TC21钛合金高性能铣削工艺基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金在加工中切削效率低、刀具磨损严重、尺寸精度和表面质量差。因此,在保证刀具耐用度和加工质量的前提下,发展高材料去除率的机械加工技术迫在眉睫。高性能切削工艺可以根据加工对象的不同,以最高的加工效率获得具有良好经济效益并满足加工质量要求的零件产品,然而高性能切削工艺的发展起步较晚,缺乏充分的理论依据和数据支持。为此,本文致力于寻求提高钛合金加工效率和改善已加工表面质量的工艺方法,将以新型损伤容限型钛合金TC21作为研究对象,开展高性能铣削钛合金的工艺基础研究。主要研究工作包括:
     (1)通过在常规速度和高速下铣削钛合金TC21的切削试验,分析了铣削用量、刀具磨损和刀具材料等对铣削力和铣削温度的影响,讨论了刀具的磨损机理,并从表面粗糙度、加工硬化层和金相组织等方面研究了加工表面完整性,对TC21钛合金的铣削加工性进行了综合性评估。获取了较优的精加工铣削参数范围,并揭示了铣削时的刀具磨损机理。
     (2)分析了大进给铣削工艺的特点,通过研究铣削速度和每齿进给量对铣削力的影响进一步明确了大进给铣削工艺的特点,利用夹丝热电偶测温方法对大进给铣刀刃口切削区的温度进行了测量。采用扫描电镜和能谱仪对两种典型的大进给铣刀的刀具磨损形态进行了分析,并探讨了大进给铣削钛合金时的刀具磨损机理,为优化大进给铣刀奠定了基础。
     (3)通过大进给铣削TC21钛合金试验,重点研究了采用三角形大进给铣刀切削钛合金时铣削用量对切屑宏观和微观形貌的影响及其成因。借助金相试样的显微分析方法,研究了铣削速度和每齿进给量对切屑变形的影响,并从大进给铣削时的锯齿状切屑成因、锯齿化程度等方面探究了切屑的变形过程,进一步明确了大进给铣削工艺特点。
     (4)分别设计了具有倒棱刃口和倒圆刃口两种刃口结构硬质合金刀具,并采用高速和高进给量的方式进行铣削加工钛合金,探究了这两种刃口结构对刀具耐用度、刀具磨损和已加工表面质量的影响,重点讨论了刀具几何角度、倒棱宽度、刃口钝圆半径大小与铣削力、刀具耐用度和已加工表面质量之间的关系。另外,探讨了硬质合金晶粒大小与两种刃口结构之间的相互关系与影响。试验结果表明合理的倒棱宽度和刃口钝圆半径都能延长刀具耐用度和改善已加工表面质量,而且可以采用较高的每齿进给量。
     (5)根据大进给铣削的工艺特点,结合考虑航空典型零件的结构特征,从程序执行的水平进刀、垂直进刀、行间过渡和层间过渡等几个方面探讨了大进给铣削程序编制的特点,并给出了合理的优化解决方案,从而保证了大进给铣削高材料去除率能力的充分发挥。应用大进给铣削工艺加工飞机典型零件结构的试验和生产验证,发现在粗加工和精加工中材料去除率均可以提高50%以上。
Titanium alloy has poor machinability no matter what techniques are employed. Lots of problemsare brought such as low cutting efficiency, severe tool wear, poor dimensional accuracy and surfacequality. Therefore, to develop mechanical manufacturing technology of high material removal rate isextremely urgent in the guarantee of tool life and surface quality. High performance cuttingtechnology can obtain good economic benefits and satisfy parts quality according to the specificmachined object. But high performance cutting technology starts late and lack of sufficienttheoretical basis and experimental data support. To devote to the machining technology which canimprove the cutting efficiency and surface quality, basic research work in high performance millingof titanium alloy is conducted and a new damage-tolerant titanium alloy (TC21) is as the researchobject. The major research works are as follows:
     (1) The influence of cutting parameters, tool wear, and tool material on cutting force and cuttingtemperature is analyzed through milling experiment of TC21at regular speed and high speed. Andtool wear mechanism is discussed as well. Then surface integrity is studied by investigating surfaceroughness, machining hardening of surface and metallurgical structure of surface. Finally, themachinability of TC21is evaluated comprehensively based on the experimental results. Bettercutting parameters in finish milling are obtained, and tool wear mechanism in milling is revealed.
     (2) The characteristics of high feed milling are analyzed. For further understanding it, theinfluences of cutting speed and feed per tooth on cutting forces are investigated. And the cuttingtemperature in the machining area is as well measured applying Semi-artificial thermocoupletechnique. Then the tool wear morphology and tool wear mechanism of two typical cutting toolsused in high feed milling of titanium alloy is observed by SEM (scanning electron microscope). Allthe results establish the foundation for optimizing cutting tools used in high feed milling.
     (3) The effects of cutting parameters on chip morphology in macro and micro scale in high feedmilling TC21are studied only when the cutting tool in triangular shape is used. By means ofmicroanalysis on chip metallurgical specimen, the influence of cutting speed and feed per tooth onchip formation is investigated. Then the chip formation theory is explored in high feed millingtitanium alloy. The characteristics of high feed milling are further understood.
     (4) The carbide cutting tools with chamfered and honed edge geometry are designed to cuttingtitanium alloy apply high speed and large feed. Tool life, tool wear and surface integrity are analyzed when using these cutting tools. And the effects of cutting tool geometry, width of chamfered edgeand radius size of honed edge on cutting forces, tool life and surface quality are studied. Additionally,the interrelationship between carbide grain size and cutting edge shape is also discussed.Experimental results show that proper width of chamfered edge and radius size of honed edge canprolong tool life and improve surface quality, even higher feed per tooth is adopted.
     (5)According to the characteristics of high feed milling process, making NC program for highfeed milling is discussed from the aspects of horizontal feed, vertical feed, leading transition andtransition between layers after considering the typical aviation structure. And the reasonableoptimization solution is given to make sure that high feed milling can fully play its high materialremoval rate ability. Then high feed milling is applied to machining typical structure of plane parts.Production results show that material removal rate can be increased more than50%both in roughcutting and in finish cutting.
引文
[1]黄旭,朱知寿,王红红.先进航空钛合金材料与应用.北京:国防工业出版社,2012.
    [2] I.J. Polmear. Titanium alloys. Light Alloys,2005:299~365.
    [3]曹春晓.航空用钛合金的发展概况.航空科学技术,2005,(4):3~6.
    [4] Y.G. Zhou, W.D. Zeng, H.Q. Yu. An investigation of a new near-beta forging process for titaniumalloys and its application in aviation components,2005,393(1-2):204~212.
    [5] A.K. Jha, S.K. Singh, M. S. Kiranmayee et al. Failure analysis of titanium alloy (Ti6Al4V)fastener used in aerospace application. Engineering Failure Analysis,2010,17(6):1457~1465.
    [6] L.V. Colwell, L.J. Quackenbush. A study of high speed milling of titanium alloys-Final report.ORA project05038,1962..
    [7] R.R. Boyer. An overview on the use of titanium in the aerospace industry. Materials Science andEngineering,1996,213A:103~114.
    [8] E.O. Ezugwu, J. Bonney, Y. Yamane. An overview of the machinability of aeroengine alloys.Journal of Materials Processing Technology,2003,134(2):233~253.
    [9] M. Yamada. An overview on the development of titanium alloys for non-aerospace application inJapan. Materials Science and Engineering,1996,213(1-2):8~15.
    [10] R. W Schutz, H. B Watkins. Recent developments in titanium alloy application in the energyindustry. Materials Science and Engineering,1998,243(1-2):305~315.
    [11] M. Niinomi. Mechanical properties of biomedical titanium alloys. Materials Science andEngineering,1998,243(1-2):231~236.
    [12] K. Wang. The use of titanium for medical applications in the USA. Materials Science andEngineering,1996,213(1-2):134~137.
    [13] H.J. Rack, J.I. Qazi. Titanium alloys for biomedical applications. Materials Science andEngineering,2006,26(8),1269~1277.
    [14] P.J. Blau, B.C. Jolly, J. Qu et al. Tribological investigation of titanium-based materials for brakes.Wear,2007,263(7-12):1202~1211.
    [15] I.V Gorynin. Titanium alloys for marine application. Materials Science and Engineering,1999,263(2):112~116.
    [16]陶春虎,刘庆瑔,曹春晓等.航空用钛合金的失效及其预防.北京:国防工业出版社,2006.01.
    [17]《中国航空材料手册》编辑委员会编.中国航空材料手册第四卷钛合金、铜合金(第二版).北京:中国标准出版社,2002.
    [18]陈振华译.钛与钛合金.北京:化学工业出版社,2005.
    [19] G. Lutjering, J.C. Williams. Titanium. Berlin: Springer-Verlag,2007.
    [20] H.J. Siekmann. How to machining Titanim. The Tool Eng,1955,34:78~82.
    [21] P.-j. Arrazola, A. garay, L.-M. Iriarte et al.Machinability of titanium alloys (Ti6Al4V andTi555.3). Journal of Materials Processing Technology,2009,209(5):2223~2230.
    [22] E.O. Ezugwu, Z.M. Wang. Titanium alloys and their machinability—a review. Jouranl ofMaterials Processing Technology,1997,68(3):262~274.
    [23] S. Sharif, E.A. Rahim. Performance of coated and uncoated-carbide tools when drilling titaniumalloy—Ti-6Al4V. Journal of materials Processing Technology,185(1-3):72~76.
    [24] C.H. Che-Haron, A. Jawaid. The effect of machining on surface integrity of titanium alloyTi-6%Al-4%V. Journal of Materials Processing Technology,2005,166(2):188~192.
    [25] M. Thomas, S. Turner, M. Jackson. Microstructural damage during high-speed milling oftitanium alloys. Scripta Materialia,2010,62(5):250~253.
    [26] F. Nabhanni. Machining of aerospace titanium alloys. Robotics and Computer-integratedManufacturing,2001,17(1-2):99~106.
    [27] Z.A. Zoya, R Krishnamurthy. The performance of CBN tools in the machining of titanium alloys.Journal of Materials Processing Technology,100(1-3):80~86.
    [28]艾兴.高速切削加工技术.北京:机械工业出版社,1992.
    [29]《航空制造工程手册》总编委会.航空制造工程手册—金属切削加工分册.北京:航空工业出版社,1994.
    [30] C.J. Salomon Verfahren zur Bearbeitung von Metallen oder bei einer Bearbeitung durchschneidende Werkzeuge sich hnlich verhaltenden Werkstoffen. German,523594[P],1931.
    [31]李亮.钛合金高速铣削机理及其工艺研究,[博士学位论文].南京:南京航空航天大学,2004.
    [32] E. Hill, W.J. Maxson. How Boeing machines titanium aircraft parts. Metal Prog. Tech.,1965,2:90~92.
    [33] R. Komanduri. Some clarifications on the mechanics of chip formation when machining titaniumalloys. Wear,1982,76:15~34.
    [34] N. Narutaki, A. Murakoshi, S. Motonishi et al. Study on Machining of Titanium Alloys. CIRPAnnals-Manufacturing Technology,32(1),1983,:65~69.
    [35] T. Kitagawa, A. Kubo, K. Maekawa. Temperature and wear of cutting tools in high-speedmachining of Inconel718and Ti-6Al-6V-2Sn. Wear,1997,202:142~148.
    [36] E.O. Ezugwu, Z.M. Wang. Titanium alloys and their machinability-a review. Journal of MaterialsProcessing Technology,1997,68:262-274.
    [37] A Jawaid, C.H Che-Haron and A Abdullah. Tool wear characteristics in turning of titanium alloyTi-6246. Journal of Materials Processing Technology,1999,92-93:329~334.
    [38] A. Jawaid, S. Sharif, S. Koksal. Evaluation of wear mechanisms of coated tools when facemilling titanium alloy. Journal of Materials Processing Technology,2000,99(1-3):266~274.
    [39] A.L. Mantle, D.K. Aspinwall. Surface integrity of a high speed milled gamma titaniumaluminide. Journal of materials processing technology,2001,118:143~150.
    [40] J. Barry, G. Byrne, D. Lennon. Observations on chip formation and acoustic emission inmachining Ti-6Al-4V alloy. International Journal of Machine Tolls&Manufacture,2001,41:1055~1070.
    [41] C.H Che-Haron. Tool life and sruface integrity in turning titanium alloy. Journal of MaterailsProcessing Technology,2001,118(1-3):231~237.
    [42] N. Narutaki. High-speed machining of titanium alloy. Chinese journal of mechanical engineering,2002,15:109~113.
    [43] N. He, L. Li, M. Wang. Cutting Equation for high speed cutting of difficult-to-cut materials.Chinese Journal of Mechanical Engineering,2002,15:207~210.
    [44] N. Corduan, T. Himbart, G. Poulachon et al. Wear mechanisms of new tool materials forTi-6Al-4V high performance machining. CIRP Annals-Manufacturing Technology,2003,52(1):73~76.
    [45] L. Li, H. Chang, M. Wang et al. Temperature Measurement in High Speed Milling Ti6Al4V.Key Engineering Materials,2004,259-260:804~808.
    [46]满忠雷,何宁.不同介质下钛合金高速铣削时铣削力的研究.机械工程师,2004,4:5~8.
    [47] R.G. Vargas Pérez. Wear mechanisms of WC inserts in face milling of gamma titaniumaluminides. Wear,2005,259(7-12):1160~1167.
    [48] Z.G. Wang, M. Rahman, Y.S. Wong. Tool wear characteristics of binderless CBN tools used inhigh-speed milling of titanium alloy. Wear,2005,258(5-6):752~758.
    [49] A. Ginting, M. Nouari. Experimental and numerical studies on the performance of alloyedcarbide tool in dry milling of aerospace material. International Journal of Machine Tools andManufacture,2006,46(7-8):758~768.
    [50] Y. Su, N. He, L. Li et al. An experimental investigation of effects of cooling/lubricationconditions on tool wear in high-speed end milling of Ti-6Al-4V. Wear,2006,261(7-8):760~766.
    [51] K.A. Venugopal, S. Paul, A.B. Chattopadhyay. Tool wear in cryogenic turning of Ti-6Al-4V alloy.Cryogenics,2007,47(1):12~18.
    [52] J.D. Puerta Velásquez, B. Bolle, P. Chevrier et al. Metallurgical study on chips obtained by highspeed milling of a Ti-6wt.%Al-4wt.%V alloy. Materials Science and Engineering,2007,452-453:469~474.
    [53] B. Rao, C.R. Dandekar, Y.C. Shin. An experimental and numerical study on the face milling ofTi-6Al-4V alloy: Tool performance and surface integrity. Journal of Materials ProcessingTechnology,2011,211(2):294~304.
    [54] H.H. SU, P. LIU, Y.C. Fu et al. Tool life and surface integrity in high-speed milling of titaniumalloy TA15with PCD/PCBN tools. Chinese Journal of Aeronautics,2012,25(5):784~790.
    [55] R.B. Silva, A.R. Machado, E.O. Ezugwu et al. Tool life and wear mechanisms in high speedmachining of Ti-6Al-4V alloy with PCD tools under various coolant pressures. Journal ofMaterials Processing Technology,2013,213(8):1459~1464.
    [56]何宁.高速切削技术.上海:上海科学技术出版社,2012:416~421.
    [57] Mikron. High performance cutting&high speed cutting. Products&Technology,2004,(6):72.
    [58] H.W. Beck.高速切削和高性能刀具可缩短加工工时.欧洲生产工程,1997:38~40.
    [59] Y. Altintas, S.D. Merdol. Virtual high performance milling. Annals of the CIRP,2007,56(1):81~84.
    [60] Y. Altintas. High-performance cutting. International Journal of Machine Tools&Manufacture,2007,47:1323.
    [61] G. Byrne. High performance cutting. CIRP Journal of Manufacturing Science and Technology,2008,1:63.
    [62] G. Byrne, D. Dornfeld, B. Denkena. Advancing cutting technology. CIRP Annals-ManufacturingTechnology,2003,52(2):483~507.
    [63] E. Abele, F. Albrecht, B. Hueske. Wissensintegration in der Hochleistungsberbeitung. MünchenZWF Jahrg.,2009,104(11):960~964.
    [64]楚王伟,牟文平,龚清洪等.钛合金飞机结构件高效铣削技术研究.工具技术,2008,42(8):43~46.
    [65]潘国华.浅谈钢件高进给铣削.工具技术,2010,44(11):115~116.
    [66] M. Heuwinkel. Radial chip thinning boosts productivity by permitting a cutting tool to run athigher feed per tooth when roughing. Cutting Tool Engineering,2005,57(5).
    [67]全虹枳译.大进给铣削加工策略.工具展望,2010,(3):28~29.
    [68]方向东,王子豪,薛建.大进给铣削.航空制造技术,2012,(3):104~105.
    [69]易逢春.伊斯卡推出大进给铣削的FF S0F铣刀.金属加工,2012,(16):2.
    [70]李如松译.应用适应进给控制实现高效率铣削.世界制造技术与装备市场,2002,(3):60~62.
    [71]张宪编译.高进给铣刀及其在高效粗铣加工中的应用.工具展望,2005,(6):18~20.
    [72]机械制造.高进给铣削:效率提高3倍.2009,47(536):3.
    [73]文/山高刀具.更高效率的高进给铣削.数控机床与市场,(3):74~76.
    [74]张宪编译.减薄切屑的高进给粗铣加工技术.工具展望,2005,(4):16~17.
    [75]薛儒编译.大进给铣削技术的新进展.工具展望,2008,(4):18~20.
    [76] C.J.C. Rodríguez. Cutting edge preparation of precision cutting tools by applying micro-abrasivejet machining and brushing [PhD. thesis]. Germany: Unidruckerei der Universit t Kassel,2009.
    [77]郭芬芳.整体硬质合金刀具钝化的研制与应用.超硬材料工程,2012,24(4):35~37.
    [78] B. Karpuschewski, O. Byelyayev, V.S. Maiboroda. Magneto-abrasive machining for themechanical preparation of high-speed steel twist drills. CIRP Annals-ManufacturingTechnology,2009,58:295~298.
    [79] F.Y. Cheung, Z.F. Zhou, A. Geddam et al. Cutting edge preparation using magnetic polishing andits influence on the performance of high-speed steel drills. Journal of Materials ProcessingTechnology,2008,208:196~204.
    [80]杨振祥.硬质合金可转位刀片刃口钝化方法及刃口圆弧半径的测量.工具技术,1990,24(10):2~7.
    [81]王乐,张伟.毛刷式钝化机对硬质合金钻头刃口钝化试验研究.煤矿机械,2012,33(12):58~59.
    [82]顾祖慰,张奇.刀具钝化技术应用前景的展望.工具技术,2009,43(8):78~80.
    [83] J. Chen, Y.Q. Zhao, W.D. Zeng. Effect of microstructure onn impact toughness of TC21alloy.Transactions of Nonferrous Metals Society of China,2007,17:93~98.
    [84] H.L. Qu, Y.G. Zhou, L. Zhou et al. Relationship among forging technology, structure andproperties of TC21alloy bars. Transactions of Nonferrous Metals Society of China,2005,15(5):1120~1124.
    [85]冯亮,曲恒磊,赵永庆等. TC21合金的高温变形行为.航空材料学报,2004,24(4):11~13.
    [86]曲恒磊,赵永庆,冯亮等. TC21钛合金不同变形条件下的显微组织研究.材料工程,2006,1:274~277.
    [87]马少俊,吴学仁,刘建中等. TC21钛合金的微观组织对力学性能的影响.航空材料学报,2006,26(5):22~25.
    [88]王新南,朱知寿,童路等.锻造工艺对TC4-DT和TC21损伤容限型钛合金疲劳裂纹扩展速率的影响.研发与应用,2008,27(7):12~16.
    [89]赵永庆,曲恒磊,冯亮等.高强高韧损伤容限型钛合金TC21研制.钛工业进展,2004,21(1):22~24.
    [90]朱知寿,王新南,童路等.新型TC21钛合金相变行为和相组成研究.稀有金属快报,2006,25(12):23~26.
    [91]朱知寿,王新南,童路等.新型TC21钛合金热处理工艺参数与显微组织演变的关系研究.钛工业进展,2006,23(6):24~27.
    [92]雷文光,毛小南,侯智敏等.热处理对TC21合金大规格棒材组织和性能的影响.钛工业进展,2010,27(1):28~31.
    [93] J. Pirso, S. Letunoves, M. Viljus. Friction and wear behavior of cemented carbides. Wear,2004,257:257~265.
    [94] C. Zener, J.H. Hollomon. Problems in non-elastic deformation of metals. Journal of AppliedPhysics,1946,17(2):69~82.
    [95] R. Komanduri, B.F. Von Turkovich. New observations on the echanism of chip formation whenmachining titanium alloys. Wear,1981,69:179~188.
    [96] R. Komanduri. Some clarifications on the mechanics of chip formation when machining titaniumalloys. Wear,76(1):15~34.
    [97] R. Recht. Catastrophic thermoplastic shear. Transactions of ASME, Journal of AppliedMechanics,1964,186(31):189~193.
    [98] A. Vyas, M.C. Shaw. Mechanics of sawtooth chip formation in metal cutting. Journal ofManufacturing Science and Engineering,1999,121:163~172.
    [99] M.A. Davies, T.J. Burns, C.J. Evans. On the dynamics of chip formation in machining hardmetals. Annals of the CIRP,1997,46:25~30.
    [100] A.R. Shahan, A.K. Taheri. Adiabatic shear bands in titanium and titanium alloys: a criticalreview. Materials&Design,1993,14:243~250.
    [101] N. He, L. Li, M. Wang. Cutting equation for high speed cutting of difficult-to-cut materials.Chinese Journal of Mechanical Engineering,2002,(15):207~210.
    [102] J.D. Christopher. Selection of cutting tool materials. Ceramic Cutting Toos,1994:28~47.
    [103] W. Grzesik. Chapter four-cutting tool materials. Advanced Machining Processes of MetallicMaterials,2008:27~48.
    [104] Trends in cutting tool materials in Japan. Metal Powder Report,1992,47(4):34~38.
    [105] B. Mills. Recent developments in cutting tool materials. Journal of Materials ProcessingTechnology,1996,56(1-4):16~23.
    [106] F. Klocke, T. Krieg. Coated tools for metal cutting-Features and applications. CIRPAnnals-Manufacturing Technology,1999,48(2):515~525.
    [107]刘战强,万熠,周军.高速切削刀具材料及其应用.机械工程材料,2006,30(5):1~8.
    [108]艾兴,刘战强,赵军等.高速切削刀具材料的进展和未来.制造技术与机床,2001,(8):21~25.
    [109]于启勋,朱正芳.刀具材料的历史、进展与展望.机械工程学报,2003,39(12):62~66.
    [110]戚正风,任瑞铭.国内外刀具材料发展现状.金属热处理,2008,33(1):15~20.
    [111] E.M. Trent, P.K. Wright. Cutting tool materials I: High speed steels. Metal Cutting,2000:132~174.
    [112] E.M. Trent, P.K. Wright. Cutting tool materials II: Cemented carbides. Metal Cutting,2000:175~226.
    [113] E.M. Trent, P.K. Wright. Cutting tool materials III: Ceramics, CBN diamond. Metal Cutting,2000:227~249.
    [114] Y.C. Yen, A. Jain, T. Altan. Afinite element analysis of orthogonal machining using differenttool edge geometries. Journal of Materials Processing Technology,2004,146:72~81.
    [115] D. Biermann, I. Terwey. Cutting edge preparation to improve drilling tools for HPC processes.CIRP Journal of Manufacturing Science and Technology,2008,1:76~80.
    [116] J.D. Thiele, S.N. Melkote. Effect of cutting edge geometry and workpiece hardness on surfacegeneration in the finnish hard turning of AISI52100steel. Journal of Materials ProcessingTechnology,1999,94:216~226.
    [117] T. zel, T. Hsu, E. Zeren. Effects of cutting edge geometry, workpiece hardness, feed rate andcutting speed on surface roughness and forces in finish turning of hardened AISI H13steel.International Journal of Advanced Manufacturing Technology,2005,25:262~269.
    [118] N.Z. Yussefian, P. Koshy, S. Buchholz et al. Electro-erosion edge honing of cutting tools. CIRPAnnals-Manufacturing Technology,2010,59:215~218.
    [119] N. Fang, Q. Wu. The effects of chamfered and honed tool edge geometry in machining of threealuminum alloys. International Journal of Machine Tools&Manufacture,2005,45:1178~1187.
    [120] E. Bassett, J. K hler, B. Denkena. On the honed cutting edge and its side effects duringorthogonal turning operations of AISI1045with coated WC-Co inserts. CIRP Journal ofManufacturing Science and Technology,2012.
    [121] R.T. Coelho, L.R. Silva, A. Braghini et al. Some effects of cutting edge preparation andgeometric modifications when turning INCONEL718TMat high cutting speeds. Journal ofMaterials Processing Technology,2004,148:147~153.
    [122] J.I. Hughes, A.R.C. Sharman, K Ridgway. The effect of tool edge preparation on tool life andworkpiece surface integrity. Journal of Engineering Manufacture,2004,218:1113~1123.
    [123]刘月萍.铣削Ti6Al4V刀具刃口钝化研究[硕士学位论文],山东:山东大学,2010.
    [124] G. Totaro, Z. Gürdal. Optimal design of composite lattice shell structures for aerospaceapplications. Aerospace Science and Technology,2012,23(1):53~62.
    [125] K. Wang, D. Kelly, S. Dutton. Multi-objective optimisation of composite aerospace structures.Composite Structures,2002,57(1-4):141~148.
    [126] H.F. Seibert. Applications for PMI foams in aerospace sandwich structures. Reiforced Plastics,2006,50(1):44~48.
    [127] J.C. Williams, E.A. Starke. Progress in structural materials for aerospace systems. ActaMaterialia,2003,51(19):5775~5799.
    [128] Z. Huda, P. Edi. Materials selection in design of structures and engines of supersonic aircrafts:a review. Materials&Design,2013,46:552~560.
    [129] X. Yan, K. Shirase, M. Hirao et al. NC program evaluator for higher machining productivity.International Journal of Machine Tools and Manufacture,1999,39(10):1563~1573.
    [130] X. Yan, K. Yamazaki, J. Liu. Recognition of machining features and featre topologies from NCprograms. Computer-aided Design,2000,32(10):605~616.
    [131] E. Heo, D. Kim, B. Kim et al. Estimation of NC machining time using NC block distributionfor sculptured surface machining. Robotics and Computer-Integrated Manufacturing,2006,22(5-6):437~446.
    [132] G.N. Blount, M.A. Rahbary. Computer assisted machine tool part-program optimization.Computer Integrated Manufacturing Systems,1995,8(1):41~49.
    [133] G. Vosniakos, P. Papapanagiotou. Multiple tool path planning for NC machining of convexpockets without islands. Robotics and Computer-Integrated Manufacturing,2000,16(6):425~435.
    [134] M. Kovacic, M. Brezocnik, I. Pahole et al. Evolutionary programming of CNC machines.Journal of Materials Processing Technology,2005,164-165:1379~1387.
    [135] R. Licari, E.L. Valvo, M. Placentini. Part program automatic check for three axis CNCmachines. Journal of Materials Processing Technology,2001,109(3):290~293.
    [136] H. Schulz, D. Spath. Integration of operator’s experience into NC manufacturing. CIRPAnnals-Manufacturing Technology,1997,46(1):415~418.
    [137]邱剑杰.如何编制复杂数控程序.模具技术,2001,4:75~77.
    [138]袁锋.基于NURBS理论的高速插补技术.机械设计与制造,2005,12:20~21.
    [139]刘长清,姚英学,李建广等.基于虚拟加工技术的铣削过程优化研究.机械制造,2006(9):58~60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700