科学超深钻井过程中碎岩方法与孕镶金刚石取心钻头的预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学钻探是为地学研究目的而实施的钻探,是人类获取地球内部信息最有效、最直观的方法,它是通过科学探测地壳岩石圈、生物圈、水圈的组织结构、物质成分、形成机理等进行各类研究。大陆科学钻探通过提高对深部地质的研究程度,进而可以解决人类面临的资源(如油气、固体矿产、地热)、灾害(如地震、火山)以及环境(如陨石撞击、核废料处理)等问题。此外,大陆科学钻探入地与卫星上天一样,需要高新技术支撑与巨额资金投入,能够取得享誉世界的重大科技成果,体现国家综合实力,提高国际形象。
     科学超深钻是一个系统工程,涉及的研究领域很广,针对实施过程中可能会碰到的一些问题,国内外可供借鉴的实例有限。目前,对超深井中深部高温高压条件下岩石的物理力学性质及该条件下破岩机理的研究国内开展很少,国外己做过一定的工作,但可查资料较少。因此深入研究该条件下金刚石钻进结晶岩的碎岩机理、钻头胎体与岩石摩擦磨损特性显得非常必要;科学超深井钻探的核心技术是钻探取心技术,要求机械钻速高、回次进尺长、取心效果好、钻柱轴向震动小、功耗低以及对井壁扰动小等,而要达到这个要求,必须根据深部岩石的物理力学性质提出一整套钻头选型方案及钻进规程,设计适用于深部岩层的钻采工具。因此2008年中国地质大学(武汉)工程学院相关课题组承担了《深部探测技术与实验研究专项》第五项目《大陆科学钻探选址与钻探实验》(编号SinoProbe-05)的第六课题《科学超深井钻探技术方案预研究》(SinoProbe-05-06)中的《科学超深钻碎岩方法与工具的预研究》课题研究。
     本文选题以该课题为依托,主要研究内容有:调研岩石力学性质随围压和温度的变化规律,确定岩石在不同条件下的可钻性级别;提出适用于13000m以深超深井,不同井段钻进所采用的钻头技术方案。总结高温条件下孕镶金刚石钻头与岩石的摩擦特性;研究孕镶金刚石取心钻头不同端部形状的破岩机理,为设计适用于超深钻的孕镶金刚石取心钻头结构设计提供理论支持。通过本文的研究与结果分析,在一定程度上将有助于我国深部钻探计划的开展,并在理论上提供一定的支持与参考。
     我国即将实施的科学超深钻井底温度为400℃左右,孔底压力达160-280MPa,围压为124.8MPa左右。通过调研国内外有关深钻、超深钻、地热井方面的钻井技术资料,尤其是前苏联科拉超深井(SG-3)、德国KTB和我国大陆科钻一井的钻井资料,深入了解高温高压下岩石的物理力学特性及钻进特性,井底高温高压环境对钻头的要求与影响。通过了解与分析所用钻具的工作特性,提出科学超深钻不同井段可以采用的碎岩方法和工具。其中孕镶金刚石取心钻头适合钻进可钻性级别较高的结晶岩地层,是深部取心钻探的首选。所以,孕镶金刚石取心钻头的设计与制作是超深钻探项目研究的一个重要内容。在超深井的深部井段,井底处于高温高压环境,在这种条件下如何提高孕镶金刚石取心钻头的质量与钻进效果、什么样的钻头端部形状更容易破岩、高温条件下钻头胎体与岩石具有怎样的摩擦磨损特点等问题都成了设计钻头时必须考虑的因素。
     论文从摩擦磨损的基本理论入手,根据深井钻进用孕镶金刚石钻头常用胎体配方用热压法制作规格为8.5mm×8.5mm×15mm的空白胎体试样和金刚石胎体试样,在MG-2000摩擦磨损试验机上,按20℃、100℃、200℃、300℃、400℃、500℃的环境温度、载荷p=400N,转速n=400r/min的钻进条件做磨擦磨损试验,运用扫描电子显微镜(SEM)观察胎块和摩擦轨迹的形貌,用电子称测量磨损量,研究了胎体在不同温度条件下的摩擦磨损规律。测试结果表明:摩擦系数与岩石的类型有着密切的联系,在胎体成分相同的情况下,试验用砂岩的摩擦系数小于试验用花岗岩。环境温度对岩石的影响明显,当环境温度达400℃时,无论使用哪一种胎体,试验用砂岩均会在两分钟以内成块状破裂。环境温度对摩擦系数与摩擦功的影响也较大,即在不同的胎体与岩石的磨损组合条件下,随着温度的升高,摩擦系数和摩擦功总体上呈减小趋势。磨损量与磨损行程成正比关系,无论是空白胎体还是添加金刚石的胎体试样,与试验用花岗岩和试验用砂岩的干摩擦,均存在相同的规律,即随着温度的升高,磨损量总体呈上升趋势。当环境温度超过400℃时,含金刚石胎体磨损花岗岩试样磨损量急剧上升,但空白胎体磨损量反而减小,表明在高温下胎体的成分差异对磨损量影响较大。温度越高试验用砂岩对胎体的研磨性较强。空白胎体与岩石的磨损机理主要以粘着磨损与表面疲劳磨损为主。当磨损行程与环境温度升高后空白胎体会在表面摩擦热的作用下出现粘着现象。粘着有利用于胎体中的固体自润滑相(石墨)向岩石表面转移,在一定范围内减少磨损量。所以空白胎体与岩石的磨损机制以粘着磨损与表面疲劳磨损的混合形式。金刚石胎体与岩石的磨损机理为磨粒磨损、粘着磨损和表面疲劳磨损的混合模式。磨损的磨粒为金刚石切削的岩屑与脱落的金刚石,它会在磨损界面中切削胎体的金属表面使磨损量增大。随着磨损行程与环境温度的增加,金刚石胎体出现剥落即疲劳磨损。所以说金刚石胎体的磨损机制为硬质项切削与磨粒磨损,并且在时间与温度的作用下表面出现粘着磨损、疲劳磨损失效的趋势。
     孕镶金刚石取心钻头的设计包括很多方面,端部形状设计是钻头设计中的一个重要组成部分。论文在分析孕镶金刚石钻头和PDC钻头的破岩机理基础上,总结出优化钻头端部形状的三种方法:改变形状增加唇面切削岩石的自由面、减小唇面面积增加单颗金刚石上的钻进比压和使用超硬材料增强破岩效果。选取具有代表性的三种唇面形状的孕镶金刚石取心钻头,分别为平底形、含AKTM的平底形和轮齿形,利用数值模拟技术模拟了同等钻进规程条件下钻进岩石的情况。分析结果表明:同样钻进规程条件下,钻头的钻进速度从小到大分别为:平底钻头、AKTM钻头、轮齿钻头。钻进过程中岩体总体升温不明显,温度值基本没多少变化,仅在井底与井壁的极小范围内出现少量的温度集中。平底钻头、AKTM钻头金刚石端部温度比胎体温度相对较高,轮齿钻头金刚石根部温度比金刚石端部高一些,每个扇形块上与旋转切向方向同向的前边缘的胎体与金刚石温度高于后边缘的金刚石和胎体,轮齿钻头唇面温度高于其它两种钻头唇面温度。破岩过程中,岩石破碎区周围的等效应力值比较大,距离岩石破碎区越远应力值相应减小。平底钻头、AKTM钻头在破碎第一层岩石时,与钻头旋转切向力同向一侧的扇形块前边缘金刚石应力值较大,随着钻进的进行,应力值趋于一致,轮齿钻头唇面上的应力一直比较平均。
     台架试验和野外钻进试验一直被用做检测钻头钻进效果的最有效手段。本文用热压法制做了规格均为Φ75/49mm的平底孕镶金刚石取心钻头、含AKTM切削齿的孕镶金刚石取心钻头和轮齿钻头,三者采用相同的胎体配方,对三种钻头分别进行了室内台架试验和两次野外钻进试验。首先对所钻岩样和地层做了薄片分析和力学性能测试,确定了它们的矿物成分、结构构造和可钻性等级。台架与野外钻进试验结果表明:平底钻头与AKTM钻头台钻对比试验表明,在钻进规程P=2.5KN,n=222r/min时,AKTM钻头的钻速是平底钻头的2倍,表明AKTM聚晶体起到了像复合片那样的剪切碎岩作用。两次野外试验结果表明,按平均机械钻速由高到低排序:轮齿钻头>AKTM钻头>平底钻头,试验结果与数值模拟试验结果一致。
     总体来说,本文通过调研资料、理论分析、数值模拟和大量的试验,基本实现了研究的目的。但由于个人经验和试验条件所限,论文中许多地方未能尽如人意,不足之处主要表现在:超深钻井深部地层岩石可钻性具有不可预知性,实际钻进过程中将会遇到各种各样的岩层与突发因素,最终的钻进工艺和钻具组合需根据现场实际情况而定。做高温高压条件下钻头胎体与岩石的摩擦磨损试验时,由于摩擦磨损试验机的使用条件限制,无钻井液循环和压力加载装置,属于高温条件下胎体与岩石的干摩擦,这与超深井井底的实钻情况相差很远,得出的摩擦磨损规律具有一定的参考作用,但还需在超深钻井过程中进一步检验。需要对试验机继续加以改进,使其能够真实的模拟井底高温高压环境。另外,本文仅做了孕镶金刚石钻头胎体与岩石的摩擦磨损试验,钻井过程中还要用到PDC钻头、牙轮钻头等其它类型钻头,建议后续工作中做一些针对这些钻头的摩擦磨损试验,揭示不同温度压力条件下它们的磨损规律。孕镶金刚石取心钻头的设计包括很多内容,端部形状设计为其中一个方面,应综合考虑胎体与所钻岩层的适应性。模拟钻头钻进岩石时,只考虑到钻压、温度与钻速对钻进,过程的影响,后续研究工作中应加入井底围压、钻井液循环等边界条件的影响。
Scientific drilling is implemented for the purpose of geological research, is the most effective and intuitive way for human to access to earth's internal information. It is through the scientific detection of the organizational structure, material composition, formation mechanism of the crustal lithosphere, biosphere, hydrosphere, to conduct various types of research. The continental scientific drilling, by increasing the degree of deep geological research, which can solve the problems mankind is confronted with, the issues of resources, such as oil and gas, solid minerals, and geothermal energy, the disasters, such as earthquakes and volcanoes, the environment problems, such as meteorite impact and nuclear waste disposal, and other issues. In addition, just like sending satellite into space, the continental scientific drilling need high-tech support and huge amount of capital investment, but can get the major scientific and technological achievements of the world-renowned, reflect the national comprehensive strength and improve its international image.
     The scientific ultra-deep drilling is a systematic project, involves a very wide field of research, for some of the problems that may be encountered in the implementation process, the reference instance at home and abroad was limited. Currently, the study on physical and mechanical properties of the rock under high temperature and pressure conditions in deep ultra-deep, and the rock breaking mechanism under these conditions, our country has carried out a little work, the abroad has done some, but less information can be investigated. Therefore, a further study on the rock fragmentation mechanism of diamond drilling in crystalline rock, the friction and wear characteristics between bit matrix and rock under these conditions is appeared very necessary. The core technology of scientific ultra-deep drilling is drill coring technology, high ROP footage, back time long, better coring effect, small drill string axial vibration, low power consumption as well as little disturbance to the borehole wall were required. To meet this requirement, a set of bit selection program and drilling procedure that based on the physical and mechanical properties of the deep strata must be put forward, and designed drilling tools for deep rock. Therefore, a task force of the faculty of engineering of China University of Geosciences (Wuhan), undertake a project which named the pre-study of the broken rock methods and tools in scientific ultra-deep drilling process, it belongs to part of pre-study of the scientific ultra-deep drilling technology scheme (No.SinoProbe-05-06), which is the sixth task of continental scientific drilling site and drilling experiment (No.SinoProbe-05), which is the fifth project called special project of deep detection technology and experimental studies.
     This paper's topics are rely on the subject, the main contents are: researched the change rule of mechanical properties of rock when confining pressure and temperature changed, and determine the rock's drillability level under different conditions. Proposed the bit technical scheme apply to diffident well section of13000m ultra-deep drilling. Summarized the frictional characteristics occurred between impregnated diamond bit and rock under high temperature conditions. Researched the rock breaking mechanism of the impregnated diamond core bits which with different shapes of the end, that is to provide theoretical support for the structural design of impregnated diamond core bit used in ultra-deep drilling. Through the research and analysis of the results, it will be helpful to our deep drilling project development in a certain degree, and provide certain support and reference in theory.
     The bottom temperature of scientific ultra-deep drilling which is going to implement by China is about400℃, the bottom hole pressure reach160~280MPa and confining pressure is124.8MPa. through research on the drilling technical date in connection with deep drilling, ultra-deep drilling, geothermal well drilling from home and abroad, especially the kola super-deep well in the former Soviet Union (SG-3), Germany KTB and China's continental scientific drilling (CCSD-1), have a in-depth understanding of the rock's mechanical properties and drilling characteristics under high temperature and high pressure, and the requirements and influence to the bit. By understanding and analysis the drilling tools' operating characteristics, put forward the broken rock methods and tools can be used in different interval in scientific ultra-deep drilling. The impregnated diamond core bit is suitable for drilling crystalline rock stratum with a higher level of drillability, is the first choice for deep core drilling. So its design and production is an important element in the study of ultra-deep drilling project. In the deep well section of ultra-deep well, the bottom of the well with a high-temperature and high-pressure environment, how to improve the quality of the impregnated diamond core bit and drilling effect, what king of the end shape of the bit easier to rock breaking, how the friction and wear characteristics between bit matrix and rock under high temperature conditions, are have become the important factors must take into account when bit is designed.
     Based on the basic theory of friction and wear, blank matrix samples and diamond matrix samples were produced with the impregnated diamond bits' commonly used matrix formula in deep well drilling, the making method is hot-pressing and the specifications is8.5mm×8.5mm×15mm, and then wear test was carried out on MG-2000friction and wear test machine with a20 ℃、100℃、200℃、300℃、500℃ambient temperature condition, the drilling condition is load p=400N an speed n=400r/min. Using scanning electron microscopy (SEM) to observe mole and the morphology of friction track, with electronic measuring the amount of wear, studied the friction wear regularity of the matrix under different temperature conditions. The test results show that: the friction coefficient is closely linked to the type of rock, in the case of the same composition as the matrix, the friction coefficient of the test sandstone always less than test granite. The ambient temperature has a obviously influence on rock, when it up to400℃, regardless of what kind of matrix, the test sandstone all can be into a massive rupture in less than two minutes. The influence of ambient temperature on the friction coefficient and friction power is also larger, namely in different matrix and rock wear combination conditions, as the temperature increases, the friction coefficient and friction power generally showed a trend of decrease. The amount of wear and wear stroke is proportional to the relationship, whether blank matrix sample or diamond matrix sample, when tested a dry friction with granite and sandstone, there are the same rule, namely as the temperature increases, the wear amount have a upward trend in general. When the ambient temperature exceeds400℃, the wear amount of diamond matrix combined with granite rose sharply, but wear amount of blank matrix combined with granite reduced, and show that the difference in composition of matrix have a greater impact on the amount of wear. Higher the ambient temperature, the more stronger abrasive ability sandstone to bit matrix. The wear mechanism of blank matrix and rock is mainly adhesive wear and surface fatigue wear. When wear itinerary and ambient temperature increases, the blank matrix will appear adhesion phenomenon in surface under the action of friction heat. The adhesive advantageous for solid self-lubricating phase (graphite) of matrix is transferred to the rock surface, that the amount of wear is reduced within a certain range. So the wear mechanism between blank matrix and rock is a hybrid form of adhesive wear and surface fatigue wear. The wear mechanism between diamond matrix and rock also is mixed mode which are abrasive wear, adhesive wear and fatigue wear in surface. The abrasive grain is the cutting that cut by diamond and shed diamond. It will cut the metal surface in the wear interface so that the amount of wear increases. Along with the wear itinerary and ambient temperature increases, the diamond matrix appear spalling that is fatigue wear. So it can be said the wear mechanism of diamond matrix is hard item cutting and abrasive wear, and appears s a failure trend by adhesive wear and fatigue wear in the role of time and temperature.
     The impregnated diamond core bit design includes many aspects, the shape of the end design is an important part of the drill bit design. Based on analyzing the rock breaking mechanism of impregnated diamond bits and PDC bits, three methods to optimize the shape of the end of the bit was summarized by this paper, they were change shape to increase the free surface of the lip surface cutting rock, reduce the lip area to increase a single diamond's drilling pressure and use super hard materials to enhance the effect of rock breaking. Three impregnated diamond core bits with typical lip surface shape were selected, they were flat-shaped, flat-bottomed shape which containing AKTM and gear-shaped respectively. Then numerical simulation technique was used to simulate the rock drilling under the same drilling procedure condition. The analysis results show that:under the same drilling procedure conditions, the drilling speed of the bit from small to large respectively is:flat-bottomed bit, AKTM bit and gear bit. The rock mass's warming phenomenon is not obvious overall and the temperature value basic didn't have much change, only appeared a small amount of temperature concentration within a small range of the bottom of the well and the borehole wall. For flat bit and AKTM bit, the diamond top temperature is relatively higher than the matrix temperature, but the diamond root temperature is higher than diamond top temperature to gear bit. With the same rotating tangential direction, the front edge temperature on the segments of the bit was higher than the rear edge of diamond and matrix. A gear drill lip surface temperature higher than the other two bits lip surface temperature. In the process of broken rock, the equivalent stress value is relatively large around the rock crushing area. The farther away from the rock crushing area stress value is reduced accordingly. When flat-bottomed bit and AKTM bit crushing the first layer of rock, the front edge stress value on the segments of the bit was larger than the rear edge which with the same rotating tangential direction, the stress value tend to be consistent with the drilling, gear bit lip surface stress have been relatively average.
     The bench test and field drilling test has been used as the most effective means to detect the bit's drilling effect. In this paper, impregnated diamond core bits with flat-shaped, containing AKTM cutting teeth and gear bit were made by hot pressing method, their specification is (?)75/49mm, they have the same matrix formula. Then indoor bench test and two field drilling tests were carried out. Firstly the thin-section analysis and mechanical properties testing to the rock and formation would be drilled were carried out, their mineral composition, texture, structure and the drillability grade were determined. The bench and field drilling test results show that:AKTM bit's penetration rate is2times to flat bit within the P=2.5KN, n=222r/min drilling procedure, which show that AKTM poly crystal played a role of shear broken rock like clad composite sheet. The two field test results show that, according to the average mechanical drilling rate descending sort: gear bit, AKTM bit, flat-bottomed bit, the test result and numerical simulation test results are consistent.
     Overall, this paper through research material, theoretical analysis, numerical simulation and a large number of tests, basically achieved the purpose of the research. But for the restriction of personal experience and test conditions, many parts in the thesis were not satisfactory, the deficiency mainly displays in:the drillability of deep strata in Ultra-deep drilling is unpredictable, will encounter a variety of rock and precipitating factors in the actual drilling process, the final drilling process and BHA should be decided according to the actual situation. When doing the friction and wear test between bit matrix and rock under high temperature and high pressure conditions, due to the restriction of the use conditions of the friction and wear tester, no drilling fluid circulation and pressure-loading device, belong to the dry friction of the matrix and rock under high-temperature conditions, it is far cry from the actual deep well bottom hole drilling situation, it is concluded that the friction and wear rule have certain reference function, but still needs further examination in the ultra-deep drilling process. The testing machine need to continue be improved to enable it to real simulate bottom hole high temperature and pressure environment. In addition, this paper only do the matrix of impregnated diamond bit and rock friction and wear testing, the PDC bit, cone bit, and other types of bits will be used in drilling process, suggest the follow-up work to do some friction and wear tests according to these bits, to reveal their wear rules under different temperature and pressure conditions. The impregnated diamond core bit design includes a lot of content, end shape design is only one aspect, the adaptability of the matrix of bit and the rock drill should be taken into account. When simulating bit drilling rock, just take into account the influence of drill pressure, temperature and penetration rate, the follow-up studies should be added to the confining pressure of the bottom of the well, drilling fluid circulation and boundary conditions.
引文
[1]王达,张伟,张晓西等.中国大陆科学钻探工程科钻一井钻探工程技术[M].北京:科学出版社,2007:9-27
    [2]赵阳升,万志军,康建荣.高温岩体地热开发导论[M].北京:科学出版社,2004
    [3]陈墨香,汪集旸,邓孝.中国地热资源——形成特点和潜力评价[M].北京:科学出版社,1994
    [4]左然,施明恒,王希麟.可再生能源概论[M].北京:机械工业出版社,2007
    [5]Shimada M.Lithosphere strength inferred from fracture strength of rocks at high confining pressures andtemperatures[J].Tectonophysics,1993:21755-64
    [6]Aydan O,Akagi T,Kavamoto T.The squeezing potential of rock around tunnels:theory and prediction with examples taken from Japan[J].Rock Mech Rock Eng,1996:29125-143
    [7]黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].2003,24(增):203-206
    [8]万志军,赵阳升,董付科等.高温及三轴应力下花岗岩体力学特性的实验研究[J].岩石力学与工程学报,2008,27(1):72-77
    [9]Ravalec M Le,Darot M,Reuschile T,et al.Transport properties and microstructural characteristics of a thermally cracked mylonite[J].Pure and Applied Geophysics,1996,146(2): 151-160
    [10]Chen Yong,Wang Chiyuen.Thermally induced acoustic emission in Westerly granite[J]. Geophysical Research Letters,1980,7:1089-1092
    [11]朱合华,闫治国,邓涛等.三种岩石高温后力学性质的试验研究[J].岩石力学与工程学报,2006,25(10):1945-1960
    [12]杜守继,刘华.高温后花岗岩力学性能的试验研究[J].岩石力学与工程学报,2004,23(14):2359-2364
    [13]田茂华.浅谈地热资源的综合利用开发[J].中国石油大学胜利学院学报,2007
    [14]宾德智.全国地热资源概况.21世纪中国地热可持续发展论文集[M].北京:中国矿业联合会,2000
    [15]廖波,荆留杰,田秋红.国矿井热害现状及井下地热利用探讨[J].山西建筑,2009(3)
    [16]Kwasniewski M A.Laws of brittle failure and of B-D transition in sandstone[A].In:Rock at Great Depth[C].Rotterdam:A.A.Balkema,1989
    [17]Malan D F.Simulation of the time-dependent behavior of excavations in hard rock.Rock Mechanics and Rock Engineering[J].2002,35(4)
    [18]Spea J R.Formation Compressive Strength for Predicting Drillability and PDC Selection. SPE[J].1997(293)
    [19]王绳祖.高温高压岩石力学——历史\现状\展望[J].地球物理学进展,1995,10(4):1-31
    [20]王绳祖,施良骐张流等.岩石的塑性成分对失稳型式的影响[J].地震地质,1986,8(4):77-84
    [21]王绳祖.岩石的脆性-延性转变及塑性流动网络[J].地球物理学进展,1993,8(4):25-37
    [22]王绳祖.高温高压岩石力学述评——地球科学中的岩石力学[J].矿山压力与顶板管,1995,(2):2-8
    [23]万志军,赵阳升,董付科等.高温及三轴应力下花岗岩体力学特性的实验研究[J].岩石力学与工程学报,2008,27(1):72-77
    [24]王靖涛,赵爱国,黄明昌.岩石断裂韧度的高温效应[J].岩土工程学报,1989,11(6):113-119
    [25]周永胜,何昌荣.地壳主要岩石流变参数及华北地壳流变性质研究[J].地质,2003,25(1):109-122
    [26]陈政伟.金刚石钻进碎岩机理模拟试验研究[J].探矿工程,1990(4),13-18
    [27]李世忠,李震,刘大权.金刚石钻进原理及其发展途径[J].地球科学,1982(3),319-327
    [28]吴斌,高森.孕镶金刚石钻头碎岩机理的模拟实验研究[J].探矿工程,1987(1),14-17
    [29]汤凤林.复合体碎岩机理及孔底过程[J].煤田地质与勘探,1984(2),76-80
    [30]王大勋,刘洪,韩松等.深部岩石力学与深井钻井技术研究[J].钻采工艺,2006(5)
    [31]左建平,谢和平,周宏伟.温度压力耦合作用下的岩石屈服破坏研究[J].岩石力学与工程学报,2005,24(16)
    [32]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005(16)
    [33]郭开元.岩盐蠕变特性研究[D].重庆:重庆大学,2003,12
    [34]藤军.概述国外几种高温高压模拟钻进试验装置[J].探矿工程,1995(4),35-36
    [35]赵阳升,万志军,张渊等.20 MN伺服控制高温高压岩体三轴试验机的研制[J].岩石力学与工程学报,2008(1),1-8
    [36]万志军,赵阳升,董付科等.高温及三轴应力下花岗岩体力学特性的实验研究[J].岩石力学与工程学报,2008(1),72-77
    [37]赵金昌,万志军,李义等.高温高压条件下花岗岩切削破碎试验研究[J].岩石力学与工程学报,2009(7),1432-1438
    [38]Heueckel T,Peano A,Pellegrint R.A constitutive law for thermal-plastic behavior of ro-cks:an anglogy with clays. Survey in Geophsics[J].1994(15)
    [39]J.kemeny,A comparison of eight method for measuring grain and boundary cracking in heated quartzite samples,Int J Rock and Min Sci[J].1998,35(45)
    [40]Heard,H.C.Themal expansion and inferred permeability of climax quarta monzonite to 300℃ and 27.6MPa[J].Int J Rock Mech Min Sci & Geomech Abstr,1980(17)
    [41]王达.中国大陆科学钻探工程钻探技术论文选集[M].北京:地质出版社,2007
    [42]陈颙,黄庭芳,刘恩儒等.岩石物理学[M].合肥:中国科学技术大学出版社,2009
    [43]W.Tillmann, M.Gathen, A.Osmanda, L.Wojarski, C. Kronholz. Tribological investigation of impregnated diamond tools.special feature[J].2009
    [44]M.G.Gee,A.Gant,B-Roebuck.Wear mechanisms in abrasion and erosion of WC/Co and r elated hardmetals.Wear[J].2007(263)
    [45]Huadong Ding,Yawen Li,Xiaohua Yang,Hongqi Hao,Zhihao Jin.Design of a non-homo geneous diamond bit matrix Journal of Materials Processing Technology [J].1998 (84).
    [46]M.Es.Abdel Moneim,S.Abdou.Comments on the wear mechanisms of impregnated diam ond bits.Wear[J].1997 (205).
    [47]A. Ersoy,M. D. Waller.Wear characteristics of PDC pin and hybrid core bits in rock drilling,Wear[J].1995 (188)
    [48]李曙光,陈孝钦.异形唇面金刚石钻头钻进硬岩的效果[J].地质与勘探,1986,(05):70-72
    [49]杨建新.对不同胎体成分和唇面形状金刚石钻头的探索[J].控矿工程,1988,(02):22-24
    [50]王好国.对孕镶金刚石钻头唇面微烧的探讨[J].控矿工程,1982,(06):36-38
    [51]蔡家品.薄壁金刚石钻头的唇面设计[J].探矿工程,2000,(02):46-48
    [52]D.N.WRIGHT.孕镶金刚石钻头唇面磨损的研究[J].国外地质勘探技术,1991,(08):11-15.
    [53]罗超,李世忠,李砚藻.人造金刚石孕镶钻头唇面状态与钻进的关系[J].地球科学,1994.06,(19):831-837
    [54]常喜顺.几种唇面金刚石钻头在硬岩中的使用效果[J].探矿工程,1988,2(05):45-47
    [55]张鹰.金刚石孕镶钻头的唇面形状[J].金刚石磨料磨具工程,1996,(06):21-24
    [56]李大佛,屠厚泽,李天明.金刚石、PDC钻头与工艺学[M].北京:地质出版社,2008
    [57]K.Tezuka,H.Niitsuma.Stress estimated using microseismic clusters and its relationship to thefracture system of the Hijiori hot dry rock reservoir[J].Engineering Geology,200 0,56(3):47-62
    [58]F.H.Cornet,Th.Berard,S.Bourouis.How close to failure is granite rock mass at 5km dep th? [J].Int.J.Rock Mech.Min.Sci,2007,44(2):47-66
    [59]Haimson B C,Chang C.True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimatate the maximum horizontal in situ stress[J].J Geo phys Res,2002,107(15):1-14
    [60]康健,岩石热破裂的研究及应用[M].大连:大连理工大学出版,2008:120-159
    [61]曹万木,百昆林.热力学在岩石学和矿床学中的应用[M].北京:地质出版社,1979
    [62]尤明庆,岩石的力学性质[M].北京:地质出版社,2007
    [63]Wong T F.Effects of temperature and pressure on failure and post-failure behavior of Westerley granite[J].Mechanics of Materials,1982,(1):3-17
    [64]陈颙,黄庭芳,刘恩儒,岩石物理学[M].合肥:中国科学技术大学出版社,2009:162-164
    [65]Paterson M S.Experimental deformation and faulting in Wombeyan marble[J].Bull.Geol. Soc.Am.,1958(69):465-467.
    [66]Heard H C.Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature,confining pressure and interstitial fluid pressure[J].Geol.Soc. Am. Menoir,1960(79):193-226
    [67]Mogi K.Deformation and fracture of rocks under confining pressure(2):elasticity and p1 asticity of some rocks[J].Bull.Earthquake Res.Inst.,Tokyo Univ.,1965(43):349-379.
    [68]Mogi K.Pressure dependence of rock strength and transition from brittle fracture to du ctile flow[J].Bull.Earthquake Res.Inst.,Tokyo Univ.,1966(44):215-232.
    [69]Gowd T N, Rummel F.Effect of confining pressure on the fracture behavior of a por ous rock[J].Int.J.Rock.Mech.Sci.and Geomech.Abstr.,1980,17(12):225-229
    [70]赵金昌,高温高压条件下冲击—切削钻孔破岩实验研究[D].太原;太原理工大学,2010
    [71]B.Engeser著,杨志豪,张伟(翻译),联邦德国大陆深钻计划KTB钻探技术报告[M].联邦德国下萨克森州地质调查局,2008:437-474
    [72]许志琴,耿瑞伦,肖庆辉等.中国大陆科学钻探先行研究[M].北京:冶金工业出版社,1996:24-79
    [73]Joner Lauterjung.The Internatioal Continental Scientific Program (ICDP)[J].ICDP Newsl etter,2000(2):3-20
    [74]吕苗荣.涡轮钻具性能的的系统分析[J].江汉石油学院学报,1997
    [75]苏义脑.螺杆钻具研究及应用[M].北京:石油工业出版社,2001
    [76]王人杰,蒋荣庆,韩军智.液动冲击回转钻进[M].北京:地质出版社,1988
    [77]谢文卫,苏长寿,孟义泉.YZX127液动潜孔锤在CCSD科钻一井先导孔中的应用[J].地球科学,30(增刊)
    [78]吕晓平,李国兴,王震宇等.扭力冲击器在鸭深1井志留系地层的试验应用[J].石油钻采工艺,2012,34(2)
    [79]孙起星,张雨生,李少海等.钻头扭转冲击器在元坝10井的试验[J].石油钻采工艺,2010,38(6)
    [80]Engser B.Die Kernbohrstrategie fuer die KTB Hauptbohrung. Erdoel Erdgas Kohle.199 0(12):490-500
    [81]鄢泰宁.岩土钻掘工程学[M].武汉:中国地质大学出版社,2001:08
    [82]刘广志主编.金刚石钻探手册[M].北京:地质出版社,1991
    [83]刘广志,刘广志论科学钻探[M].北京:地质出版社,2005
    [84]MILLHEIM K K,WARREN T M.Side cutting characteristics of rock bits and stabilize rs while drilling[R].SPE 7518,1978
    [85]吴光琳,张祖培译.钻井岩石破碎学[M].北京:地质出版社,1982:99-110
    [86]Guo Qiang, Wen Shizhu, Luo Weili.Fretting wear resistence mechanism of trans-ferre d file from organic high molecular materials[J].Progress in Natural Science.1996,6(5): 593-601
    [87]Bowden F P,Tabor D.The Friction and Lubrication of Solid.Oxford[M]:Clarenden Press, 1964
    [88]温诗铸,黄平.摩擦学原理(第2版)[M].北京:清华大学出版社,2002:303-337
    [89]Suh N P.The delamination theory of wear.Wear.1973.25(1):111-124
    [90]Ludema K C.Mechanism-based modeling of friction and wear[J].Wear,1996:200
    [91]Darot M. Permeability of thermally cracked granite[J].Geophysics Research Letters,199 2,19:869-872
    [92]段隆臣,潘秉锁,史晓亮.金刚石工具的设计与制造[M].武汉:中国地质大学出版社,2003:89-118
    [93]Miller and A.Ball.Rock drilling with impregnated diamond microbits-an experimental stydy.International Journal of Rock Mechanics and Mining Science,1990,27(5):363-371
    [94]鄢泰宁,姚邹,段隆臣等.人造金刚石超硬材料在钻探中的应用[M].北京:地质出版社,2011:140-157
    [95]屠厚泽,高森编.岩石破碎学[M].地质出版社,1989
    [96]杨凯华等.新型金刚石工具研究[M].武汉:中国地质大学出版社,2001:120-136
    [97]汤凤林,A.T.加里宁,段隆臣[M].岩心钻探学.中国地质大学出版社.2009:151-180
    [98]严成容.探索拾零—孕镶人造金刚石钻头自由谈[J].探矿工程(岩土钻掘工程),2005(7):1-3
    [99]A. K. Wojtanowicz, E.Kuru. Mathematical modeling of PDC bit drilling process based on a single-cutter mechanics[J].Journal of Energy Resources Technology,1993,Vol.115;
    [100]Dutta.Theory of Percussive drill bit penetration[J].Inter.J.Rock Mech.And Min Sci,197 6
    [101]张绍和.金刚石与金刚石工具[M].长沙:中国地质大学出版社,2005:100-220
    [102]汤风林译.钻探工艺学[M].北京:地质出版社,1985:59-83
    [103]J. Dwan.Manufacture of diamond impregnated metal matrixes[J].Materials Science and Technology,1998,14(5):896-900
    [104]张巨川.铁路工程地质钻探中若干关键问题的研究[D].武汉:中国地质大学,2010
    [105]Krzysztof Andrzej Zacny.Mars Drilling-An Investigation and Development of Techniq ues for Drilling Exploratory Boreholes on Mars[D].Berkeley,University of California, 2005
    [106]鄢泰宁等.提高金刚石钻头在深孔硬岩钻进中寿命的途径[J].金刚石与磨料磨具工程,2010(5):32-37
    [107]郝好山,胡仁喜,康士廷等ANSYS 12.0 LS-DYNA非线性有限元分析从入门到精通[M].北京:机械工业出版社,2010:1-10
    [108]李裕春,时党勇,赵远ANSYS 11.0 LS-DYNA基础理论与工程实践[M].北京:中国水利水利出版社,2008:297-354
    [109]白金泽LS-DYNA3D理论基础与实例分析(第1版)[M].北京:科学出版社,2005:102
    [110]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社,2005:25-80
    [111]李世忠.钻探工艺学(上册).第一版[M].北京:地质出版社,1992:9-44
    [112]刘佑荣,唐辉明.岩体力学[M].北京:化学工业出版社,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700