颗粒阻尼的机理与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PD (Particle Damping)技术,又称颗粒阻尼技术,是二十世纪九十年代振动控制领域最新出现的一种微小颗粒阻尼减振技术。它主要通过在振动体的有限封闭空间中填充微小颗粒,利用微小颗粒之间的摩擦和冲击作用消耗系统的振动能量,达到减振目的。PD技术具有应用环境范围广、对原结构改动小、产生的附加质量小、减振效果显著等优点,因此对它的减振机理的研究已成为国内外振动界研究的热点之一。本论文主要研究PD的减振机理,并围绕影响其减振效率的若干关键因素,在理论推导、数值模拟、试验研究以及实验验证等多方面进行研究和探讨。论文回顾总结了与此研究相关的理论和技术的历史及发展现状,包括DEM、粉体力学、冲击阻尼、试验优化设计以及功率流等理论和实验等诸多内容。通过理论分析、数值仿真和试验设计相结合的方法,对PD的减振机理及其在减振领域的应用进行了有益的探索。
     论文首先详细阐述了三维离散元法的原理、算法,并建立了PD的DEM模型,利用所建立的DEM模型,分析讨论了影响PD减振特性的相关因素及其变化规律。
     通过试验研究的方法,揭示PD的一般减振机理。并在理论上,针对影响PD减振效率的主要内在因素之一的颗粒容器形状和尺寸,通过建立相关的PD粉体力学模型,研究外界激励力幅值和颗粒容器几何特征对其阻尼特性影响。
     在气-固两相流的理论基础上,分析了颗粒阻尼的内部作用力,建立了自由端部固定有颗粒阻尼的悬臂梁自由振动模型。研究了梁的振动响应,并通过实验证明所建立的研究模型是正确的。通过分析该模型的动态响应研究了颗粒阻尼的耗能特性,并用颗粒阻尼的阻尼损耗因子描述了该特性。最后通过进一步分析不同条件下的颗粒阻尼的耗能得出一些有意义的结论。
     针对影响PD减振特性的主要内在因素——颗粒材料密度、颗粒粒径和体积百分数,通过二次回归正交组合试验设计,建立PD的试验回归模型并探讨了此三个因素对PD减振特性的影响规律和因素之间的交互作用,还利用非线性优化理论与方法对PD的参数进行了优化设计,实验证明了优化结果的合理性。
     采用功率流法来研究PD在薄板上的分布位置对薄板振动的影响规律。通过对PD薄板结构采用离散建模方法,建立了PD板的振动方程,并利用Laplace变换的方法求解方程得到PD板功率流的相应表达式。并对所建立的模型进行了分析讨论,得到一些重要的规律。
     最后对PD器和薄板的阻尼损耗因子进行试验测量,同时提出PD板结构的实验方法,通过实验得到PD板结构的输入功率流和传递功率流,并与理论计算值进行了比较,验证理论分析中功率流模型以及由此得出的有关规律的有效性和正确性。
     总之,本文充分考虑了PD减振机理的复杂性,通过理论分析、数值仿真和试验设计以及实验研究相结合的方法,深入探讨了PD的减振机理,为其工程应用提供了一定的理论依据和指导原则。本文的研究成果,对于推动PD在低频减振降噪的应用方面具有重要的理论意义和工程价值。
PD (Paritcle Damping) technology is also called powder damping technology. It is a new particle damping technology developed since 1990’s in the field of vibration control. Particles are packed into a sealed container. The vibration energy of the system is dissipated by the frictional and impact movement of the particles, so the vibration is attenuated gradually. It has a lot of advantages such as: it can be used in wide range environment, the structures of original system are modified very little, the effect of vibration absorption is notable, additional mass added to the original system is very little, etc. These advantages attracted more and more attention of scholars from different fields. A new concept of particle damper is put forward based on the vibration characteristics of PD in the dissertation. And the theoretical analysis, numerical simulation and vibration experiment are combined to study the key factors that influence vibration characteristics of PD. The development history and current situation of DEM, powder mechanics, impact damping, optimization of experiments and power flow have been reviewed in the thesis. Some helpful exploration about the vibration characteristics of PD in the field of vibration isolation have been carried out by combining theoretical analysis, numerical simulation with vibration isolation experiment.
     Considering the complexity of the research, the DEM model of PD is established based on the principles and algorithm of DEM. Moreover, the main factors that influence the damping ratio is picked out and the variation regularities are disclosed.
     The characteristics of PD are explored through the experiment method. The powder mechanics model of PD including the shape and dimension of the container -one of the main factors is established. The effects of the stimulation force and dimension of the containers on the damping efficiency are studied by the model.
     The inner force of in PD is studied and the vibration model is built based on the theory of multi-phase flow. The correctness of the model is testified. The damping characteristics of PD are studied through analyzing the dynamic response of the system. The special damping capacity of PD is used to describe the characteristics. Furthermore, some meaningful conclusions are drawn by study the capacity under different conditions.
     Orthogonal experiment design is carried out including the factors of the density and diameter of particles and packing ratio to establish the regression model of PD in order to study the other main factors’effects and the interaction between the factors. The design parameters are optimized based on the non-linear optimum design.
     The effects of the PD distribution are studied through the power flow method. The vibratory responses of the stiffened plate with PD are solved by using the Laplace transmission method, and the corresponding mathematical expressions of vibration power flows are proposed. The vibration power flows of the structures with different kinds of ribs and under various load locations are numerically analyzed. Theoretical and experimental studies show that the peak values of power flows and the transmission power flows can be restrained in case of the container being filed with particles, and the energy can be received easily from the vibration source with PD at the stimulating point rather than the other locations.
     At last, the damping ratio of PD and the plate without PD are measured by experiments. The input power flows and the transmission power flows are measured in order to verify the correct and efficiency of the theoretical deduction of last chapter.
     In summary, the vibration attenuation performances of PD are analyzed in details by theoretical analysis, numerical simulation and experimental study in the dissertation, which has offered some theoretical foundation and governing principle for practical application. The research results have important theory significance and engineering application value for promoting PD in reducing vibration and lowering noise at low frequency.
引文
[1]国家环境保护局.工业噪声控制.北京:中国环境科学出版社, 1993.
    [2]师汉民编著.机械振动系统--分析·测试·建模·对策(上、下册).武汉:华中科技大学出版社,2004.
    [3]胡海昌.谈谈对振动工程的看法.噪声与振动控制,1996,26(1):2-3.
    [4]吕鑫.振动主动控制技术的研究及发展.振动、测试与诊断1996,116(13):3-7.
    [5]谷口修主编,尹传家译.振动工程大全.北京:机械工业出版社,1986.
    [6]戴德沛编.阻尼减振降噪技术.西安:西安交通大学出版社,1986.
    [7]戴德沛编.阻尼技术的过程应用.北京:清华大学出版社,1991.
    [8] C.F.Beards. Damping in Structural Joint. Shock and Vibration Digest, 1982, 14(6):6-11.
    [9] D.I.G.Jones. High Temperature Damping of Dynamic Systems. Shock and Vibraion Digest, 1982, 17(10):3-5.
    [10] N.Popplewell and S.E.Semercigil. Performance of the Bean Bag Damper for a Sinusoidal External Force. Journal of Sound and Vibration, 133(2) 193-233,1989.
    [11] S.E.Semercigil and N.Popplewell. The Bean Bag Impact Damper, Proceedings of the 3rd International Vonference on Recent Advances in Structual Dynamics. 1988, 135(36):459-468.
    [12] C.Pang, et al. An Overview of a Bean Bag Damping's Effectiveness. Journa of Sound and Vibration, 1989,133(2): 359-363.
    [13] H.V. Panossian. NOPD Technology, In the Proceedings of Damping 91,AB_1-AAB 56 San Diego, California, 1991.
    [14]杨春容.空气抵压薄膜阻尼结构隔声特性研究及工程应用[M].西安:西安交通大学,1995.
    [15] R.B.Gordon and LA.Davis. Velocity and Attenuation of Seismic Waves inImperfectly Elastic Rock. Journal Of Geophysical Research, 1986, 73(12):3917-3935.
    [16] P.B.Attewell and Y.V.Ramana. Wave Attenuation and Internal Friction as Function of frequency in Rocks, Geophysics, 1966:31(6), 1049-1056.
    [17] J.B.Walsh. Seismic Wave Attenuation in Rock due to Friction. Journal Of Geophysical Research, 1966,71(10):2951-2959.
    [18] N.D.Wolf. Results of Loss Factor Measurements on Concrete Beams using a Viscoelastic or some Damping systems, ASD-TRD-82-717-, wright-patterson AFB, Ohio, 1962.
    [19] E.M.Kerwin. Macromechanisms of Damping in Composite Structure, Paper Published at the 67th Annual Meeting of ASTM on internal Friction Damping and Cylic Plasticity, ASTM-STP, No.378, 1964.
    [20] W.Kuhl and H.Kaiser. Absorption of Structure-borne Sound in Building Materials with and without Sand-filled Cavities. Acoustics, 1952,2(2): 179-188.
    [21] H.Schmidt. Die Schallausbreitung in Kornigen Substanzen, acoustics, 1954, 4(4):639-652.
    [22] E.J.Richards and A.Lenzi. On the Prediction of Impact Noise V 11: The Structure Damping of Machinery, Journal of Sound and Vibration, 1984,97(4):549-586.
    [23] J.C.Sun,et al. Prediction of Total Loss Factors of Structures, Part 11:Loss Factors of Sand-filled Structure, Journal of Sound and Vibration, Vol. 104, No.2, 243-257,1986
    [24] L.C.chow and R.J.Pinnington. On the Prediction of Loss Factors of Plates using Sand Gtanual Material. ISVR Technical Report, No.141,University of Southampton, 1986.
    [25] R.Y.Shen, et al.Theoretical and Experimental Investigation of Dynamic Characteristics of Sand Colum, Proceeding of the Institute of Acoustics, 1997,32(9): 169-175.
    [26] H.V.Panossian. Non-Obstructive Particle Damping Technology, Proceedings of Damping 93', Vol. 1, VVL-TR-93-3103, AAB1-56,1993
    [27] J.B.Hunt. Dynamic Vibration Absorbers, Published by Mechanical Engineering Publications LTD, London, 1979
    [28]谷口修(日)主编,尹传家译.振动工程大全(下册).北京:机械工业出版社,1986
    [29]戴德沛.阻尼减振降噪技术.西安:西安交通大学出版社,1986
    [30] J.J.O'Connor and K.L.Johnson. The Role of Surface Asperities in Transmitting Tangential Forces between Metals, Wear, No.6,118-139,1963.
    [31] C.F.Beards. Damping in Structural Joints, Shock and Vibration Digest, Vol.l, No.9, 35-41,1979.
    [32] C.F.Beards. Damping in Structural Joints, Shock and Vibration Digest, Vol.4, No.6, 9-11,1982.
    [33] C.F.Beards. Damping in Structural Joints, Shock and Vibration Digest, Vol.7, No. 11, 17-20,1985.
    [34] D.I.G.Jones. High Temperature Damping of Dynamic Systems. Shock and Vibration Digest, 1976,10(8), 3-16.
    [35] D.I.G.Jones. High Temperature Damping of Dynamic Systems. Shock and Vibration Digest, 1979, 11(5): 13-18.
    [36] D.I.G.Jones. High Temperature Damping of Dynamic Systems. Shock and Vibration Digest, 1982Vol. 14, No.5, 13-15.
    [37] D.I.G.Jones. High Temperature Damping of Dynamic Systems, Shock and Vibration Digest, 1985,17(10): 3-5.
    [38]刘凯欣,高凌天.离散元法研究的评述.力学进展, 2003, 33(4):483-490.
    [39]倪振华.振动力学.西安:西安交通大学出版社,1989.
    [40]川井忠彦,都井裕.平面问题力离散化解析要素.生产研究,1977,29(4): 204-207.
    [41]菲利波夫.弹性系统的振动.北京:中国建筑工业出版社,1959.
    [42]孙进才,王冲.机械噪声控制原理.西安:西北工业大学出版社,1993.
    [43] M. P.诺顿.工业噪声和振动分析基础.北京:航空工业出版社,1993.
    [44] F. M. Ranky, B. L. Clarkson. Frequency Average Loss Factor ofPlates and Shells. Journal of Sound and Vibration, 1983 89(3): 309-323.
    [45] M. P. Norton, R. Greenhalgh. On the Estimation of Loss Factor in Light Damped Pipeline systems.Journal of Sound and Vibration, 1983, 105(3): 397-423.
    [46] Sawamoto Y, Tsubota H, Kasai Y, Koshika N, Morikawa. Analytical studies on local damage to reinforced concrete structures under impact loading by discrete element method. Nuclear Engineering and Design, 1998, 179(13): 157-177.
    [47] Liu K, Zheng W, Gao L, Tanimura S. A numerical analysis for stress wave propagation of anisotropic solids by discrete element method. In: Chiba A, Tanimura S, Hokamoto K, eds. Proceedings of the 4th International Symposium on Im-pact Engineering. Kumamoto, Japan, 2001-07-16-18. UK: Elsevier Science Ltd, 2001. 589-594.
    [48] Liu K, Gao L. The application of discrete element method in solving three imensional impact dynamics problems. Actor Mechniaca Solida, 2003, 16(3): 256-261.
    [49] Thornton C. A direct approach to micromechanically based continuum models for granular material. In Satake M, eds. Mechanics of Granular Materials. Japanese SMFE society, 1989:145-150.
    [50] Langston P A, Tuzun U, Heyes D M. Discrete simulations of granular flow in 2D and 3D hoppers: Dependence of discharge rate and wall stress on particle interaction. Chemical Engineering Science, 1995, 50: 967-987.
    [51] Ning Z, Boerefijin R, Ghadiri M, et al. Distinct element simulation of impact breakage of lactose agglomerates. Advanced Powder Technology, 1997, 8(1):1-23
    [52] Subero J, Ning Z, Ghadiri M, et al, Effect of interface energy on the impact strength of agglomerates. Powder Technology, 1999, 105(1):66-73.
    [53] Han K, Owen D R J, Peric D. Combined finite-discrete element and explicit/implicit simulation of peen forming processes. Engineering Computation,2002, 19(1):92-118.
    [54] Owen D R J, Feng Y T. Parallelized finite-discrete element simulation of multi-fracture solids and discrete systems. Engineering Computation, 2001, 18(3-4):557-576.
    [55]王泳嘉.离散单元法一一种适用与节理岩石力学分析的数值方法.第一届全国岩石力学数值计算及模拟实验讨论会文集,1986,32-37.
    [56]剑万禧.离散单元法的基本原理及其在岩土工程的应用,第一届全国岩石力学数值计算及模拟实验讨论会文集,1986,43-46.
    [57]魏群.岩土工程中散体元的基本原理、数值方法和实验研究[D].清华大学水电系,1990
    [58]赵衍刚,吉田顺.振动时筒仓中散离体流动状况的仿真.地震工程与工程振动,1993,13(3),17-27.
    [59]谢洪勇编著.粉体力学与工程.北京:化学工业出版社, 2003.
    [60] Bagnold R A. Experiments On a gravity-free dispersion of large solid particles in a Newtonian fluid under shear. Proc R Soc Lond A, 1954, 225: 49-63.
    [61] Ogawa S. Multi-tempreture theory of granular materials. In: Gukujutsu, Bunken, Fukyukai eds. Proc US-Jpn Semin Contin Mech and Stat Approaches Mech. Granular Meter. Tokyo: Gukujutsu Bunken Fukyukai, 1978:208-217.
    [62] Bak P, Tang C, Wisenfeld K. Self-organized criticality: an explanation of 1/ f noise. Phys Rev Lett, 1987, 59(4): 381-384.
    [63] Shinbrot A, Alexander A, Muzzio F J, Spontaneous chaotic granular mixing. Nature, 1999, 397(25): 675-678.
    [64] Pouliquen O, Delour J, Savage S B. Fingering in granular flows. Nature, 1997, 386(24): 816-817.
    [65] Makse H A, Havlin S, King P R, Stanley H E. Spontaneous stratification in granular mixtures. Nature, 1997, 386(27): 379-382.
    [66] Baxter J, Tuzun U, Heyes D, et al. Stratification in poured granular heaps. Nature, 1998, 391(8): 136.
    [67]任露泉.试验优化技术[M].北京:机械工业出版社,1987.
    [68]杨兆军,王立江,于骏一.振动钻削微小孔中钻头寿命与振动参数的二次回归试验研究.数理统计与管理,1996,15(3):15-18.
    [69]张麦仓,罗子健,曾凡昌.应用多元非线性回归方法建立FGH95合金的本构关系.材料工程,1999,12(1):20-22.
    [70]徐颖,李明利,赵选民,等.响应曲面回归分析法——一种新的回归分析法在材料研究中的应用.稀有金属材料与工程, 2001,30(6):428-432.
    [71]阮祯,胡德金,许黎明等.内燃机机油泵工作特性数学模型的分析与研究.内燃机工程, 2006,27(3):50-57.
    [72]邱竹贤,邱大爽,工兆文.高炳亮铝电解实验数据的回归分析和经验公式拟合.东北大学学报, 2003,24(4):352-357.
    [73]刘大秀,郑祖国,葛毅雄.投影寻踪回归在试验设计分析中的应用研究.数理统计与管理,1995,14(1):47-51.
    [74]孙丰荣,宋好好,张明强等.一种新的正交参数选优法及其在非线性回归分析中的应用.中国生物医学工程学报,2004,23(3):214-221.
    [75]刘岸军,钱国桢,龚晓南.土层锚杆和挡土桩共同作用的非线性分析及其优化设计.岩土工程学报,2006,28(10):1288-1291.
    [76]尹瑛,徐吉辉,端木京顺.基于非线性回归最小二乘法的改进Gompertz模型参数估计.空军工程大学学报(自然科学版),2005,6(6):77-79.
    [77] H. G. D. Goyder, R. G. White. Vibrational Power Flow Machines into Built up Structures, Part I: in Introduction and Approximate of Beam and Plate Like. Journal of Sound and Vibration, 1980, 68(1):59-76.
    [78] H. G. D. Goyder, R. G. White. Vibrational Power Flow Machines into Built up Structures, Part II: Wave Propagation and Power Flow in Beam-Stiffened Plates. Journal of Sound and Vibration, 1980, 68(1):77-96.
    [79] R. J. Pinnington, R. G. White. Power Flow through Machine Isolators into Non-Resonant Beams. Journal of Sound and Vibration, 1981, 75(2):179-197.
    [80] B. R. Mace. Power Flow between Two Continuos One-Dimensional Substructures: a Wave Solution. Journal of Sound and Vibration, 1992, 145(2):289-319.
    [81] B. R. Mace. Power Flow between Two Coupled Beams. Journal of Sound andVibration, 1992, 159(2):305-325.
    [82] F. J. Davies, M. A. Wahab. Ensemble Averages ofPower Flow in Randomly Excited Coupled Beams. Journal of Sound and Vibration, 1981, 77(5):311-321.
    [83] D. J. Mead,R. G. White,X. M. Zhang.Power Transmission in a Periodically Supported Infinite Beam Excited at a Single Point. Journal of Sound and Vibration, 1993,68(1):59-75.
    [84]李天匀,张小铭.周期简支曲梁的振动波和功率流.华中理工大学学报,1993,23(9):112-115.
    [85] W. R. White. Experiments on the Active Control of Flexural Wave Power Flow. Journal of Sound and Vibration, 1987,112(1):187-191.
    [86] F. l. Fahy. Wave Propagation in Damped , Stiffened Structures Characteristic of ship Construction. Journal of Sound and Vibration, 1976, 45 (1) :23-26.
    [87] J. M. Cuschieri. Extension of Vibrational Power Flow Techniques to Two-Dimensional Structures. NASA Contract Report, 1988, 180(10):89-113.
    [88] J. M. Cuschieri. Estimating the Vibration Level of an L-Shaped Beam Using Power Flow Techniques. NASA Contract Report, 1987, 180(12):45-68.
    [89] M. Cuschieri. Power Flow as a Complement to Statistical Energy Analysis and Finite Element Analysis. ASME Publication, 1987, 180(3):132-145.
    [90] J. M. Cuschieri. Parametric and Experimental Analysis Using a Power Flow Approach. NASA Contract Report, 181990, Feb. 1990.
    [91] J. M. Cuschieri. Power Flow Analysis of Coupled Plates Structures Subjected to Mechanical and Acoustic Excitation. NASA Contract Report, 189635, June. 1992.
    [92] X. M. Zhang, R. G. White. Vibrational Power Flow Input into a Cylindrical Shell due to Point Force Excitation. The 4th International Congress on Intensity Techniques, France, 1993.
    [93]张小铭,张维衡.圆柱壳体中振动功率流.中国造船,1990,12(1):78-87.
    [94]张小铭,张维衡.加筋圆柱壳体的振动功率流.中国造船,1993,24(7):95-104.
    [95]张小铭.周期性粘弹性复合圆柱壳体的功率流.振动工程学报,1993,6(1) :1-9.
    [96]徐慕冰,张小铭,张维衡.充液圆柱壳受迫振动的能量流输入及传播.声学学报,1999,24(4) :391-399.
    [97] C. C. Kenndy, C. D. P. Pancu. Use of vectors in vibration measurement and analysis. Journal ofAerospace Sciences, 1947,14(2):603-625.
    [98] D. U. Noiseux. Measurement of Power Flow in Uniform Beams and Plate Journal of the Acoustical Society ofAmerica, 1999, 47(3):239-247.
    [99] G. Pavic,G.Oreskovic. Energy Flow Through Elastic Mountings.Proceedings of the 9th International Congress on Acoustics, Paper G3, 1977.
    [100] G. Pavic. Measurement of Structure-Borne Wave Intensity,Part I:Formulation of the Methods. Journal of Sound and Vibration, 1992, 149(2):221-230.
    [101] Daniel Quinlan: Adaptation of the Four Channel Technique to the Measurement of Power Flow in Structures. Proceedings of the 21h International Congress on Acoustic Intensity, 1985, 36(5): 227-234.
    [102] R. S. Ming, R. J. M. Craik. Errors in the Measurement of Structure-Borne Power Flow Using Two-Accelerometer Techniques. Journal of Sound and Vibration, 1997, 204(1):59-71.
    [103] J. W. Verheij. Cross Spectral density Methods for Measuring Structure Borne Power Flow on Beams and Pipes. Journal of Sound and Vibration, 1980,70(1): 133-139.
    [104] F. J. Fahy. Measurement of Acoustic Intensity Using the Cross-Spectral Density of two Microphone Signals. Journal of the Acoustical Society of America, 1977, 62(5): 824-831.
    [105] J. Y. Chung. Cross Spectral Method of Measuring Acoustic Intensity Without error caused by instrument phase mismatch. Journal of the Acoustical Society ofAmerica, 1978, 64(3): 1613-1616.
    [106]葛蕴珊,刘志刚,张文平.隔振装置中振动功率流的测量研究.哈尔滨工业大学学报,1999,20(2): 7-14.
    [107]李天匀,刘理,刘士光.结构噪声源识别的能量流分析方法.机械工程学报,1999,33(3):29-33.
    [108]王敏庆.加筋板结构振动功率流理论研究及试验验证[M].西北工业大学,1995.
    [109] H.V. Panossian. Non-Obstructive Impact Damping Applications for Cryogenic Environments, In the Proceedings of Damping 91, KBC_1-KBC_9.San Diego. California, 1991.
    [110] H.VPanossian. NOPD Tests on Aluminum Beams, In the Proceedings of Damping 91, ICD_1-ICD 7. San Diego, California, 1991.
    [111]徐志伟.NOPD减振技术的理论研究及工程应用[D].西安:西安交通大学机械工程学院,1999.
    [112]徐志伟,陈天宁等.垂直冲击减振系统的仿真研究.西安交通大学学报, 1999,33 (7):66-70.
    [113]徐志伟,陶宝棋等.NOPD颗粒减振机理的理论及实验研究.航空学报,2001,22 (4):347-350.
    [114]徐志伟,陈天宁等.非阻塞性颗粒阻尼中颗粒摩擦耗能的仿真计算.机械科学与技术,1999,18(6):890-892.
    [115]徐志伟,毛宽民等.BBD控制封闭圆柱壳振动的阻尼预估.振动与冲击,1999,18 (3):24-28.
    [116]毛宽民.非阻塞性微颗粒阻尼力学机理的理论研究及应用[D].西安:西安交通大学机械工程学院,1999.
    [117]毛宽民,陈天宁等.非阻塞性微颗粒阻尼的散体元模型,西安交通大学学报,1999,33 (5):79-83.
    [118]毛宽民,师汉民等,NOPD的椭球状散体元建模.工程力学,2000,7(6 ): 6 5-72.
    [119]刘雁梅.非阻塞性微颗粒阻尼加筋板壳振动功率流特性研究[D].西安:西安交通大学机械工程学院,2000.
    [120] S.S. Simonian. Particle beam damper [C], Proceedings of SPIE Conf. on Passive Damping, SPIE, vol. 2445, SPIE, San Diego, CA, 1995: 149– 160.
    [121] S.F.Masri and T.K.Caughey. On the stability of the Impact Damper, Journal of Appl., Mech., ASME, Vol.33, 586--592,1966.
    [122] R.D. Friend, V.K. Kinra. Particle impact damping. J. Sound Vib. 2000,233(1): 93– 118.
    [123] B.L. Fowler, E.M. Flint, S.E. Olson. Effectiveness and predictability of particle damping[C]. Proceedings of SPIE Conf. on Damping and Isolation, Newport Beach, CA, 1999:1155-1166.
    [124] Fowler, B. L., Flint, E. M., and Olson, S. E. . Design Methodology for Particle Damping. Proc. SPIE Conference on Smart Structures and Materials: Damping and Isolation, SPIE. 2001:186–197.
    [125] P. Cundall, O. Strack. A distinct element model for granular assemblies. Geotechnique, 1979,29 (3): 47–65.
    [126] Hart, R., P. A. Cundall, J. Lemos. Formulation of a Three-Dimensional Distinct Element Model—Part II. Mechanical Calculations for Motion and Interaction of a System Composed of Many Polyhedral Blocks. Int. J. Rock Mech., Min. Sci. & Geomech. Abstr., 1999,25(3):117-125 .
    [127]彼特?艾伯哈特,胡斌.现代接触动力学,南京:东南大学出版社, 2003.
    [128] Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces. J APpI Mech, 1953, 20(3):327-344.
    [129] Johnson K L, Kendall K, Roberts A D. Surface Energy and the contact of elastic solids. Proc R Soc Lond A, 1971, 32(4): 301-313
    [130] Savkoor A R, Briggs G A D. The effect of tangental force on the contact of elastic solids in adhesion. Proc R Soc Lond A, 1977, 35(6): 103-114.
    [131] Oda M, Iwashita K, Kakiuchi T. Importance of particle ro-tation in the mechanics of granular materials. In: Behringer R P, Jenkins J T, eds. Powder&Grain, 1997, 207-214.
    [132] Kishino. Computer analysis of dissipation mechanism in granular media. In: Biarrez J, Gourves R, eds. Powders and Grains, Proc Int Conf Micromech Granular Media. Rotter-dam: Balkema A A, 1989. 323-330.
    [133]金栋平,胡海岩.碰撞振动与控制.北京:科学出版社,2005.
    [134]李伟,朱德懋.不连续散粒体的离散单元法.南京航空航天大学学报, 1999,31(1):86-91
    [135] D.E. Wolf. Modeling and computer simulation of granular media. in: K.H. Hoffmann, M. Schreiber (Eds.), Computational Physics: Selected Methods–Simple Exercises–Serious Applications, Heidelberg, Springer, 1996.
    [136] X. Zhang, L. Vu-Quoc. Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions. Int. J. Impact Eng., 2002, 27(3):317– 341.
    [137] J. Duran. Sands, Powders, and Grains, An Introduction to the Physics of Granular Materials. Springer, Berlin, 1999.
    [138] B.K. Mishra, C.V.R. Murty. On the determination of contact parameters for realistic DEM simulations of ball mills. Powder Technology,2001, 11(5):290– 297.
    [139] P.W. Cleary. DEM simulation of industrial particle flows: case studies of dragline excavators, mixing in tumblers and centrifugal mills. Powder Technology, 2000, 10(9): 83–104.
    [140] D.J. Kim, L.J. Guibas, S.Y. Shin. Fast collision detection among multiple moving spheres. IEEE Trans. Vis. Comput. Graph. 1998, 4(3) :230–242.
    [141] G.R. Tomlinson. Recent development in particle dampers. 6th National Turbine Engine High Cycle Fatigue Conference, Jacksonville, FL, 5–8 March 2001.
    [142] M. Saeki. Impact damping with granular materials in a horizontally vibrating system. Journal of Sound and Vibration, 2002,25(11):153-161.
    [143] W. Liu, G. R. Tomlinson, J. A. Rongong. The dynamic characterization of disk geometry particle dampers. Journal of Sound and Vibration, 2005, 28(10): 849-861.
    [144] C. Saluena, T. Poschel, S.E. Esipov, Dissipative properties of vibrated granular materials, Phys. Rev. E, 1999,59(4):4422–4425.
    [145] Lamarque, C. H., Janin, O.. Modal analysis of mechanical systems with impact non-linearities: limitations to a modal superposition. Journal of Sound and Vibration, 2000, 235(4):567-609.
    [146] Igusa, T.,Der Kiureghian, A., Dynamic characterization of two-degree-of-freedom equipment-structures systems. Journal of Engineering Mechanics, 1985,11(1):1-19.
    [147] Fan, L. S., and Zhu, C. . Principles of Gas-Solid Flows.Cambridge University Press, Cambridge, UK ,1998.
    [148] Blevins, R. D., Flow-Induced Vibration, 2nd ed., Von Nostrand Reinhold, New York, 1990.
    [149] Sarpkaya, T. .Force on a Circular Cylinder in Viscous Oscillatory Flow at Low Keulegan-Carpenter Number. J. Fluid Mech., 1986,16(5) :61–71.
    [150] Inman, D. J., Engineering Vibration, 2nd ed., Prentice Hall, New Jersey, 2000.
    [151] D. J. GORMAN. Free Vibration Analysis of Beams and Shafts. New York: John Wiley, 1975.
    [152] G. VERTES. Structural Dynamics: vol. 11 Developments in Civil Engineering. Amsterdam: Elsevier, 1985.
    [153] Srinivasan, P., 1996, Nonlinear Mechanical Vibrations, John Wiley & Sons,New York.
    [154]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,1997.
    [155]曹国雄.弹性矩形薄板振动.北京:中国建筑工业出版社,1983.
    [156]徐芝伦.弹性力学.北京:人民教育出版社,1985.
    [157]曹志远.板壳振动理论.北京:中国铁道出版社,1989.
    [158]孙进才.复杂结构的辐射噪声预测和结构阻尼处理.西北工业大学学报,1987,5(3):13-18.
    [159] J. C. Sun, N. Lalor, E. J. Richards. Power Flow and Energy Balance of Non-Conservatively Coupled Structures, I: Theory. Journal of Sound and Vbration, 1987,122(1):321-343.
    [160]明瑞森,孙进才.非保守祸合损耗因子的计算.振动工程学报,1989,22(2):44-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700