool failure monitoring system for drilling machines[J].International Journal of Machine Tools and Manufacture,2006,46(3-4):381-386.
    [17] Erkki Jantunen.A summary of methods applied to tool condition monitoring in drilling[J].International Journal of Machine Tools & Manufacture,2002(44):997–1010.
    [18]彭启琮,李玉柏,管庆.DSP技术的发展与应用(第二版)[M].北京:高等教育出版社,2007,5.
    [19]何希才,姜余祥.电动机控制电路应用实例[M].中国电力出版社,2005,1.
    [20]王晓明,王玲.电动机的DSP控制——TI公司DSP应用[M].北京:北京航空航天大学出版社,2004.
    [21]段武堂,熊正明.WB系列霍尔电流传感器/变送器[J].兵工自动化,2002(3):21-23.
    [22]王念旭.DSP基础与应用系统设计(第1版)[M].北京:北京航空航天大学出版社,2001.
    [23]苏奎峰,蔡昭权,吕强,张永谦.TMS320X281xDSP应用系统设计[M].北京:北京航空航天大学出版社,2008.
    [24]刘艳萍.DSP技术原理技术及应用教程[M].北京:北京航空航天大学出版社,2008,2.
    [25]江思敏.TMS320C2000系列DSP开发应用技巧[M].北京:中国电力出版社,2008,8.
    [26]刘和平,邓力,江渝,张占龙.数字信号处理器[M].北京:机械工业出版社,2007,5.
    [27]苏奎峰,吕强,耿庆锋,陈圣俭.TMS320F2812原理与开发[M].北京:电子工业出版社,2006,3.
    [28]卢光华.磁补偿霍尔电流传感器及其应用研究[J].机床电器,2002(2).
    [29]刘迎春.传感器原理设计与应用[M].国防科技大学出版社,2002,2.
    [30]万山明.TMs320F28lxDsP原理及应用实例[M].北京:北京航空航天大学出版社,2007.
    [31] JTAG/MPSD Emulation Technical Reference[Z],1996.
    [32] Texas Instruments.TMS320C28x系列DSP指令和编程指南[M].北京:清华大学出版社.2005,3
    [33] TMS320C28x DSP/BIOS Application Programming Interface(API) Reference Guide[Z].TI,2000.
    [34]王宏.MATLAB6.5及其在信号处理中的应用[M].北京:清华大学出版社,2004.
    [35]尹军,欧光军,关荣锋.DSP集成开发环境CCS开发指南[M].北京:北京航空航天大学出版社,2004.
    [36]陈永春.从MATLAB-Simulink模型到代码实现[M].北京:清华大学出版社,2002.
    [37]陈大科,韩九强.基于MATLAB的TMS320LF2407程序快速设计[J].单片机与嵌入式系统应用,2005,11:37-39.
    [38]刘贵忠等.小波分析及其应用[M].西安电子科技大学出版社,1997.
    [39]郑治真等.小波变换及其Matlab工具的应用[M].地震出版社,2001.
    [40]孙轶,许少尉.TMS320F2812芯片的FLASH烧写技术[J].航空计算技术,2006,36(5):46-49.
    [41] TI公司.TMS320F28x Boot ROM Reference Guide(Rev.A)[EB/OL].http://www.ti.com.cn,2005.
    [42] Integrated Silicon Solution(RevA),Inc.21 Feb. 2003.
    [43]李小俚,王扬,袁哲俊,董新伟.小波分析及其在刀具监控系统中的应用.高技术通讯[J],1997(5):18-21.
    [44]张贤达,保铮.非平稳信号处理[M].北京:国防工业出版社,1998.
    [45] Abraham I Pressman.Switching Power Supply Design.R.R.Donnelley & Sons Company,1991.
    [46]郑治真等.小波变换及其Matlab工具的应用[M].地震出版社,2001.
    [47]秦前清、杨宗凯.实用小波分析[M].西安电子科技大学出版社,1995
    [48]吕卫阳,陈克兴.多尺度分析在微孔钻削状态监测中的应用[J].振动、测试与诊断,2000(6):102-105.
    [49] R.P.Duhamel Fast Algorithms for Discrete and Continuous Wavelet Transforms. IEEE Trans. On IT. 1992,38(2):569~586
    [50] Mallat S.A theory of multiresolution signal decomposition: the wavelet representation.IEEE TransPattern Anal Machine Intell,1989,11:674-693
    [51]陆凯等.可靠性数学及其应用[M].吉林教育出版社,1997.
    [52]黄瑞祥.可靠性工程[M].清华大学出版社,1999.
    [53]蒋仁言,左明健.可靠性模型与应用[M].北京:机械工业出版社,1999,2.
    [54]李忠范,高文森.数理统计与随机过程[M].吉林大学出版社,2000,10.
    [55] TMS320C28x Assembly Language Tools User’s Guide[M].TI,2001.
    [56] TMS320C28x Optimizing C Compiler User’s Guide[M].TI,2000.
    [57] Texas Instruments.TMS320C28x系列DSP指令和编程指南[M].北京:清华大学出版社.2005,3.
    [58] Maxim Integrated Products,Inc[Z],2007.
    [59]郁有文.传感器原理及其程应用[M].西安:西安电子科技大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700