高强度钢材轴心受压构件整体稳定性能与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生产和加工工艺的不断提高,高强度钢材钢结构已经开始在国内外建筑和桥梁结构工程中得到应用,并取得了良好的效益。由于在材料力学性能、加工工艺、初始缺陷影响等方面的差别,高强度结构钢材构件的整体稳定性能与普通强度钢材有明显不同;相关的研究工作国外刚刚起步且数量很少,国内还未开展研究。我国现行钢结构设计规范允许使用最高强度等级为420MPa的结构钢材,相应设计条款均基于普通强度钢材的研究制定,这不利于高强度钢材钢结构优势的发挥。本文紧密结合我国目前钢结构设计规范的修订工作,通过大量的试验研究、数值计算和理论分析,全面、深入地研究了高强度钢材轴心受压构件的整体稳定性能,并提出了设计方法和计算公式;本文主要完成了以下几方面工作:
     (1)截面残余应力分布是研究构件整体稳定性能的最重要前提条件;本文采用分割法,测量了3种强度等级高强度钢材(420MPa、460MPa、960MPa)、3类截面(热轧等边角钢、焊接工字形和箱形截面)、共计35个试件的残余应力全截面分布;系统地研究了板件宽厚比、板件厚度、焊缝类型、人为测量误差、钢材强度、截面板件相关性等因素对残余应力分布的影响。
     (2)基于本文的试验研究,并结合国内外大量实测数据,提出了针对不同强度等级钢材和不同截面类型的完整的残余应力分布模型,准确考虑了截面尺寸对残余应力数值的影响,并提出了详细的计算公式,为构件稳定性研究奠定了基础。
     (3)进行了3种强度等级高强度钢材、3类截面、共计84个轴心受压构件的整体稳定性能静力加载试验,研究了其失稳破坏形态和稳定承载力。
     (4)建立了能够准确考虑几何初始缺陷和残余应力影响的有限元数值模型,并通过与本文及其他试验对比,验证了模型的可靠性和准确性;通过大量参数分析,研究了几何初始缺陷、残余应力、钢材材料力学性能等因素对高强度钢材轴压构件整体稳定性能的影响。
     (5)计算了不同强度等级共计930个钢柱的整体稳定系数,通过与国内外主要钢结构设计规范对比,建议了高强度钢材轴压构件柱子曲线类型的选取,并提出了新的柱子曲线,同时基于我国现行规范设计方法提出了能够反映钢材强度影响的修正系数计算公式;为工程应用及研究提供了合理、可靠的设计方法。
With the development of the steel production and manufacture process, highstrength steel structures have been increasingly applied to building and bridgeconstructions in recent years, due to their advantages in structural safety, architecturalfunction, economical benefit and resource saving etc. The overall buckling behavior ofhigh strength steel compression columns may be characterized differently from that ofnormal strength steel, because of their different material properties, manufacturingprocesses and effects from initial imperfections such as initial geometric defect andsectional residual stresses. However, investigations on high strength steel columnsinternationally have just started, while in China there is no relevant research available.The current design code for steel structures GB50017-2003in China allows the use of420MPa high strength steels, and the overall buckling design provisions for columns inthis standard are mainly based on the relevant researches of normal strength steelstructures, which is inadequate to mobilise the advantage of high strength steelstructures. Consequently, the solution on high strength steel columns is in urgent need.
     As one part of the research work for improving current Chinese steel structuredesign code, a large amount of experimental and numerical investigations were carriedout to study the overall buckling behavior of high strength steel members under axialcompression in this dissertation, and the design method and calculation formulae wereproposed. The main research works covered in this dissertation include:
     (1) As one of the most important prerequisite for understanding the columnbuckling behavior, the residual stress distribution and magnitude of35different sectionswere measured by using the sectioning method, including three types of steel grades (i.e.420MPa,460MPa and960MPa) and three types of section shapes (i.e. hot-rolled equalleg angle, welded I-shape and box sections). The effects of the width-thickness ratio,plate thickness, weld type, human operating error, steel grade, interaction amongsectional component plates were clarified.
     (2) According to the experimental investigation conducted in this dissertation aswell as many other researches, residual stress distribution models for different steelgrades (i.e.420MPa,460MPa) and various section types (i.e. hot-rolled equal leg angles, welded I-shape and box sections) were proposed. In addition, the unified model whichcan be applied to the above steel grades welded I-shape and box sections was alsosuggested. The detailed calculation formulae for compressive residual stress magnitudeswere given, which can consider the effect of sectional dimensions (i.e. width-thicknessratio and plate thickness) very well.
     (3) Experimental investigations were carried out to clarify the overall bucklingbehavior of420MPa steel hot-rolled equal leg angle columns,460MPa and960MPasteel welded I-shape and box section members. Totally84columns were tested. Initialimperfections such as the residual stress, initial bending and loading eccentricity weremeasured. Based on test results the buckling deformation and capacity were investigated.
     (4) The finite element model was established, which considered the geometricnonlinear property, initial geometric imperfection and residual stress. By comparing thenumerical simulation results with experimental results in both present dissertation andother researches, the finite element model was validated. A large amount of parametricanalysis were carried out to investigate the effects from initial geometric imperfections,residual stresses to steel material properties such as the yield strength and yield-tensilestrength ratio. It was indicated that effects of initial imperfections were less severe forhigh strength steel columns, and thus the nondimensional buckling strength of suchmembers becomes significantly higher than that of normal strength steel columns.
     (5) A large number of columns with various section dimensions and slendernesswere calculated by using the finite element model, including those fabricated fromvarious steel grades (i.e.235MPa,420MPa,460MPa,690MPa and960MPa), and theoverall buckling strengths of totally930columns were obtained, which were comparedwith design values according to different steel structures specifications (i.e.GB50017-2003, Eurocode3and ANSI/AISC360-10). As the results, relevant designcurves from current design codes for different grades of high strength steel columnswere suggested. Furthermore, new column curves were proposed by the nonlinearfitting from numerical results, which were based on the expression form of columncurve formulae in both Chinese and European codes. For the convenience of applying inpractical engineering, a modification factor on the base of current design column curvesin the Chinese code was also proposed, as well as its detailed calculation formula.
引文
[1] International Association for Bridge and Structural Engineering. Use and application ofhigh-performance steels for steel structures. Zurich: IABSE,2005.
    [2] Pocock G. High strength steel use in Australia, Japan and the US. The Structural Engineer,2006,84(21):27-30.
    [3] Rasmussen K J R, Hancock G J. Tests of high strength steel columns. Journal ofConstructional Steel Research,1995,34(1):27-52.
    [4]施刚,石永久,王元清.超高强度钢材钢结构的工程应用.建筑钢结构进展,2008,10(4):32-38.
    [5] British Standards Institution. BS EN1993-1-1. Eurocode3: Design of steel structures: Part1-1: General rules and rules for buildings. London: BSI,2005.
    [6] British Standards Institution. BS EN1993-1-12. Eurocode3: Design of steel structures: Part1-12: Additional rules for the extension of EN1993up to steel grades S700. London: BSI,2007.
    [7] American Institute of Steel Construction. ANSI/AISC360-10. Specification for structuralsteel buildings. Chicago: AISC,2010.
    [8]施刚,石永久,王元清.运用ANSYS分析超高强度钢材钢柱整体稳定特性.吉林大学学报:工学版,2009,39(1):113-118.
    [9]中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. GB50017-2003.中华人民共和国国家标准-钢结构设计规范.北京:中国计划出版社,2003.
    [10]中华人民共和国冶金工业部. GBJ17-88.中华人民共和国国家标准-钢结构设计规范.北京:中国计划出版社,1989.
    [11] Griffis G L, Axmann G, Patel B V, et al. High-strength steel in the long-span retractable roofof Reliant Stadium//2003NASCC Proceedings. Baltimore, MD: NASCC,2003:1-9.
    [12]范重,刘先明,范学伟,等.国家体育场大跨度钢结构设计与研究.建筑结构学报,2007,28(2):1-16.
    [13]佟强,项艳.国家游泳中心工程钢结构焊接技术的研究.建筑技术,2009,40(10):900-904.
    [14]卜庆龙,安建民,李保平,等.新保利大厦钢结构及玻璃幕墙施工技术.施工技术,2006,35(12):96-99.
    [15]陈振明,张耀林,彭明祥,等.国产高强钢及厚板在央视新台址主楼建筑中的应用.钢结构,2009,24(2):34-38.
    [16]田黎敏,郝际平,戴立先,等.深圳湾体育中心结构施工过程模拟分析.建筑结构,2011,41(12):118-121.
    [17]周思红,朱忠义,齐五辉,等.凤凰国际传媒中心结构设计.建筑结构,2011,41(9):56-62.
    [18] Collin P, Johansson B. Eurocode for high strength steel and applications in construction.
    [DB/OL].[2010-06-29]. http://pure.ltu.se/ws/fbspretrieve/630769.
    [19] Miki C, Homma K, Tominaga T. High strength and high performance steels and their use inbridge structures. Journal of Constructional Steel Research,2002,58(1):3-20.
    [20]苟明康,陶莉. σs≥700MPa的高强钢在移动桥梁装备中的应用.钢结构,2002,17(5):6-9.
    [21]张金斗.上海南浦大桥主桥上部结构施工工艺.土木工程学报,1992,25(6):17-24.
    [22]崔峰,万木运.九江长江大桥15MnVN钢板的研制与生产.钢结构,1995,10(1):14-24.
    [23]秦永坚,王登科,唐其练,等.500kV双回路输电线路铁塔采用Q420高强钢的研究.武汉大学学报:工学版,2007,40(S1):200-203.
    [24]李正良,刘红军,张东英,等. Q460高强钢在1000kV杆塔的应用.电网技术,2008,32(24):1-5.
    [25]刘盼.高强等边角钢极限承载力及稳定性试验与分析[硕士学位论文].重庆:重庆大学土木工程学院,2008.
    [26]拓燕艳. Q460高强角钢轴心受压构件整体稳定性的理论和试验研究[硕士学位论文].西安:西安建筑科技大学土木工程学院,2009.
    [27]范金凯. Q460高强等边单角钢轴心受压杆件的理论与试验研究[硕士学位论文].西安:西安建筑科技大学土木工程学院,2009.
    [28]薛振农. Q460高强角钢两端偏心压杆力学性能研究[硕士学位论文].西安:西安建筑科技大学土木工程学院,2009.
    [29]孟路希. Q460等边角钢稳定承载力的试验研究[硕士学位论文].重庆:重庆大学土木工程学院,2009.
    [30]王翰哲.两端偏心受压的Q460热轧等边单角钢整体稳定承载力试验研究.[硕士学位论文].西安:西安建筑科技大学土木工程学院,2009.
    [31]魏鹏. Q460高强角钢轴压杆肢件宽厚比限值试验与理论研究[硕士学位论文].西安:西安建筑科技大学土木工程学院,2009.
    [32]付俊岩,东涛.建筑和桥梁钢结构用钢屈强比问题的探讨//现代建筑与桥梁用高强度钢材应用技术国际研讨会论文集.北京:中国钢结构协会,2008:18-27.
    [33]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T1591-2008.中华人民共和国国家标准-低合金高强度结构钢.北京:中国标准出版社,2009.
    [34]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T19879-2005.中华人民共和国国家标准-建筑结构用钢板.北京:中国标准出版社,2005.
    [35] British Standards Institution. BS EN10025-6. Hot rolled products of structural steels–Part6:Technical delivery conditions for flat products of high yield strength structural steels in thequenched and tempered condition. London: BSI,2004.
    [36] American Society for Testing and Materials. ASTM A992/A992M-06a. Standardspecification for structural steel shapes. West Conshohocken, PA: ASTM International,2006.
    [37] American Society for Testing and Materials. ASTM A913/A913M-04. Standard specificationfor high-strength low-alloy steel shapes of structural quality, produced by quenching andself-tempering process (QST). West Conshohocken, PA: ASTM International,2004.
    [38] American Society for Testing and Materials. ASTM A709/A709M-07. Standard specificationfor structural steel for bridges. West Conshohocken, PA: ASTM International,2007.
    [39] American Society for Testing and Materials. ASTM A514/A514M-00a. Standardspecification for high-yield-strength, quenched and tempered alloy steel plate, suitable forwelding. West Conshohocken, PA: ASTM International,2000.
    [40] British Standards Institution. BS4360:1990. Weldable structural steels. London: BSI,1990.
    [41]郁银泉.高层建筑钢结构抗震设计对钢材性能的要求//现代建筑与桥梁用高强度钢材应用技术国际研讨会论文集.北京:中国钢结构协会,2008:47-53.
    [42] Canadian Standards Association. CAN/CSA-S16-01. Limit states design of steel structures.Mississauga: CSA,2005.
    [43] Canadian Standards Association. CAN/CSA G40.20-04/G40.21-04. General requirements forrolled or welded structural quality steel/structural quality steel. Mississauga: CSA,2004.
    [44] American Institute of Steel Construction. ANSI/AISC341-05. Seismic provisions forstructural steel buildings. Chicago: AISC, INC.,2005.
    [45] Standards Association of Australia. AS4100-1998. Steel structures. Homebush, NSW:Standards Australia,1998.
    [46]中华人民共和国住房与城乡建设部,中华人民共和国国家质量监督检验检疫总局. GB50011-2010.中华人民共和国国家标准-建筑抗震设计规范.北京:中国建筑工业出版社,2010.
    [47] American Association of State Highway and Transportation Officials. AASHTO LRFDBridge Design Specifications (SI Units).4th ed. Washington, D.C.: AASHTO,2007.
    [48] Sivakumaran S K. Relevance of Y/T ratio in the design of steel structures//Proceedings ofinternational symposium on applications of high strength steels in modern constructions andbridges-relationship of design specifications, safety and Y/T ratio. Beijing: China SteelConstruction Society,2008:54-63.
    [49] Canadian Standards Association. CAN/CSA-S6-06. Canadian highway bridge design code.Mississauga: CSA,2006.
    [50] British Standards Institution. BS5950-1. Structural use of steelwork in building-Part1: Codeof practice for design-Rolled and welded sections. London: BSI,2000.
    [51] Japanese Standards Association. JIS G3136:2005. Rolled steels for building structure. Tokyo:JSA,2005.
    [52] Shi G, Ban H Y, Shi Y J, et al. Recent research advances on the buckling behavior of highstrength and ultra-high strength steel structures//Proceedings of shanghai internationalconference on technology of architecture and structure (Volume1). Shanghai: TongjiUniversity Press,2009:75-89.
    [53]王国周,瞿履谦.钢结构原理与设计.北京:清华大学出版社,1993.
    [54] Langenberg P. Relation between design safety and Y/T ratio in application of welded highstrength structural steels//Proceedings of international symposium on applications of highstrength steels in modern constructions and bridges-relationship of design specifications,safety and Y/T ratio. Beijing:: China Steel Construction Society,2008:28-46.
    [55]曹现雷,郝际平,曹志民,等.高强单角钢一端偏心压杆极限承载力试验研究.土木建筑与环境工程,2009,31(5):1-8.
    [56]施刚,班慧勇, Bijlaard F.S.K.,等.端部带约束的超高强度钢材受压构件整体稳定受力性能.土木工程学报,2011,44(10):17-25.
    [57] Rasmussen K J R, Hancock G J. Plate slenderness limits for high strength steel sections.Journal of Constructional Steel Research,1992,23(1):73-96.
    [58] Usami T, Fukumoto Y. Local and overall buckling of welded box columns. Journal of theStructural Division,1982,108(ST3):525-542.
    [59] Nishino F, Ueda Y, Tall L. Experimental investigation of the buckling of plates with residualstresses//Test methods for compression members. Philadelphia, PA: American Society forTesting and Materials,1967,(419):12-30.
    [60] Beg D, Hladnik L. Slenderness limit of class3I cross-sections made of high strength steel.Journal of Constructional Steel Research,1996,38(8):201-207.
    [61] McDermott J F. Local plastic buckling of A514steel members. Journal of the StructuralDivision,1969,95(ST9):1837-1850.
    [62]中华人民共和国国家质量监督检验检疫总局,中华人民共和国建设部. GB50205-2001.中华人民共和国国家标准-钢结构工程施工质量验收规范.北京:中国计划出版社,2002.
    [63] Iwatsubo K, Yamao T. An experimental study on the ultimate strength and behavior ofmembers made of high strength steel with low-yield ratio. Mem Fac Eng Kumamoto Univ,2000,45(1):1-13.
    [64]钢结构规范管理组.关于受压构件科研专题采用残余应力统一模式的通知.北京:钢结构规范管理组,1983.
    [65] Usami T, Fukumoto Y. Welded box compression members. Journal of Structural Engineering,1984,110(10):2457-2470.
    [66]王国周,赵文蔚.焊接与热轧工字钢残余应力的测定.工业建筑,1986,(7):32-37.
    [67]《钢结构设计规范》编制组《.钢结构设计规范》应用讲解.北京:中国计划出版社,2003.
    [68]李开禧,肖允徽,铙晓峰,等.钢压杆的柱子曲线.重庆建筑工程学院学报,1985,(1):24-33.
    [69] Estuar F R, Tall L. Experimental investigation of welded built-up columns. Welding Journal,1963,42(4):164-176.
    [70] Dwight J B, Moxham K E. Welded steel plates in compression. The Structure Engineer,1969,47(2):49-66.
    [71] Mcfalls R K, Tall L. A study of welded columns manufactured from flame-cut plates.Welding Journal,1969,48(4):141-153.
    [72] Hasham A S, Rasmussen K J R. Section capacity of thin-walled I-section beam-columns.Journal of Structural Engineering,1998,124(4):351-359.
    [73]王辅,吴惠弼.考虑残余应力、初弯曲和初偏心影响的焊接方管柱强度.工程力学,1985,2(3):62-72.
    [74]中国船舶工业总公司. CB3395-92.中华人民共和国船舶行业标准-残余应力测试方法钻孔应变释放法.北京:中国标准出版社,1992.
    [75] American Society for Testing and Materials. ASTM E837-08e1. Test method for determiningresidual stresses by the hole-drilling strain-gage method. West Conshohocken, PA: ASTMInternational,2008.
    [76] Tebedge N, Alpsten G, Tall L. Residual-stress measurement by the sectioning method.Experimental Mechanics,1973,13(2):88-96.
    [77]周锋,陈以一,童乐为,等.高强度钢材焊接H形构件受力性能的试验研究.工业建筑,2012,42(1):32-36.
    [78]陈骥.钢结构稳定理论与设计(第三版).北京:科学出版社,2006.
    [79] Galambos T V. Guide to stability design criteria for metal structures.5th ed. New York: JohnWiley&Sons Inc.,1998.
    [80] European Convention for Constructional Steelworks. Manual on stability of steel structures.2nd ed. Bruxelles: ECCS Publ.,1976.
    [81]李开禧,肖允徽.逆算单元长度法计算单轴失稳时钢压杆的临界力.重庆建筑工程学院学报,1982,(4):26-45.
    [82] Tang L R B, Mahendran M. Behaviour of high strength steel compression members//Proceedings of the10th nordic steel construction conference'2004. Copenhagen: Danish SteelInstitute,2004:53-64.
    [83]施刚,石永久,王元清.超高强度钢材焊接箱形轴心受压柱整体稳定的有限元分析.沈阳建筑大学学报,2009,25(2):255-261.
    [84]李国强,王彦博,陈素文,等. Q460高强钢焊接箱形柱轴心受压极限承载力参数分析.建筑结构学报,2011,32(11):149-155.
    [85]王彦博,李国强,陈素文,等. Q460高强钢焊接箱形柱轴心受压力学性能数值分析.工业建筑,2012,42(1):26-31.
    [86] Kitipornchai S, Lee H W. Inelastic buckling of single-angle, tee and double-angle structs.Journal of Constructional Steel Research,1986,6(1):3-20.
    [87] Kitipornchai S, Lee H. W. Inelastic experiments on angle and tee structs. Journal ofConstructional Steel Research,1986,6(3):219-236.
    [88]刘晋春,赵家齐,赵万生.特种加工(第三版).北京:机械工业出版社,2000:6-71.
    [89]第一机械工业部苏州电加工机床研究所.国外电火花线切割加工.重庆:科学技术文献出版社重庆分社,1980:1-18.
    [90]班慧勇,施刚,石永久,等.超高强度钢材焊接截面残余应力分布研究.工程力学,2008,25(S2):57-61.
    [91]陈骥.综合考虑残余应力、初偏心和初弯曲时轴心压杆的稳定系数//钢结构研究论文报告选集(第一册).北京:全国钢结构标准技术委员会,1932:1-14.
    [92] Chernenko D E, Kennedy D J L. An analysis of the performance of welded wide flangecolumns. Canadian Journal of Civil Engineering,1991,18(14):537-554.
    [93] Gardner L, Cruise R B. Modeling of residual stresses in structural stainless steel sections.Journal of Structural Engineering,2009,135(1):42-53.
    [94] Ikeda K, Kihara H. Brittle fracture strength of welded joints. Welding Journal,1970,49(3):S106-S114.
    [95]中华人民共和国国家质量监督检验检疫总局. GB/T2975-1998.中华人民共和国国家标准-钢及钢产品力学性能试验取样位置及试样制备.北京:中国标准出版社,1998.
    [96]中华人民共和国国家质量监督检验检疫总局. GB/T228-2002.中华人民共和国国家标准-金属材料室温拉伸试验方法.北京:中国标准出版社,2002.
    [97] British Standards Institution. BS EN1993-3-1. Eurocode3: Design of steel structures: Part3-1: Towers, masts and chimneys–Towers and masts. London: BSI,2006.
    [98] American Society of Civil Enginners. ASCE10-97. Design of latticed steel transmissionstructures. Reston, VA: ASCE,2000.
    [99] Rasmussen K J R. Design of angle columns with locally unstable legs. Journal of StructuralEngineering,2005,131(10):1553-1560.
    [100] Kennedy J B, Murty M K S. Buckling of steel angle and tee struts. Journal of the StructuralDivision, ASCE,1972,98(ST11):2507-2522.
    [101] Kitipornchai S, Lee H W. Inelastic experiments on angle and tee struts. Journal ofConstructional Steel Research,1986,6(3):219-236.
    [102] Al-Sayed S H, Bjorhovde R. Experimental study of single angle columns. Journal ofConstructional Steel Research,1989,12(2):83-102.
    [103] Shi G, Liu Z, Ban H Y, et al. Tests and finite element analysis on the local buckling of420MPa steel equal angle columns under axial compression. Steel and Composite Structures,2012,12(1):31-51.
    [104] ANSYS Inc. Release11.0documentation for ANSYS. Canonsburg, PA: ANSYS Inc.,2005.
    [105]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T700-2006.中华人民共和国国家标准-碳素结构钢.北京:中国标准出版社,2007.
    [106]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T16270-2009.中华人民共和国国家标准-高强度结构用调质钢板.北京:中国标准出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700