隧道超欠挖异形结构围岩压力在线监测与评价技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道初期支护在施工阶段出现失效而导致坍塌的事故时有发生,经常造成人员被困甚至伤亡。实际支护结构的几何形态及围岩压力与理论值存在较大偏差,这是造成初期支护在施工期失效坍塌的重要原因。因此,采用实测的几何形态参数和全断面实测围岩压力进行异形支护结构的分析和评价,是识别和预防初期支护施工期失效的重要途径。论文结合江西省交通科技重点项目“异形支护结构围岩压力在线监测与评价技术”(项目编号:2009-21),在实体工程初期支护几何形态和围岩压力实测统计分析的基础上,对异形支护结构的力学特性进行了数值模拟分析,研究开发了全断面围岩压力在线监测系统,以此为手段建立了异形支护结构的施工期可靠性分析和围岩压力安全性预测的方法。主要研究内容及成果如下:
     (1)通过实体工程的测量和统计分析,分别研究了隧道支护结构环向变异、纵向变异以及实测围岩压力的量值及统计规律。结果表明:支护结构环向几何变异幅度很大,影响因素复杂,随机概率模型及参数不稳定;支护结构纵向几何变异主要取决于施工管理水平,符合正态分布;约束状态下的实测围岩压力规律性差,量值及分布均与理论值存在较大偏差。
     (2)采用ANSYS有限元软件,对隧道支护结构环向变异和纵向变异的力学效应进行了对比分析,揭示了不同条件下异形支护结构的受力特性。重要结论包括:使支护结构拱部变薄、边墙变厚的变异对结构承载有利,反之不利,实践中应控制拱顶至拱肩段的超挖,限制边墙段的欠挖;隧道拱肩段的超欠挖都对支护结构的承载有十分不利的影响,应特别注意控制;对于偏压隧道,大荷载一侧拱顶至拱肩的超挖对承载不利,应注意控制,边墙段(特别是小荷载侧)的适度超挖对结构承载有利。
     (3)针对用压力盒测量围岩压力的不足,基于山形应变传感器研制了一种分布式压力传感器,构建了隧道全断面围岩压力在线监测系统,首次实现了工程意义上的全断面围岩压力实时监测和评价。该系统的主要性能指标为:压力信息点的环向间距小于20cm;单洞隧道300m施工区段内布设15个监测断面时,巡检周期小于5分钟。
     (4)基于实测支护结构的几何形态参数和全断面围岩压力,建立了异形支护结构的变截面双铰拱力学模型,推导了截面内力的计算公式,编写了计算程序,实现了异形支护结构全断面围岩压力的快速分析。
     (5)建立了仅依赖全断面围岩压力随机性的异形支护结构施工期可靠度理论,采用蒙特卡罗随机抽样方法实现了施工期可靠性的快速分析;基于灰色系统理论,建立了全断面各压力信息点的压力预测模型,提出了围岩压力安全性预测的方法。图57幅,表48个,参考文献139篇
The accident of supporting structure become invalid and lead to failure often happens during tunnel construction, sometime will caused injuries and deaths. There exist big difference between supporting structure geometry and earth pressure theory, and this is the main reason why supporting structure become invalid. On the base of situ monitor and evaluation technology for surrounding rock pressure caused by overbreak or underbreak during tunnel construction is an important approach to distinguish and forecast supporting structure become invalid. Combined with important communication project of Jiangxi province" situ monitor and evaluation technology for earth pressure of surrounding rockmass caused by overbreak or underbreak of dysmorphism tunnel structure"(No.:2009-21), and on the base of situ monitor and statistics; census; numerical statement; vital statistics: census; vital statistics, a on line monitor system of whole section earth pressure has been developed, and then an reliability analysis and safety forecast method for dysmorphism tunnel structure has been established in this paper. The main content includes followings:
     (1) On the base of situ monitor and statistics, the regular pattern of circumferential, longitudinal deformation profile and earth pressure of dysmorphism tunnel structure has been disclosed. The results show that, range of circumferential deformation is big, and influence factors are complicated, and random probability model is instable; under restrict conditions, the regular pattern of situ earth pressure becomes bad, compared with theoretical value, the monitor value has big difference.
     (2) The regular pattern of circumferential, longitudinal deformation profile has been disclosed with ANSYS. The conclusion has been gained, i.e. if the are area become thinner, and side wall become thicker, the mechanical performance will be better; during construction, the overbreak in the area between arc roof and spandrel and the underbreak in the area of side wall should be restricted.
     (3) According to mountain deformation sensor, an new pressure dispersing sensor has been made to monitor the earth pressure, and an new on line monitoring system of earth pressure of whole tunnel section has been established, this has realized the earth pressure of whole tunnel section will be monitored in the whole time. The index of this system are:the circular distance among data sites smaller than20cm, in single300m tunnel, the number of the monitor sections is15,inspection cycle is shorter than5minutes.
     (4) On the base of geometry parameters of supporting structures and earth pressure of whole section, the two hinged arch mechanics model of dysmorphism supporting structure has been established, and section inner stress calculation formula has been inferred, the calculation program has been compiled. The surrounding rock pressure of dysmorphism supporting structure will be fast monitored.
     (5) Combined with Monte Carlo random theory, reliability model to analyze the surrounding rock pressure of dysmorphism supporting structure has been established. On the base of Grey system, forecast model of surrounding rock pressure in dysmorphism supporting structure has been put forward, and an effective approach to predict the rockmass safety has been formed.
引文
[1]马宏伟.液压凿岩台车开挖隧道控制超欠挖施工技术[J].隧道建设,2009,02:254-256.
    [2]Peck R B. Deep excavations and tunneling in soft ground[A]. Proc.7th Int. Conf. SMFE. Mexico City. State of the ArtVolume[C].1969:225-290.
    [3]Maerz, N.H.; Ibarra, J.A.; Franklin, J.A.. Overbreak and underbreak in underground openings part 1:measurement using the light sectioning method and digital image processing[J]. Geotechnical and Geological Engineering, 1996,14(4):307-323.
    [4]Ibarra, J.A.; Maerz, N.H.; Franklin, J.A.. Overbreak and underbreak in underground openings part 2:causes and implications[J]. Geotechnical and Geological Engineering,1996,14(4):325-340.
    [5]Chakraborty, A.K.; Murthy, V.M.S.R.; Jethwa, J.L.. Blasting problems in underground constructions through Deccan Trap formation:some experiences at Koyna hydro-electric project, stage Ⅳ[J]. Tunnelling and Underground Space Technology,1996,11(3):311-324.
    [6]周佳媚,高波,李志业.TBM施工隧道超欠挖对围岩及支护结构影响分析[J].地下空间,2003,02:124-127+223.
    [7]王承山.隧道超欠挖对隧道成本的影响及控制途径[J].隧道建设,2006,04:13-15.
    [8]王志勇.探讨隧道超欠挖及其成本控制—太行山隧道超欠挖浅析[J].铁道标准设计,2007,04:28-30.
    [9]Wang, Mingnian; Wan, Jianglin; Yang, Qixin Mechanical state analysis of tunnel overbreak and underbreak[J]. High Energy Physics and Nuclear Physics,1996,20(12):577-582.
    [10]Hyung-Jun Kim, Heung-Youl Kim, Jae-Sung Lee, Ki-Hyuk Kwan. An Experimental Study on Thermal Damage and Spalling of Concrete Under Loading Conditions in a Tunnel Fire[J]. Journal of Asian Architecture and Building Engineering,2011,10(2):375-82.
    [11]Chunmei Mu, Qing Zhang, Zhikui Liu, Wangxing Li. Numerical simulation of the tunnel blasting process in weak intercalated layer[J]. Advanced Materials Research,2011,v 314-316, pt.1:452-6.
    [12]Costopoulos, S.D. Overbreak risk assessment in the Athens metro TBM tunnels[J]. Geotechnical Special Publication,2004,126 (1)1:1516-1523.
    [13]Dey Kaushik, Murthy, V.M.S.R.. Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class [J]. Tunnelling and Underground Space Technology,2012,28(1):49-56.
    [14]马云峰.超挖对地下洞室围岩稳定性及支护结构内力影响研究[D].西安:西安理工大学,2009.
    [15]高文学,刘冬,赵鑫.隧道超欠挖及振动危害控制技术[A].中国爆破新技术(Ⅱ)[C].中国工程爆破协会、中国力学学会,2008:4.
    [16]丁泰山.超欠挖状态下地下洞室围岩稳定性数值分析[D].西安:西北工业大学,2007.
    [17]佘健,王国超,邓国宏.石黄隧道毛洞的应力分布规律及可靠度计算[J].矿业安全与环保,2001,02:10-13.
    [18]Sunuwar, S.C. Overbreak problem in the inclined pressure shaft of the Khimti 1 Hydropower Project in Nepal[J]. World Tunnelling,2003,16(6):241-242.
    [19]De Graaf, P.J.H., Bell, F.G. The delivery Tunnel North, Lesotho Highlands Water Project[J]. Geotechnical and Geological Engineering,1997,15(2): 95-120.
    [20]Chakraborty, A.K., Jethwa, J.L., Paithankar, A.G. Effects of joint orientation and rock mass quality on tunnel blasting[J]. Engineering Geology,1994,37(3-4): 247-262.
    [21]Schafer, M., Lukajic, B., Pintabona, R., Kritzer, M., Switalski, R., Janosko, S. Final tunnel liner at mill Creek 3 project-case study[J]. North American Tunneling 2008 Proceedings,2008,9th North American Tunneling Conference, NAT 2008:800-804.
    [22]Walsum E.van. Tunnel technique rediscovered[J]. Tunnels and Tunnelling International,1991,23(5):60-62.
    [23]Sun Shao-rui, Wu Ji-min; Wei Ji-hong.Research on relation among surrounding rock classification, tunnel radii and overbreak-underbreak of tunnels[J]. Rock and Soil Mechanics,2005,26(8):1278-1282.
    [24]刘万忠,吴汉明.关于隧洞控制爆破的初步试验研究[J].水利水电技术,1965,12:44-50+59.
    [25]吕俊育.对隧道施工中超、欠挖问题的探讨[J].铁道建筑,1988,08:7-10.
    [26]Mahtab, M.A.; Rossler, K.; Kalamaras, G.S.; Grasso, P. Assessment of geological overbreak for tunnel design and contractual claims [J]. International journal of rock mechanics and mining sciences & geomechanics abstracts, 1997,34(3-4):586.
    [27]Mandal, S.K.; Singh, M.M. Evaluating extent and causes of overbreak in tunnels[J]. Tunnelling and Underground Space Technology,2009,24(1):22-36.
    [28]Kim, Yangkyun; Moon, Hyun-Koo. Application of the guideline for overbreak control in granitic rock masses in Korean tunnels [J]. Tunnelling and Underground Space Technology,2013,35:67-77.
    [29]Murthy, V.M.S.R.; Dey, Kaushik. Predicting overbreak from blast vibration monitoring in a lake tap tunnel-A success story[J]. Fragblast, 2003,7(3):149-166.
    [30]Schmitz, R.M.; Viroux, S.; Charlier, R.; Hick, S. The role of rock mechanics in analysing overbreak:Application to the Soumagne tunnel [J]. Proceedings of the International Symposium of the International Society for Rock Mechanics, Eurock 2006-Eurock 2006 Multiphysics Coupling and Long Term Behaviour in Rock Mechanics,2006:631-636.
    [31]Lee, Tai-Ro; Kim, Dong-Hyun; Seo, Young-Hwa. The development of methods for minimizing the overbreak in tunnel blasting[J]. Proceedings of the Annual Conference on Explosives and Blasting Technique,2003,Ⅱ:57-68.
    [32]Singh, S. Paul; Xavier, Peter. Causes, impact and control of overbreak in underground excavations[J]. Tunnelling and Underground Space Technology, 2005,20(1):63-71.
    [33]Konya, C. J.; Walter, E. J. Rock Blasting and Overbreak Control[J]. National Highway Inst., Mc. Lean,1991, A:444.
    [34]Mandal, S.K. Parameters controlling blast-induced damage and overbreak[J]. Journal of Mines, Metals and Fuels,2012,60(1-2):6-16+27.
    [35]王东元.用FFTA方法对隧道超欠挖影响因素的分析[A].中国中南地区模糊数学与系统分会.模糊数学和系统成果会论文集[C].中国中南地区模糊数学与系统分会,1991:4.
    [36]李小龙.公路隧道爆破掘进超欠挖的原因分析及施工对策[J].资源环境与工程,2011,02:126-129.
    [37]王良国.公路隧道超欠挖原因分析及控制措施[J].中国新技术新产品,2010,18:53-54.
    [38]苏永华,赵明华,姚爱军.地下坑道轮廓超挖的随机特征[J].湖南大学学报(自然科学版),2005,03:56-60.
    [39]肖云华,王清,陈剑平,等.隧道围岩超欠挖与节理和洞轴线之间的关系[J].吉林大学学报(地球科学版),2008,03:455-459.
    [40]张鹏,陈剑平,张丽,等.隧道围岩断面轮廓分形维数与节理参数关系[J].岩石力学与工程学报,2012,S1:2745-2750.
    [41]孙少锐,吴继敏,魏继红.隧洞围岩分类与洞径和超欠挖之间的关系研究[J].岩土力学,2005,08:1278-1282.
    [42]李兵.板岩隧道光面爆破参数现场优化试验[J].公路交通科技(应用技术版),2011,04:183-187.
    [43]曹勇.杜家山千枚岩地质公路隧道超欠挖效果控制[J].铁道建筑技术,2012,03:36-39.
    [44]刘四新.大岩洞隧道中硬岩层超欠挖控制与分析[J].路基工程,2009,04:197-198.
    [45]张运良,曹伟,王剑,等.水平层状岩体隧道超欠挖控制爆破技术[J].铁道科学与工程学报,2010,05:70-74.
    [46]黄金旺.近水平红砂岩隧道钻爆法施工超欠挖控制技术研究[D].长沙:中南大学,2010.
    [47]李治国,万姜林.云台山隧道水平沉积岩层控制超欠挖技术研究[A].中国土木工程学会隧道及地下工程学会第八届年会论文集[C].中国土木工程学会隧道及地下工程学会、中国铁路工程总公司、铁道部隧道工程局、铁科院西南分院,1994:9.
    [48]张鹏,陈剑平,赵安平,等.隧道围岩断面轮廓分维数的小波分析算法及应用[J].工程地质学报,2011,05:669-673.
    [49]肖云华,陈剑平,张鹏,等.隧道超欠挖断面轮廓分形特征[J].吉林大学学报(地球科学版),2010,01:153-158.
    [50]苏永华,孙晓明,赵明华.隧道围岩超挖的分形特征研究[J].中国矿业大学学报,2006,01:89-93.
    [51]周宏,陈吉森,吴继敏.基于粗糙度的连拱隧道开挖断面线分析[J].地下空间与工程学报,2006,02:259-262.
    [52]张丰帆,窦立军,王胤.基于参数研究建立的隧道爆破超欠挖量预测模型[J].长春工程学院学报(自然科学版),2007,04:21-23.
    [53]孙少锐.裂隙岩体地下洞室超欠挖预测及评价研究[D].南京:河海大学,2004.
    [54]王明年,何林生.隧道超欠挖的统计规律及对围岩稳定性的影响[A].中国土木工程学会隧道及地下工程学会第九届年会论文集[C].中国土木工程学 会隧道及地下工程学会,1996:5.
    [55]赵会兵.钻爆法施工隧道的超欠挖概率统计规律研究[J].铁道工程学报,1999,03:106-110+105.
    [56]佘健,钟新樵.公路隧道超欠挖统计规律研究[J].重庆交通学院学报,2000,02:15-20.
    [57]万姜林.隧道超欠挖力学效应的研究[J].西部探矿工程,2000,06:70-72
    [58]王明年,陈虬.隧道衬砌厚度的变异对其可靠度的影响[A].第四届全国结构工程学术会议论文集(下)[C].中国力学学会《工程力学》编辑部、华侨大学土木工程系、清华大学土木工程系,1995:5.
    [59]王明年,关宝树.隧道超欠挖的统计规律及其对隧道可靠度的影响[J].岩土工程学报,1997,01:85-90.
    [60]佘健.衬砌厚度的变异性对隧道结构可靠度的影响[J].重庆交通学院学报,1994,S1:83-90.
    [61]TB 10204-2002,铁路隧道施工技术规范[S].北京:中国铁道出版社,2002.
    [62]TB 10121-2007,铁路隧道监控量测技术规程[S].北京:中国铁道出版社,2007.
    [63]JTG F60-2009,公路隧道施工技术规范[S].北京:人民交通出版,2009.
    [64]Price, G.; Wardle, I.F.; Price, N.G. The increasing importance of monitoring the field performance of foundations to validate numerical analysis[J]. Advances in Geotechnical Engineering:The Skempton Conference-Proceedings of a Three Day Conference on Advances in Geotechnical Engineering, organised by the Institution of Civil Engineers,2004:1131-1142.
    [65]Price, Gerwyn; Wardle, I.F. Condition monitoring:On the level[J]. International Water Power and Dam Construction,1998,50(4):38-39.
    [66]Fuchs, P.A.; Chase, S.B. Instrumentation for load rating of bridges[J]. Proceedings of SPIE-The International Society for Optical Engineering,1998, 3400:498-505.
    [67]Misoph, Helmut, Prof. Dr.-Ing.Protective element against ballistic threats[J]. Application with search report,2002:1-13.
    [68]何川,关宝树,余健,等.隧道结构可靠度评定应用研究[J].公路,1994,09:7-9.
    [69]高波,蔺安林,赵万强.隧道衬砌结构可靠指标计算方法的研究[J].西南交通大学学报,1996,06:9-15.
    [70]谢锦昌.铁路隧道衬砌结构可靠性分析初探[J].铁道学报,1992,01:63-68.
    [71]施成华,雷明锋,彭立敏.隧道衬砌结构体系可靠度研究[J].铁道科学与工程学报,2010,04:20-24.
    [72]宋玉香,景诗庭,朱永全.隧道结构系统可靠度研究[J].岩土力学,2008,03:780-784.
    [73]朱永全,刘勇,宋玉香.隧道工程结构可靠度计算方法分析[J].石家庄铁道学院学报,1997,04:41-47.
    [74]李志华,康海贵.隧道初期支护结构可靠度计算方法研究[J].武汉理工大学学报,2009,10:63-67.
    [75]谭忠盛,王梦恕.隧道衬砌结构可靠度分析的二次二阶矩法[J].岩石力学与工程学报,2004,13:2243-2247.
    [76]王建华.基于蒙特卡罗法的公路隧道初期支护可靠度分析[J].公路隧道,2007,02:11-14.
    [77]宋玉香,刘勇,朱永全.响应面方法在整体式隧道衬砌可靠性分析中的应用[J].岩石力学与工程学报,2004,11:1847-1851.
    [78]侯公羽,韩茹,黄祥忠.基于响应面法的隧道可靠度分析及其指标确定[J].地下空间与工程学报,2009,05:965-971.
    [79]海洪,郭鹏,王新,等.基于随机有限元的隧道衬砌结构可靠性分析[J].北方交通,2007,11:79-81.
    [80]姜舜华.隧道衬砌结构的概率有限元分析[J].兰州铁道学院学报,1995,01:8-14.
    [81]张道兵,杨小礼,朱川曲,等.基于最大熵原理与最优化方法的隧道衬砌结构可靠度分析[J].中南大学学报(自然科学版),2012,02:663-668.
    [82]姚贝贝,孙钧.基于响应面和重要抽样法的隧道衬砌结构时变可靠度[J].同济大学学报(自然科学版),2012,10:1474-1479.
    [83]苏永华,张鹏,李翔.基于Kriging算法的隧道衬砌稳定可靠度分析[J].公路交通科技,2009,12:62-68.
    [84]卓小君.改进kriging模型及其在隧道围岩稳定可靠度计算中的应用[D].长沙:湖南大学,2011.
    [85]傅鹤林,韩汝才.隧道衬砌荷载计算理论及岩溶处治技术[M].中南大学出版社,2005.
    [86]高永.深埋隧道初期支护可靠度研究[D].重庆:重庆大学,2006.
    [87]焦涛.浅埋隧道衬砌设计及可靠度分析[D].西安:西安科技大学,2006.
    [88]李兆平,聂楠,杨成永,等.矿山法地铁隧道二衬结构安全系数及可靠度计算方法研究[J].北京交通大学学报,2011,01:39-43.
    [89]聂楠.北京地铁矿山法隧道结构可靠度计算方法研究[D].北京:北京交通大学,2008.
    [90]秦天.盾构隧道地震响应及动力可靠度分析[D].上海:同济大学,2007.
    [91]谢圣纲.大跨度隧道施工围岩稳定性及可靠度研究[D].重庆:重庆大学,2006.
    [92]傅鹤林,郭磊.大跨度隧道施工力学行为及衬砌裂缝产生机理[M].科学出版社,2009.
    [93]邓建,李夕兵,赵国彦,等.不等跨连拱隧道衬砌结构可靠度分析[J].岩石力学与工程学报,2003,S1:2231-2235.
    [94]颜建平,杨林德.软土隧道衬砌结构的可靠性设计方法[J].城市轨道交通研究,2009,10:45-47.
    [95]牛泽林,谢永利,霍润科,等.黄土隧道衬砌结构的可靠度分析与研究[J].铁道科学与工程学报,2011,06:39-43.
    [96]杨林德,萧蕤,罗立娜.软弱岩层中隧道结构体系的可靠度[J].同济大学学报(自然科学版),2004,06:705-709.
    [97]华渊,周太全,吕宝华.基于响应面法的软岩隧道湿喷纤维混凝土支护结构可靠度分析[A].第二届中国水利水电岩土力学与工程学术讨论会论文集(一)[C].中国水利学会岩土力学专业委员会:,2008:5.
    [98]韩佳明,谷拴成,任建喜,等.公路隧道Ⅲ级围岩初期支护的可靠性分析[J].济南大学学报(自然科学版),2012,04:407-411.
    [99]谢楠,王大力,张弥,等.隧道复合衬砌运营期可靠性评价方法[J].工程力学,2007,S1:119-122.
    [100]杨成永,张弥,白小亮.隧道喷混凝土衬砌结构可靠度分析的位移方法[J].岩石力学与工程学报,2003,02:266-269.
    [101]边亦海,黄宏伟,朱永全.聚丙稀纤维网湿喷混凝土隧道衬砌结构的可靠度分析[J].石家庄铁道学院学报,2004,02:11-13.
    [102]李洪泉,杨成永,徐明新,等.隧道格栅钢架喷混凝土支护安全性评价[J].岩石力学与工程学报,2009,S2:3903-3908.
    [103]杨建宏.隧道二次衬砌厚度概率分布特征与可靠度分析[D].成都:西南交通大学,2002.
    [104]徐明新,杨成永,张强.施工期隧道喷混凝土支护安全性评价[J].北京交通大学学报,2008,01:1-6.
    [105]施成华,彭立敏.连拱隧道不同施工阶段结构体系可靠度计算[J].岩土力学,2008,05:1299-1304.
    [106]杨建国,谢永利,李俊升,等.服役公路隧道结构模糊物元可靠性评价[J].西南大学学报(自然科学版),2010,03:162-166.
    [107]周大举.基于可靠度理论的碳纤维加固公路隧道衬砌计算方法的研究[D].上海:同济大学,2008.
    [108]吴剑,仇文革.隧道衬砌厚度分布规律及结构可靠性分析[J].现代隧道技术,2004,01:22-25.
    [109]杨建宏,高新强,吴剑.隧道衬砌厚度的分布规律和结构可靠性分析[J].四川建筑,2003,01:28-29.
    [110]龚茂森,宋文兵.目前隧道超欠挖状况及其控制途径[J].铁道建筑技术,1996,03:48-50.
    [111]吕康成.黄塔桃高速公路隧道施工监控量测、无损检测与超前地质预报总结报告[R].西安:长安大学,2007.
    [112]彭立敏,刘小兵.隧道工程[M].长沙:中南大学出版社,2009.
    [113]TB 10003-2005,铁路隧道设计规范[S].北京:中国铁道出版社,2005
    [114]范文田.铁路隧道围岩压力的计算[J].铁道标准设计通讯,1975,(6):37-41.
    [115]关宝树.铁路隧道围岩压力的统计分析[J].铁道标准设计通讯,1979,(6):15-18.
    [116]隧规改革办公室围岩分类组.《关于铁路隧道围岩压力的几点说明》[R].铁二院勘测处整理,1974.
    [117]《铁路工程技术规范·第三篇隧道》[M].北京:中国铁道出版社,1975.
    [118]《铁路工程技术规范·第三篇隧道条文说明》[M].北京:中国铁道出版社,1978.
    [119]郭仁俊.结构力学[M].北京:中国建筑工业出版社,2007.
    [120]GB 50068-2001,建筑结构可靠度统一设计标准[S].北京:中国建筑工业出版社,2002.
    [121]张建仁,刘扬,许福友,等.结构可靠度理论及其在桥梁工程中的应用[M].北京:人民交通出版社,2003.
    [122]赵国藩,曹居易,张宽权.工程结构可靠度[M].北京:科学出版社,2011.
    [123]GB/T 50216-94,铁路工程结构可靠度统一设计标准[S].北京:中国建筑工业出版社,1995.
    [124]GB/T 50283-1999,公路工程结构可靠度统一设计标准[S].北京:中国计划出版社,1999.
    [125]GB 50153-92,工程结构可靠度设计统一标准[S].北京:中国建筑工业出版社,1992.
    [126]吕震宙,宋述芳,李洪双,等.结构机构可靠性及可靠性灵敏度分析[M].北京:科学出版社,2009.
    [127]赵国藩.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [128]李广慧,栗蕾,王东炜.响应面法及其在叠合桥梁体系可靠度评估中的应用[M].北京:科学出版社,2012.
    [129]熊铁华.基于响应面的随机有限元法及其工程应用[D].武汉:武汉大学,2004.
    [130]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,(8):236-239.
    [131]桂劲松,康海贵.结构可靠度分析的响应面法及其Matlab实现[J].计算力学学报,2004,(12):683-687.
    [132]Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems. Structural Safety,1990,7(1):57-66.
    [133]Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliability analysis. Structural Safety,1993,12(3):205-220.
    [134]Das P K, Zheng Y. Cumulative formation of response surface and its use in reliability analysis. Probabilistic Engineering Mechanics,2000,15(4):309-315.
    [135]Kaymaz I, McMahon C A. A response surface method based on weighted regression for structural reliability analysis. Probabilistic Engineering Mechanics,2005,20(1):11-17.
    [136]Gavin H P, Yau S Y. High-order limit state function in the response surface method reliability analysis. Structural Safety,2008,30(2):162-179.
    [137]邓铁军.结构工程施工系统可靠性理论方法及其应用的研究[D].长沙:湖南大学,2007:2-3.
    [138]侯亚彬.深埋隧道位移反演及初支可靠性分析[D].重庆:重庆大学,2008.
    [139]JTG D70-2004,公路隧道设计规范[S].北京:人民交通出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700