航空铝合金厚板初始残余应力及其对铣削变形影响的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国新一代飞机研制中,大量采用整体结构件。整体结构件具有尺寸大、壁薄、加工精度要求高等特点,加工变形是其制造中存在的突出问题之一,它直接制约重点型号工程研制生产的进度和质量。因此,开展航空整体结构件加工变形研究具有重大的现实意义。
     本文作为总装备部“十五”预研项目“复杂结构件加工变形控制技术研究”的主要组成部分,以航空铝合金厚板为对象,研究重点定位在其初始残余应力分布规律及其对数控铣削加工变形的影响。本文所完成的主要工作如下:
     1、铝合金预拉伸厚板内部残余应力的测试方法研究
     针对厚板内部残余应力测试这一技术难题,在现有测试技术研究的基础上,结合铝合金厚板的特点,提出了一种新的测试方法——改进剥层法。运用弹性力学理论对该方法进行了详细推导,为厚板内部残余应力测试提供了一条新途径。
     2、铝合金预拉伸板内部残余应力分布规律的研究
     通过试验研究对改进剥层法测试理论的测试精度及工程实用性进行了分析和评估。在此基础上,首次对国产LY12、美产7050T7451和俄产B95п.ч三种典型的铝合金预拉伸板内部初始残余应力分布进行了测试和对比分析。测试数据为定量预测初始残余应力引起的加工变形奠定了基础。
     3、工件初始残余应力引起铣削变形的机理分析
     应用弹性力学理论推导出了二维连续铣削过程中工件内应力再分布及其引起变形的计算递推公式,并编制了计算软件。解决了初始应力加载、材料去除模拟、约束转换等仿真关键技术,建立了残余应力引起铣削变形的二维有限元仿真模型。用解析法对模型的有效性进行了验证。对实例进行了仿真计算,分析了残余应力引起的加工变形规律,为三维铣削变形分析奠定了基础。
     4、工件初始残余应力引起框类结构件铣削变形的预测分析
     在归纳了三维有限元分析中六面体单元内应力应变关系和实际框类零件加工变形特点的基础上,对框类零件铣削加工变形的三维有限元分析技术进行了深入研究,解决了三维有限元建模、变形值提取、变形特征分析、变形可视化显示等多项关键技术,并进行了试验验证。采用所建立的模型,分析了单框件铣削加工时由于初始残余应力引起的加工变形规律,对不同走刀路径条件下不同侧壁不同位置的变形以及框底的翘曲变形等进行了详细分析,并结合工程实际完成了实例模拟分析。
     5、多因素对框类结构件铣削变形的影响研究
The machining distortion is one of the neck problems during the manufacture of the aero integrated-structure parts. The study work in the dissertation is an important part of the Tenth Five-Year Defence Advanced Research Project of“study on control technology of the machining distortion for complex structure parts”supported by PLA General Armament Department of China. Theoretical analysis and experimental study are carried out on the initial residual stresses and their effects on milling distortion for thick aero-aluminum-alloy plate. The main work completed in the dissertation is as follows.
     1. The measurement method of residual stress distribution in thick aluminum alloy plate is studied.
     Aiming at the difficult problem to measure residual stress distribution in thick plate, a new method is proposed -- modified layer removal method, based on existed measurement theories and according to the characteristics of thick pre-stretched aluminum alloy plate. The new measurement theory is deduced in detail by using elasticity theory. A new approach is provided to measure the residual stress in the thick plate.
     2. The residual stresses in pre-stretched aluminum alloy plates are successfully measured and analyzed.
     The measurement precision and applicability of the modified layer removal method are analyzed and evaluated by experiments. The residual stresses in the thick aluminum alloy plates of LY12, B95п.чand 7050T7451 are measured, and the results are analyzed and compared. The data obtained lay a basis for prediction of the machining distortion caused by the residual stresses.
     3. Mechanism of the milling distortion caused by initial residual stress of workpiece is analyzed.
     Formulae of stress re-distribution and distortion by stress releasing during milling process are deduced by elasticity theory. The calculation software is developed for the formulae. The key problems in 2D FEM simulation such as the initial stress loading, simulation of material removal, constraint transformation, etc. are solved, and 2D FEM simulation model is built to analyze the milling distortion caused by the residual stress. The FEM model is verified by the elasticity theory. Some machining cases are simulated by using of the FEM model. The machining distortion caused by residual stress are analyzed and summarized using the simulation results.
     4. The milling distortion of frame shaped part is predicted and analyzed.
     Based on its characteristic analyzed, the 3D FEM simulation technique for the
引文
[1] 航空制造工程手册总编委员会. 航空制造工程手册(飞机机械加工、框架壳体工艺). 北京:航空工业出版社,1995
    [2] Lequeu P,Lassinec P,Warner T, etal. Engineering for the future: weight saving and cost reduction initiative. Aircraft Eng Aerospace Tech, 2001, 73: 147~158
    [3] 王炎.飞机整体结构件数控加工技术应用中的问题与对策.航空制造工程,1998, 4: 28~30
    [4] 顾诵芬著.航空航天科学技术(航空卷).济南:山东教育出版社,1998
    [5] 查治中,杨彭基.数控技术在飞机制造中的应用.北京:国防工业出版社,1992
    [6] 王立涛,柯映林,黄志刚等.航空结构件铣削残余应力分布规律的研究.航空学报,2003, 24(3): 286~288
    [7] 王立涛,柯映林,黄志刚等.基于神经网络的数控铣削变形预测.机械科学与技术,2004, 23(2): 209~211
    [8] 武凯.航空薄壁件加工变形分析与控制研究[博士学位论文].南京航空航天大学,2002
    [9] Sun J, Ke Y L, Kang X M, etal. Study on technology strategies for guarantee machining precision of large-scale integrated aircraft parts[C]. Proc of 6th ICPMT, Xi’an, 2002: 695~701
    [10] 孙杰,柯映林,吴群等.大型整体结构件数控加工变形校正关键技术研究.机械工程学报,2003, 46(8): 345~348
    [11] 康小明,孙杰,苏财茂等.飞机整体结构件加工变形的产生和对策.中国机械工程,2004, 15(13): 1143~1146
    [12] 王秋成,柯映林.航空高强度铝合金残余应力的抑制与消除.航空材料学报,2002, 22(3): 59~62
    [13] Kang X M, Ke Y L, Sun J, etal. Research on the mechanism of machining distortions in manufacturing large integrated aircraft parts[C]. Proc of 6th ICPMT, Xi’an, 2002: 661~664
    [14] Schultz R W, Karabin M E. Characterization of machining distortion by strain energy density and stress range. Materials Science Forum, 2002, 404-407: 61~68
    [15] Totten G E, Mackenzie D S. Aluminum quenching technology: a review. Materials Science Forum, 2000, 331-337: 589~594
    [16] 董辉跃,柯映林,孙杰等.铝合金厚板淬火残余应力的有限元模拟及其对加工变形的影响. 航空学报,2004, 25(4): 429~432
    [17] 陆彬. 克服整体薄壁板加工变形的方法. 成飞科技,1998, 2: 34~35
    [18] Aksel B, Arthur W R, Mukherjee S. A study of quenching: Experiment and modeling. Journal of Engineering for Industry, 1992, 114: 309~316
    [19] Ramakrishnan R I. Quench analysis of aerospace components using FEM. Proceeding of the ICQCD, Chicago, Illiois, USA, 1992: 235~242
    [20] Tanner D A, Robinson J S. Residual stress prediction and determination in 7010 aluminum alloy forgings. Experimental mechanics, 2000, 40(1): 75~82
    [21] 陈昌麒,刘培英,周铁涛.铝合金热处理计算机模拟的一些进展. 材料热处理学报,2001, 1: 55~58
    [22] 李利.铝合金板淬火残余应力的拉伸消除方法. 轻合金加工技术,1999, 27(5): 16~18
    [23] 海朝智. LY12 合金预拉伸厚板残余应力的研究. 轻合金加工技术,1995, 23(1): 16~18
    [24] 朱伟.7075 铝合金厚板淬火残应力的研究[硕士论文]. 中南工业大学,2002
    [25] 曹金荣.冷变形对 7075 铝合金模锻件淬火残余应力的影响[硕士论文]. 中南工业大学,1999
    [26] 范桂彬,张文尚.有机淬火介质在 7075 铝合金上的应用. 材料工程,1994, (1): 34~42
    [27] Escobar K, Gonzalez B, Ortiz J, et al. On the residual stress control in aluminum alloy 7050. Materials Science Forum, 2002, 396-402: 1235~1240
    [28] Bains T. Residual stress reduction in aluminum die forgings. Proceedings of the 1st International Non-Ferrous Processing Technology Conference, Missourt, 1997: 221~231
    [29] Senatorova G, Sidelnikov V V, Mihailova I F, et al. Low distortion quenching of aluminum alloys in polymer medium. Materials science forum, 2002, 396-402: 1659~1664
    [30] Heymes F, Commet H, Dubost B, etal. Development of new Al alloys for distortion free machined aluminum aircraft components. Proceedings of the 1st international non-ferrous processing and technology conference, 1997: 249~255
    [31] 王秋成,柯映林. 深冷处理消除 7050 铝合金残余应力的研究. 浙江大学学报(工学版),2003, 37(6): 748~751
    [32] 杨久强. 高强度变形铝合金残余应力的消除. 锻压技术,1995, (2): 22~24
    [33] 鹿安理,唐非,罗湘军等. 一种降低残余应力的新方法——脉冲磁处理法. 中国机械工程,1988, 9(4): 40~42
    [34] 姚秦秋. 减小铝合金零件加工变形的途径. 航空制造工程,1992, (5): 15~17
    [35] 王志刚,何宁,武凯等. 薄壁零件加工变形分析及控制方案. 中国机械工程,2002, 13(2): 114~117
    [36] Armarege E J A, Deshpande N P. Force prediction model and CAD/CAM software for helical tooth milling processes. International Journal of Production Research, 1993, 31(8): 1991~2009
    [37] Montgomery D, Altintas Y. Mechanism of cutting force and surface generation in dynamic milling. ASME Journal for industry, 1991, 113: 160~168
    [38] Kulkarni N M, Chandra A, Jagdale, S S. A dynamic model for end milling single point cutting theory. Journal of Manufacturing Science and Engineering, 1996, 118: 272~278
    [39] Klamecki B E. Incipient chip formation in metal cutting[PhD]. University of Illinosi, 1973
    [40] Howerton D H. An experiment and numerical investigation of orthogonal machining of aluminum 6061T6[PhD]. North Carolina State University, 1989
    [41] Hsu H C. An elasto-viscoplastic finite element model of orthogonal metal cutting for residual stress prediction [PhD]. North Carolina State University, 1992
    [42] Chien W T. A numerical and experimental investigation of the sticking and sliding contact regions at the chip-tool interface in machining aluminum 6061T6 [PhD]. North Carolina State University, 1992
    [43] Shin S H. Prediction of the dimensional instability resulting from machining of residual stressed components [PhD]. Taxas Technology University, 1995
    [44] Hornbach D, Prevey P. Development of Machining Procedures to Minimize Distortion During Manufacture. Proc of 17th Heat Treating Society Conference and Exposition, 1998: 13~18
    [45] Bates C E. Selecting quenchants maximize tensile properties and minimize distortion in aluminum parts. Journal of Heat Treat, 1987, 5: 27~40
    [46] Jaroslav M. FEM and BEM analysis and modeling of residual stresses a bibliography. Finite elements in analysis and design, 2001, 37: 253~262
    [47] 魏丽,郑联语.改进薄壁零件数控加工质量的进给量局部优化方法. 航空精密制造技术, 2001, 37(4): 10~14
    [48] 张向伟. 锻铝零件在机械加工及过盈装配中的变形分析和工艺控制. 西飞科技,2002, (3): 32~33
    [49] 郭诚志,孟凡新,付燕松. 框接头的数控加工.航天工艺,1998, (5): 12~15
    [50] 马志清. 铝合金超薄结构件高速 NC 铣削技术. 西飞科技,2000, (4): 26~30
    [51] 张希文, 杨德喜, 杨晓偏. 铝合金薄壁零件的加工工艺及变形控制. 机械制造, 1994, (1): 28~29
    [52] 龚彬,刘亨,闫树仁. 高速铣削时变形规律分析. 大电机技术,1994, 4: 38~40
    [53] 李红卫. 大截面型材零件拉伸成形工艺. 西飞科技, 2002, 2: 29~31
    [54] 胡华南,周泽华,陈澄洲. 预应力加工表面残余应力的理论分析. 华南理工大学学报,1994, 22(2): 1~9
    [55] 戴一帆. 复杂形状薄壁零件加工的综合质量控制. 国防科技大学学报,1996, 18(3): 59~62
    [56] 刁成顺,王印凯.FT8 大型薄壁环形件的加工. 航空制造工程,1996, (6): 10~14
    [57] [日]米谷茂.残余应力的生产和对策.北京:机械工业出版社,1983: 60~67
    [58] Wihers P J, Bhadeshia K D H. Overview residual stress part 1: measurement techniques. Materials Science and Technology, 2001, 17 (4): 355~365
    [59] 何家文,徐可为,李家宝. 残余应力研究概况.国际学术动态,1998, (4): 775-76
    [60] Jian L. Handbook of measurement of residual stresses. Society for experimental mechanics, 1996
    [61] ASTM E915-94. Standard test method for determining the effective elastic parameter for X-ray diffraction measurements of residual stress.
    [62] American Stress Technologies, Inc. AST X2001-G2 X-Ray Stress Analyzer User’s Manual v3.30, Pittsburgh.,PA, USA, 2001.
    [63] Birger L A. Zavodskya Laboratoriya, 1962,
    [64] Preey P S. Problems with non-destructive surface X-ray diffraction residual stress measurement. ASM international, materials park, 1991: 47~54
    [65] Preey P S. Current applications of X-ray diffraction residual stress measurement. ASM international, materials park, 1996: 103~110
    [66] Segawa T, Sasahara H, Tsutsumi M. A study of compressive residual stress on the machined surface of aluminum alloy. Proc of 6th ICPMT, Xi’an, 2002: 683~688
    [67] Wang S H, Zuo D W, Wang M, et al. Modified layer removal method for measurement of residual stress distribution in thick pre-stretched aluminum plate. Trans. of NUAA, 2004, 21(4): 286~290
    [68] 郑联语,汪叔淳. 薄壁零件数控加工工艺改进方法. 航空学报,2001, 22(5): 424~428
    [69] 黄志刚,柯映林.飞机整体框类结构件铣削加工的模拟研究.中国机械工程,2004, 15(11): 991~995
    [70] 孙杰,柯映林,康小明.大型整体结构件数控加工变形的安全校形理论研究.中国机械工程,2003, 14(7): 1441~1444
    [71] Soete W, Vancrombrugge R. An industrial method for the determination of residualstresses. Proc. SESA. 1950, 8(1): 17~28
    [72] Nickola W E. Wihers P. Subsurface residual stress evaluation by the hole drilling method. Proc. Conference on experimental mechanics. New Orleans, 1986, 8~13:47~58
    [73] Schajer G S. Measurement of non-uniform residual stress using the hole-drilling method. Journal of Engineering Materials and Technology, 1988, 110(3): 339~349
    [74] Andersen L F. Residual stresses and deformation in steel structures [PhD], Technical University of Denmark, 2000.
    [75] Gremaud M, Cheng W, Finnie I, et al. The compliance measurement of near surface residual stresses-analytical background. J. Eng. Mat.& Tech. , 1994, 116(5): 50~55.
    [76] 王秋成. 航空铝合金残余应力消除及评估技术研究[博士论文]. 浙江大学,2003
    [77] 陈明,袁人炜,凡孝勇等. 三维有限元分析在高速铣削温度研究中应用. 机械工程学报,2002, 38(7): 76~78
    [78] Vaidyanathan S, Finnie I. Determination of residual stress intensity factor measurements. Journal of Basic Engineering, 1971, 93: 242~246
    [79] 朱甫金.残余应力的测量与应用[博士论文].南京航空航天大学,1998
    [80] Cheng W, Finnie I, Vardar O. Measurement of Residual Stress Near the Surface Using the Crack Compliance Method. Journal of Engineering Materials and Technology, 1985, 106(3): 181~185
    [81] Kang K J, Song J H, Earmme Y Y. A method for the measurement of residual stress using a fracture mechanics approach. Journal of Strain Analysis. 1989, 24(2): 23~30
    [82] Cheng W, Finnie I. On the prediction of stress intensity factors for axisymmetric cracks in thin-walled cylinders from plane strain solutions. Journal of Engineering material and technology, 1985, 107: 227~231
    [83] Yazdi S R, Retraint D, LU J. Study of through-thickness residual stress by numerical and experimental techniques. Journal of Strain Analysis, 1998, 33(6): 449~458
    [84] Mcgrann R T R., Rybicki E F, Shadley J R. Applications and theory of the modified layer removal method for the evaluation of through-thickness residual stresses in the thermal spray coated materials. ICRS-5, Sweden, 1997: 994~999
    [85] Cheng W, Finnie I. K1 solutions for an edge cracked strip. Engineering Fracture Mechanics, 1988, 31: 201~207
    [86] Schindler H J. Determination of residual-stress distributions from measured stress intensity factors. Int. Journal of Fracture, 1996, 74(2): 23~30
    [87] 沈豫立,程晓琰.金属零件热处理应力与变形的计算. 武汉: 华中理工大学出版社,1993
    [88] Somers M A J, Mittemeijer E J. Development and relaxation of stress in surface layers;composition and residual stress profile sinγ′-Fe4N1-x layers on α-Fe substrates.Metal Trans A, 1990, 21A(1): 189
    [89] 久野-土肥. 北大工学部研究报告,1953
    [90] 王树宏,左敦稳,润长生等. LY12、В95п.ч 和 7050 铝合金预拉伸厚板内部残余应力分布特征评估与分析. 材料工程,2004, (10): 32~35
    [91] 郑鹏,郑玉珍,魏晖等. 2324 铝合金厚板内部残余应力分布特征及其影响. 航空学报,1996, 17(3): 330~336
    [92] 王树宏,马康民,王宗荣. 航空铝合金厚板内部残余应力分布测试方法研究. 空军工程大学学报,2004, 4(12): 93~95
    [93] ASTM Standard Test Method for Determining Residual Stresses by the Hole-drilling Streain-Gage Method ASTM E837-99. American Society for Testing and Materials.
    [94] 中华人民共和国船舶行业标准 CB3395-92.《残余应力测试方法——钻孔应变释放法》
    [95] Prime M B, Hill M R. Residual stress, stress relief, and inhomogeneity in aluminum plate[J]. Scripta Materialia, 2002, 46(1): 77~82
    [96] 王树宏,左敦稳,黎向锋等. 预拉伸铝合金厚板 7050T7451 内部残余应力分布测试理论及试验研究. 应用科学学报,2005, 23(2): 192~195
    [97] Rendler N J,Vigness I. Hole drilling strain gauge method of measuring residual stress. Experimental Mechanics, 1966, 16(12): 577~586
    [98] Hauk V, Kruger B. A new approach to evaluator streep stress gradients principally using layer removal. Materials science forum, 2000, 347-359: 80~82
    [99] Jakub K, Jaak V. Layer growing/removing method for the determination of residual stresses in inhomogeneous cylinders. ICRS-5, Sweden, 1997: 732~737
    [100] Nawwar A M, Shewchuk J. On the measurement of residual-stress gradients in aluminum-alloy specimens. Experimental Mechanics, 1978, 14(3): 269~276
    [101] Duqennoy M, Ouaftouh M, Ourak M. Determination of stresses in aluminum alloy using optical detection of rayleigh waves. Ultrasonics, 1999, 37: 365~372
    [102] 王世中,欧阳平平. 钻孔法测量残余应力时释放系数的标定与计算. 航空学报,1990, 11(5): A301~A304
    [103] Persson C, Jonsson G, Bergmark A. Measurement of residual stresses profiles with the layer removal technique. ICRS-5, Sweden, 1997: 817~822
    [104] 袁荣发,伍尚礼. 残余应力测试与计算. 长沙:湖南大学出版社,1987
    [105] 徐芝纶. 弹性力学. 北京:人民教育教育出版社,1979
    [106] 周鸿章. 铝合金预拉伸板. 铝加工,1999, 22(3): 16~19
    [107] 中国航空材料手册编辑委员会.中国航空材料手册(铝合金 镁合金 钛合金)分册. 北京:中国标准出版社,1989
    [108] 廖乐杰译.冷轧铝板的残余应力.铝加工,1991(5): 36~43
    [109] 邓至谦,周善初. 金属材料及热处理. 长沙:中南工业大学出版社,1989
    [110] Boyer J C, Boivin M. Numerical calculations of residual-stress relaxation in quenched plates. Materials Engineering and Performance, 2002, 11(1): 786~792
    [111] 曹金荣,杨杨,王楠林.7075 铝合金淬火残余应力的计算与测定. 铝加工,1998, 21(3): 42~44
    [112] Jeanmart P, Bouvaist J. Finite element calculation and measurement of thermal stresses in quenched plates of high strength 7075 aluminum alloy. Materials Science Technology, 1985, 1: 765~769
    [113] Lin G Y, Zhang H, Zhu W, et al. Residual stress in quenched 7075 aluminum alloy thick plates. Trans. Nonferrous Met. Soc. China, 2003, 13(3): 641~644
    [114] Jeanmart P, Bouvaist J. Finite element calculation and measurement of thermal stresses in quenched plates of high-strength 7075 aluminum alloy. Materials Science and Technology, 1985, 23(5): 765~769
    [115] 毛翔. 铝合金预拉伸板残余应力的有限元数值模拟计算. 轻金属,1999, (5): 50~52
    [116] Boyer J C, Boivin M. Numerical calculations of residual—stress relaxation in quenched plates. Materials Science and Technology, 1985, 1: 786~792
    [117] 刘春成.大型锻件淬火过程的实验研究和数值模拟[博士学位论文]. 清华大学,1999
    [118] Rasouli S, Lu J. Simulation of quenching and fatigue relaxation of residual stresses in aluminum parts. ICRS-5, Sweden, 1997: 490~495
    [119] 曾苏民. 降低超厚铝合金锻件残余应力的试验. 中国有色金属学报,1996, 6(3): 67~70
    [120] Richard Y H. Residual stress analysis of aircraft aluminum forgings. Advanced Materials and Processes, 2002, 7 : 57~60
    [121] 王秋成,柯映林,章巧芳. 7075 铝合金板材残余应力深度梯度的评估. 航空学报,2003, 24(4): 336~338
    [122] Ghanem F, Sidhom H, Braham C, et al. An engineering approach to the residual stresses due to electric-discharge machining process. ICRS-5, Sweden, 1997: 157~162
    [123] Kurt J, Devor R E, Kapoor S G. Machining-induced residual stress: experimentation and modeling. Transactions of the ASME—Journal of Manufacture Science and Enginerring, 2000, 122: 20~30
    [124] Liu C R., Barash M M.. Variables governing patterns of mechanical residual stress in amachined surface. Transactions of the ASME: Journal of Engineering for Industry, 1982, 104: 257~264
    [125] Sai W B, Salah N B, Lebrun J L. Influence of machining by finishing milling on surface characteristics. International Journal of Machine Tool & Manufaceture, 2001, 43: 443~450
    [126] Fuh K H, Wu C F. A residual-stress model for the milling of aluminum alloy (2014-T6). Journal of Materials Processing Technology, 1995, 51: 87-105
    [127] Henriksen E K. Residual stresses in machined surfaces. Transactions of the ASME, 1951, 73: 69~76
    [128] 胡华南,周泽华,陈澄洲. 切削加工表面残余应力的理论预测. 中国机械工程,1995, 6(1): 48~51
    [129] Smith D J, Farrahi G H., Zhu W X., etal. Experimental measurement and finite element simulation of the interaction between stresses and mechnical loading. International Journal of Fatigue, 2001,23: 293~302
    [130] Rao B, Shin Y. Analysis on high-speed face-milling of 7075-T6 aluminum using carbide and diamond cutters. International Journal of Machine Tool & Manufaceture, 2001, 87: 1763~1781
    [131] Guo H, Zuo D W, Wang S H, et al. Simulation of effect of clamping on residual stress of aero-componets by means of FEM. Proc. of 7th ICPMT, Suzou, 2004:730~734
    [132] Heinz A. Haszler C. Recent development in aluminium alloys for aerospace applications. Materials Science and Engineering, 2000, A280: 102– 107
    [133] 陈秉均.磨削表面残余应力电解腐蚀测定法研究.中国机械工程,1994, 5(2): 16~18
    [134] Brinksmeier E, Cammett J T, Konig W, Leskovar P, et al. Residual stresses—measurement and causes in machining processes. Annals of the Cirp, 1982, 32(2): 491~510
    [135] 丁大钧. 薄板按弹性和塑性理论计算. 南京:东南大学出版社,1991
    [136] 王勖成,邵敏. 有限单元法基本原理和数值方法. 北京:清华大学出版社,1997
    [137] 卓家寿. 弹性力学中的有限元法. 北京:高等教育出版社,1987
    [138] Petrus G J, Krauss T M., Ferguson B L. Distortion prediction using the finite element method. 1st International Conference on Quenching &Control of Distortion, USA, 1992: 283~286
    [139] Wang Q C, Ke Y L. Prediction of residually stress-induced warpage while machining aircraft monolithic parts. Proc of 6th ICPMT, Xi’an, 2002: 707~710
    [140] 唐文嘉. 机械加工过程残余应力与变形的研究分析. 工艺研究,1999, (1): 50~54
    [141] 毛凤兰. 解决铝板化铣变形的途径. 西飞科技,1995, (3): 34~36
    [142] Shirakashi T. Analytical prediction of distortion caused by residual stress and its improvement. Proc of 6th ICPMT, Xi’an, 2002: 22~26
    [143] 武凯,何宁,姜澄宇等.有限元技术在航空薄壁件立铣变形分析中的应用. 应用科学学报,2003, 21(1): 68~71
    [144] Milley, E R, Lu J. Prediction of residual stress relaxation in three-dimensional structures under tensile and torsional loading. ICRS-5, Sweden, 1997: 424~429
    [145] 黄志刚,柯映林,董辉跃.框类整体结构件铣削加工顺序的有限元模型. 浙江大学学报(工学版),2005, 39(3): 368~372
    [146] 郭魂,左敦稳,王树宏等.拉伸装夹对航空框类零件加工变形影响的有限元分析.南京航空航天大学学报,2005, 37(s): 72~76
    [147] Guo H, Zuo D W, Wang S H, et al. The application of FEM technology on the deformation analysis of the aero thin-walled frame shape workpiece. Key Engineering Materials., 2006, 315-316: 174~179
    [148] 张幼桢. 金属切削原理及刀具. 北京:国防工业出版社,1990
    [149] 杨勇,柯映林,董辉跃.金属切削加工中航空铝合金板材的本构模型. 中国有色金属学报,2005, 15(6): 854~859
    [150] Guo H, Zuo D W, Wang S H, et al. Effect of tool-path on milling accuracy under clamping. Trans. of NUAA, 2005, 22(3): 234~239.
    [151] Yuan Z J, Zhou M, Dong S. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining. Journal of Materials Processing Technology. 1996,62 : 327~330
    [152] Tsai J S, Liao C L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces. Journal of Materials Processing Technology, 1999, 94: 235~246
    [153] Liao Y G, Hu S J. An integrated model of a fixture and workpiece system for surface quality prediction. The International Journal of Advanced Manufacturing Technology, 2001, 17: 810~818
    [154] Wang Y F, Wong Y S, Fuh J Y H.. Off-line modeling and planning of optimal clamping forces for an intelligent fixtureing system. International Journal of Machine Tools & Manufacture,1999, 39: 253~271
    [155] 艾兴.高速加工技术及其应用研究. 中国工程科学,2000, 2(11): 40~51
    [156] Edward C, Meter D. Fast support layout optimization. International Journal of Machine Tools& Manufacture, 1998, 38: 1221~1239
    [157] 王立涛,柯映林,黄志刚.航空铝合金 7050-T7451 铣削力模型的实验研究.中国机械工程,2003, 14(19): 1684~1687
    [158] 王志刚,何宁,张兵等. 航空薄壁零件加工变形的有限元分析. 航空精密制造技术,2000, 36(6): 7~11
    [159] 董辉跃,柯映林. 铣削加工中薄壁件装夹方案优选的有限元模拟. 浙江大学学报, 2004, 38(1): 17~21
    [160] Luc Masset, Jean-Francois Debongnie. Machining processes simulation: specific finite element aspects. Journal of Computational and Applied Mathematics, 2004, 168: 309~320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700