羌塘走构油茶错—纳丁错新生代火山岩岩石学、地球化学特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自印度大陆与欧亚大陆碰撞以来,藏北地区发育了多期火山活动。同位素测年资料表明,羌塘地区火山活动以钠质碱性玄武岩开始,时代为60~44Ma,42Ma以来,北羌塘地区出现大量高Mg~#高钾钙碱性火山活动,其峰值年龄为42~37Ma。南羌塘高Mg#高钾钙碱性火山岩形成于35-31Ma,主要分布在纳丁错、走构油茶错一带。鱼鳞山-戈木错碱性钾质-超钾质火山岩则喷发于31-24Ma。羌塘高Mg#高钾钙碱性系列火山岩的地球化学组成以具有埃达克岩的高Sr低Y和HREE的强烈分馏为特征,有关该类岩浆的成因一直存在认识分歧,岩浆源区性质和岩浆产生过程与岩石圈的增厚减薄关系成为青藏高原形成演化研究中的重要科学问题。
     通过对南羌塘新生代纳丁错、走构油茶错高Mg#高钾钙碱性火山岩的岩石学和地球化学特征研究,本文认为,纳丁错和走构油茶错火山岩为同源岩浆演化产物,时代为35-31Ma,岩石组合为橄榄玄武安粗岩、安粗岩、粗面岩;火山岩具有埃达克岩的重稀土强烈分馏和高sr/Y特征,原始岩浆为玄武质,火山岩的成分变化受岩浆AFC过程控制;原始岩浆起源于亏损的石榴石二辉橄榄岩地幔源区,具有软流圈地幔与岩石圈地幔的混源性质,岩浆产生与软流圈的上涌作用有关。
Since the collision between India continent and Eurasia continent , the multiphase volcanic activity are formed in northern Tibet . According to the isotopic dating, the volcanic activity of Qiangtang began from the sodium-rich alkali basalt , the age is 60~44Ma, since 42Ma, the high Mg~# and K calc-alkaline volcanic activity has a plenty of appearance in north Qiangtang area whose peak age is 42~37 Ma. the high Mg~# and K calc-alkaline volcanic rock of south Qiangtang was formed in 35-31Ma, and it is mainly distributed in Zougouyouchacuo and Nadingcuo,yulinshan-gemucuo alkali potassic-ultrapotassic volcanic rocks erupted at 31-24Ma .Geochemical characteristics of the high Mg~# and K calc-alkaline volcanic rock of south Qiangtang is the intense fractionation of HREE, high Sr and low Y of adakites, and there are always some divergences on the genesis of it , the relationships between the nature of origin region and the generation process of magma and lithospheric thinning-after- thickening become important scientific issues in research on formation and evolution of Tibetan Plateau.
     This paper takes the genesis study of the ougouyouchacuo and Nadingcuo high Mg~# and K calc-alkaline volcanic rock of south Qiangtang as study emphasis, and explores the relationships between the magmatic origin and lithospheric thinning-after- thickening.
     The main lithological associations of the Nadingcuo volcanic rock are basalt- latite and latite , while the one of Zougouyouchacuo volcanic rock is mainly trachyte. The volcanic rock is mainly lava which is produced in the form of lava sheet and volcanic unaka and covers the pre-Jurassic strata.
     The chemical constituents of the Nadingcuo basalt- latite is of the characteristics of alkaline series , Na_2O/K_2O=2.53-2.06, while latite is of the blend feature of alkali-series and subalkali-series , Na_2O/K_2O=1.3-0.94 , the Zougouyouchacuo trachyte enters subalkali-series composition region, Na2O/K2O=1.06-0.85. In SiO_2-K2O diagram, volcanic rocks enter high K calc-alkaline-series composition region, partial latite enter shoshonite-series composition region, which displays the magmatic property from basalt- latite to trachyte evolves from the sodium to the potassic ,and is of the blend feature of kohalaite-series and high K calc-alkaline-series.
     The results show that Zougouyouchacuo and Nadingcuo Cenozoic volcanic rocks is the product resulted from the evolution of a cognate magma. In the harker diagram, major oxidates presents regular transformation with the increasing of SiO_2 from the Nadingcuo basalt- latite to the Zougouyouchacuo trachyte, which displays the characteristics from the evolution of a cognate magma. Strong compatible elements, as Cr、Ni, vary in a large range, Cr varies between 156~2×10~(-6) from basalt- latite to latite, and indicates that magma composition change is under the control of fractional crystallization. But incompatible elementsΣLREE and Nb decrease with the increasing of SiO_2, which indicates entry of crust materials during the magma evolution. TheεHf of rocks decreases with the increasing of SiO_2, which further proves entry of crust materials during the magma evolution.
     The Mg# of Zougouyouchacuo and Nadingcuo Cenozoic volcanic rocks varies between 57.7-43, and are of characteristics of high Mg~# generally.They aslo have a strong enrichment in light rare earth element, relative HREE depletion and strong fractionation of light and heavy rare earth egative, andδEu is from non-anomaly to weak positive anomaly, also high Sr/Y, the above geochemical characteristics of latite and trachyte is consistent with adakites,and shows that garnet residues exists in magma source. But the∑LREE of the rocks decreasing with the increasing of SiO_2 and the existence of basic rocks show that their genetic interpretation is not the melting of crust eclogite.
     In the Th/La-Zr/Nb diagram, the basalt- latite enters low-Th/La and low-Zr/Nb mantle composition region constituted by depleted and OIB type mantle, while latite and trachyte vary towards active continental margin high K calc-alkaline composition region in turns, and differe from island arc volcanic rocks composition region. In the Ba/Nb-La/Nb diagram, the trachyte locates in the edge of volcanic arc composition region, while the basalt- latite has a transition towards MORB and OIB mantle composition region, these characteristics indicate that the primitive basaltic magma is from asthenospheric mantle and lithosphere mantle formed by paleosubdution which has a blend source. theεHf from basalt- latite to trachyte varies between 5.5-2.2 which indicates source region is of the properties of weak depleted mantle and is consistent with low-Th/La and low-Zr/Nb.
     Based on the comprehensive comparison with the geochemical characteristics of the Cenozoic volcanic rocks of north Qiangtang, the paper puts forward that Zougouyouchacuo and Nadingcuo Cenozoic volcanic rocks of south Qiangtang derives from the blend souce of asthenosphere upwelling mantle and lithosphere mantle, the alkaline basaltic magma of enriched incompatible elements of garnet lherzolite low melting is primitive magma, the primitive magma during the bottom invasion by means of AFC forms latite and trachyte. asthenosphere upwelling has possibly a relationship with the breaking-off of subduction slab, and indicates that the breaking-off of Tethys ocean subduction slab may happen before 35Ma.
引文
Abe N,Arai S,Yurimoto H.Geochemical characteristics of the uppermost mantle beneath the Japan island arcs : Implications for upper mantle evolution.Phys.Earth Planet.Int.1998, 107:233~248.
    Argand E. La Tectonique de I' Asie. Int. Geol. Cong. Rep. Sess, 1924, 13(1): 170 ~372.
    ARGAND E. La tectonique de l'Asie[A]. C R Cong Geol Int. Liege, XIII Sess., Fasc.1, 1922. 171~372.
    Arnaud N O, Vidal Ph, Tapponier P, Matte Ph and Deng W M. The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implication[J]. Earth Planetary Science Letters, 1992, 111: 351~367.
    Arnaud N O,Brunel M.Cantagrel J M,et al.,Hing cooling and denudation rates at Kongur Shan, Eastern Parnir (Xinjiang, China)revealed by 40Ar/39Ar alkali feldspar thermochronology. Tectonics, 1993, 12(6): 1335 ~1346.
    Barbarin B.Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint-Julien-la-Vetre Monzogranite(Nord-Forez, Massif Central, France)Can[J]. Earth Sci., 1988 (25):49-59
    Bergantz G W. Underplating and partial melting: Implications for melt generation and extraction. Science, 1989,245:1093 ~1095.
    Condie K.C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology, 1993, 104: 1-37.
    Debon F.Comparative Major element chemistry in various “microgranular enclave- plutonic host”pairs.In Didier J. and Barbarin B.(eds.), Enclaves and Granite Petrology.Elsevier, Amsterdam,1991,293~312.
    Dungan M A, Lindatrom M M, McMiland N J, et al. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico, 1, The Petrology and geochemistry of the Servilleta basalt. Jour. Geophys. Res., 1986. 91:5999~6028.
    Eiler J,Grawford A,Elliott T,Fanley K A,Valley J V,Stolper E M.Oxygen isotope geochemistry of oceanic arc lavas.J.Petrol.2000,41:229~256.
    Gill J B.Orogenic andesites and plate tectonics .Berlin:Springer-Verlag:1981:58.
    Green D H, Hellman P L. Fe-Mg partitioning between coexisting garnet and phengite at high pressures, and comments on a garnet-phengite at high pressures, and comments on a garnet-phengite geothermometer. Lithos, 1982, 15:253~266.
    Green T H.Anatexis of mafic crust and high pressure crystallization of andesite.In :R S Thrope(ed.),Andesites,John Wiley and Sons,1982:456~487.
    Grove T L,Elkins Tanton L T,Parman S W. et..al.Fractional crystallization and mantle melting controls on calk-alkaline differentiation trends.Contrib Mineral Petrol.2003,145(5):515~533.
    Hacker B R, Gnos, E, Ratschbacher,L et al.,.Hot and dry deep crustal xenoliths from Tibet. Science, 2000, 287: 2463~2466.
    Henderson P. Rare earth element geochemistry. Amsterdam: Elsevier. 1984.
    Hermann J, Green D H. Experimental constraints on high pressure melting in subducted crust. Earth and Planetary Science Letters, 2001,188:149~168.
    Huppert H E , Sparks R S.. The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol. , 1988, 29: 599 ~624.
    Ionov D A, Gregoire M, and Prikhod’ko V S.Feldspar-Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle.Earth and Planetary Science Letters.1999,165,37~44.
    Jahn B M, and Zhang Z Q. Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 1984, 85: 224 - 243.
    Jahn B M, Wu F Y, Lo C H,and Tsai,C H.Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China.Chemical Geology. 1999,157:119~146.
    Kelemen P B, Hangh?j K, and Greene A R. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick R L (ed.), Treatise On Geochemistry, 2003, 3: 593-659.
    Kepezhinskas P K,Defant M J,Drummond M. Na Metasomatism in the island-arc mantle by slab melt-peridotite interaction:Evidence from mantle xenoliths in the north Kamchatka arc [J]. Journal of Petrology, 1995(36): 1505-1527
    Kepezhinskas P, McDermott F, Defant M J, Hochstaedter A, Drummond M S. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim. Cosmochim. Acta, 1997, 61(3), 577-600.
    Lai, S C, Liu C Y and Yi H S,.Geochemistry and petrogenesis of Cenozoic andesite- dacite associations from the Hoh Xil region, Tibetan plateau.International Geology Review, 2003.45:998~1019
    Le Roux A P. Geochemical correlation between southern African kimberlites and south Atlantic hotspots. Nature, 1986, 324: 243-245.
    Liu S, Hu R Z, Feng CX et al,.Cenozoic adakite-type volcanic rocks in Qiangtang, Tibet and its significance. Acta Geologica Sinica-English Edition, 2003,77 (2):187~193.
    Martin H, Smithies R H, Rapp R, Moyen J –F, Champion D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 2005, 79: 1-24.
    McKenna L W,Walker J D.Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztagh area,northern Tibet ,and their implications for the formation of the Tibetn Plateau.Journal of Geophysical Research, 1990, 95(B13):21483~21502.
    Miller C, Schuster R, Klozli U. et al. Post-collisional potassic and ultrapotassic activities in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis .J Petrol. 1999, 40:1399~1424. Pearce J. A.,梅厚均. 拉萨至格尔木的火山岩,青藏高原地质演化,科学出版社, 1990, 186~189.
    Polat A, Kerrich R. Magnesian andesite, Nb-enriched basalt-andesite, and adakites from Late-Archean 2.7 Ga Wawa greenston belts, Superrior Province, Canada: Implications for Late Archean subduction zon petrogenetic processes. Contrib. Mineral. Petrol., 2001, 141:36-52.
    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 1989, 22, 247-263.
    Sajona F G, Maury R C, Bellon H, Cotton J, Defant M J, Pubellier M, Rangin C. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 1993, 21: 1007-1010.
    Sun S S, Mc Donough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes . In:Saundes A.D, Norry M. J.(eds.). Magmatism in the ocean Basin,Gological Society Special Publication,1989,(42):313-345
    Tatsumi, Y., Geochemical modeling of partial melting of subducting sediments and subsequent melt-mantle interaction: Generation of high-Mg andesites in the Setouchi volcanic belt, southwest Japan, Geology, 2001, 29: 323~326.
    Taylor S R, and Mclennan S M. The continental crust: Its composition and Evolution.Blackwell, 1985, 312.
    Turner S P, Platt J P , George R M M , et al. Magmatism Associated with Orogenic Collapse of the Betic–Alboran Domain,SE Spain.JOURNAL OF PETROLOGY.1999 40 (6): 1011~1036.
    Turner S, Hawksworth J, Rogers N, et al. Timing of the Tibetan uplift constrained by analysis of volcanic rocks. Nature, 1993, 364: 50~54.
    Turner S,et al. Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 1996,37:45~71.
    Voshage H, Hofmann A W, Mazzucchelli M, et al. Isotopic evidence from the Ivrea Zone for a hybrid lower crust formed by magmatic underplating. Nature, 1990, 347: 731~736.
    Wang Guozhi, Wang Chengsan.. Disintegration and age basement metamorphic rocks in Qiangtang, Tibet, China. Science in China (Series D) 2001,44 (supp): 86~93.
    Wang, J. H., Yin, A., Harrison, T. M. et al., A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone, Earth Planet. Sci. Lett., 2001, 188: 123~133.
    Wilson M, Downes H. Teriary-Quaternary extension-relatde alkali magmatism in western and central Europe [J] .J. Petrol.,1991(32):811-849
    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters, 1980, 50, 11-30.
    陈炳蔚,李永森,曲景川,等.三江地区主要大地构造问题及其与成矿的关系.北京:地质出版社,1991.
    迟效国,李才,金巍,等.藏北新生代火山岩作用的时空演化与高原隆升.地质论评,1999,45(增刊):978~986.
    迟效国,李才,金巍.藏北羌塘地区新生代高Mg钾质火山岩的岩浆源区性质—来自实验岩石学的约束. 2005年全国地球化学年会论文摘要.
    迟效国,李才,金巍.藏北羌塘地区新生代火山作用与岩石圈构造演化.中国科学D辑,2005,35(1):1~12.
    迟效国,戚长谋,齐永恒.中国东部花岗岩荷载微粒闪长质包体成因,长春地质学院学报,1995(2):131~143.
    邓晋福,莫宣学,罗照华,等.火成岩构造组合与壳-幔成矿系统.地学前缘,1999,6(2):259~270.
    邓晋福,赵海玲,赖绍聪.白云母/二云母花岗岩形成与陆内俯冲作用.地球科学,1994,19(2):139~147.
    邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造--大陆动力学的钥匙.北京:地质出版社,1996.
    邓万明,Pearce.J.A,拉萨—格尔木(1985)和拉萨—加德满都(1986)的蛇绿岩,青藏高原地质演化,北京:科学出版社1990.
    邓万明,黄萱,钟大赉.滇西新生代富碱斑岩的岩石特征与成因.地质科学,1998,33: 412~425.
    邓万明,孙宏娟,张玉泉.青海囊谦盆地新生代火山岩的K-Ar年龄.科学通报, 1999.,44(23):2554~2557.
    邓万明,尹集祥,呙中平.羌塘茶布-双湖地区基性超基性岩和火山岩研究.中国科学(D辑), 1996,26(4):296~301.
    邓万明,郑锡澜,松本征夫.青海可可西里地区新生代火山岩的岩石特征与时代.岩石矿物学杂志, 1996; 15(4):289~298.
    邓 万 明 . 藏 北 第 四 纪 火 山 岩 岩 石 学 和 岩 石 化 学 初 步 研 究 , 地 质 学 报 , 1978,52(2):148~162
    邓万明.基性-超基性岩.见:中国科学院青藏高原综合科学考察队主编.喀喇昆仑山-昆仑山地区地质演化.北京:科学出版社,2000.
    邓万明.喀喇昆仑-西昆仑地区蛇绿岩的地质特征及其大地构造意义岩石学报,1995,(S1):98~111.
    邓万明.青藏北部新生代钾质火山岩微量元素和Sr、Nb同位素地球化学研究.岩石学报,1993,9(4):379~387.
    邓万明.青藏高原北部新生代板内火山岩.北京:地质出版社,1998.
    邓万明.青藏古特提斯蛇绿岩带与“冈瓦纳古陆北界”,蛇绿岩与地球动力学研究(张旗主编),北京:地质出版社1996.
    邓万明.西藏阿里北部的新生代火山岩--兼论陆内俯冲. 地质学报,岩石学报,1989,5(3):1~11
    邓万明.中昆仑造山带钾玄质火山岩的地质、地球化学和时代.地质科学,1991,(3):193~206.
    丁林,来庆洲.冈底斯地壳碰撞前增厚及隆升的地质证据:岛弧拼贴对青藏高原隆升及扩展历史的制约,科学通报,2003,48(8):836~842.
    丁林,张进江,周勇,等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征.岩石学报,1999,15(1):408~421.
    丁林,钟大赉,潘裕生,等.东喜马拉雅构造结上新世以来快速抬长的裂变径迹证据,科学通报, 1995, 40(16):1497~1500.
    丁林,钟大赉.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义.中国科学(D辑) 1999, 26 (5): 385~397.
    郭铁鹰,梁定益,张宜智,等.西藏阿里地质,武汉:中国地质大学出版社, 1991.
    金振民.喜玛拉雅造山带西构造结含柯石英榴辉岩的发现及其启示.地质科技情报,1999.18(3):1~10.
    赖绍聪,等.北羌塘新第三纪高钾钙碱性火山岩系的成因及其大陆动力学意义[J].中国科学(D辑),2001,31(增刊):34-42
    赖绍聪,邓晋福,赵海玲.青藏高原北缘火山作用与构造演化[M].西安:陕西科学技术出版社,1996,1-120
    赖绍聪,刘池阳.青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区--来自新生代火山岩的岩石地球化学证据[J].岩石学报,2001,17(3):459-468
    赖绍聪,伊海生,刘池阳.青藏高原北羌塘新生代高钾钙碱岩系火山岩角闪石类型及痕量元素地球化学[J].岩石学报,2002,18(1):17-24
    赖绍聪.青藏高原新生代埃达克质岩的厘定及其意义,地学前缘, 2003, 10 (4):407~415.
    赖绍聪.青藏高原新生代火山岩矿物化学及其岩石学意义--以玉门、可可西里及芒康岩区为例,矿物学报,1999,19(2):236~244.
    赖绍聪.青藏高原新生代三阶段造山隆升模式:火成岩岩石学约束,矿物学报. 2000 ,(20)2:182~189.
    李才,程立人,胡克,等.西藏龙木错-双湖古特提斯缝合带研究,北京:地质出版社, 1995.
    李才,范和平,徐峰.青藏高原北部新生代火山岩岩石化学特征及其构造意义,现代地质,1989,26(3):39~56.
    李才,和钟铧,杨德明.西藏羌塘地区几个关键地质构造问题.,世界地质,1996., 15(3):18~23.
    李才,李永铁,林源贤,等.西藏双湖地区蓝片岩原岩Sm-Nd同位素定年,中国地质,2002,29(4):355~359.
    李才,王天武,杨德明,等.西藏羌塘中部都古尔花岗质片麻岩同位素年代学研究,长春科技大学学报,2000, 30 (2):105~109.
    李才,王天武,杨德明,等.西藏羌塘中央隆起区物质组成与构造演化,长春科技大学报,2001,31(1):25~31.
    李才,杨德明,和钟铧,等. 西藏羌塘盆地综合剖面-构造演化研究报告, 1996,1~42.
    李才,郑安柱.西藏“羌塘”地区古生界划分及其与构造关系的讨论,西藏地质,1990,(1):1~8.
    李才,朱志勇,迟效国.藏北改则地区鱼鳞山组火山岩同位素年代学,地质通报,2002(11):732~734.
    李才.龙木错—双湖—澜沧江板块缝合带与石炭二叠纪冈瓦纳北界.长春地质学院学报,1987,17(2):155~166
    李才.羌塘基底质疑.地质论评,2003.,49(1):5~9.
    李才.西藏羌塘盆地中央隆起区物质组成、构造演化及主要分歧,见:叶和飞等著,青藏高原大地构造特征及盆地演化,北京:科学出版社,2001.
    李才.西藏羌塘中部蓝片岩青铝闪石40Ar/39Ar定年及其地质意义,科学通报,1997, 42(4):488.
    李昌年.火成岩微量元素岩石学,中国地质大学出版社,1992.
    李光明.藏北羌塘地区新生代火山岩岩石特征及其成因探讨[J].地质地球化学,2000,28(2):38-44
    李星学,姚兆奇,朱家楠,等.西藏北部双湖地区晚二叠世植物群,西藏古生物,第五分册,北京:科学出版社,1982.
    李星学.东亚华夏植物群的鳞木类植物,中国科学,1980(2):166~171.
    梁定益,聂泽同,郭铁鹰等.西藏阿里喀喇昆仑南部的冈瓦纳-特提斯相石炭-二叠系.地质科学-武汉地质大学学报,1983, 19 (1):9~23.
    林强,吴福元,马瑞.花岗岩块状样品的熔融实验研究,地球化学, 1993, 13(4):256~362.
    刘丛强,谢广轰,中井俊一,等. 新疆于田县康苏拉克新生代火山岩Sr、Nb、Ce、O同位素及微量元素地球化学,科学通报,1989,23:1803~1806.
    刘嘉麒.中国火山[M].北京:科学出版社,1999,53-135
    刘嘉麒,买买提依明,1990,西昆仑第四纪火山的分布与K—Ar年龄。中国科学(B辑),2,P180-187
    刘燊,胡瑞忠, 赵军红, 冯彩霞, 钟宏, 曹建劲, 史丹妮. 胶北中生代煌斑岩的岩石地球化学特征及其成因研究. 岩石学报, 2005, 21(3): 947-958.
    刘燊,李才,杨德明,等.西藏措勤盆地晚中生代构造岩相演化特点,长春科技大学学报, 2000,30(2):134~156.
    刘世坤.藏东金沙江一带元古界的大地构造意义,西藏地质, 1992,(1):16~21.
    柳小明. 华北克拉通中生代壳幔交换作用的地球化学研究. 西北大学博士学位论文,2004.
    马宗晋,张家声,汪一鹏.青藏高原三维变形运动学的时段划分和新构造分区,地质学报, 1998,72(3),211~227.
    莫宣学,罗照华,肖庆辉,等.花岗岩类岩石中岩浆混合作用的识别与研究方法,见:花岗岩研究思维与方法,肖庆辉,邓晋福,马大栓,等.著.北京:地质出版社,2002:53~70.
    潘桂棠,陈智梁,李兴振,等.东特提斯地质构造形成演化,北京:地质出版社,1997.
    潘桂棠,王培生,徐耀荣等,1990,青藏高原新生代构造演化。北京:地质出版社
    潘裕生,昆仑山区构造区划初探,自然资源学报,1989,49(3),196~203.
    孙延贵。可可西里北缘中新世火山活动带的基本特征。青海地质,1992,(2):40-47。
    谭富文,潘桂棠,徐强.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升[J].岩石矿物学杂志,2000,19(2):121-130
    腾志宏.新疆普鲁火山岩及时代归属问题,岩石学报,1987,5(4):94~95.
    万渝生,罗照华,李莉. 3.8Ma:青藏高原年轻碱性玄武岩锆石离子探针U-Pb年龄测定,地球化学, 2004, 35 (5):442~446.
    王成善,向芳.全球气候变化新生代构造隆升的结果,矿物岩石,2001,21(3):173~178.
    王克勇.藏东八宿怒江桥-邦达一带嘉玉桥群研究的新进展.中国区域地质,1998.,7(1):105~111.
    王培生,徐耀荣,向天秀.青藏高原新生代火山岩浆活动,中华人民共和国地质矿产部地质专报:青藏高原新生代构造演化,第9号,北京:地质出版社,1990.
    王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究. 西北大学硕士学位论文, 2005.
    魏君奇,王建雄,牛志军.羌塘赤布张错地区新生代火山岩研究,沉积与特提斯地质, 2004(2):16~21.
    吴福元.花岗岩熔融的局部体系及熔融序列,吉林:吉林科学技术出版社,1993.
    吴瑞忠,胡承祖,王成善,等.藏北羌塘地区地质系统.青藏高原地质文集(9). 北京:地质出版社, 1986.
    西藏地质矿产局,西藏自治区区域地质志,北京:地质出版社, 1993
    西藏区域地质调查大队.1:100万改则幅地质调查报告, 1986,1~32.
    肖序常,李廷栋,李光岑,等.喜马拉雅岩石圈演化总论,中华人民共和国地质矿产部,地质专报五,构造地质,地质力学,第7号,北京:地质出版社,1988.
    肖序常,李廷栋,王军.青藏高原大陆动力学,见:青藏高原的构造演化与隆升机制,
    肖序常,李廷栋主编,广州,广东科技出版社,2000.237~270.
    肖序常,王军.青藏高原构造演化及隆升的简要评述,地质论评,1998,(4):372~381.
    谢义木.改则北部下石炭统的发现,中国区域地质,1983,4(1):107~108.
    新疆地质矿产局.新疆区域地质志,北京:地质出版社,1993:368~401.
    徐平; 吴福元; 谢烈文; 杨岳衡.U-Pb同位素定年标准锆石的Hf同位素. 科学通报, 2004年 14期
    许继峰,王强.Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例,地学前缘, 2003, 10(4): 401~406.
    许荣华,西藏中南部花岗岩类和变质岩的年代学和同位素研究,(中国地质科学院主编),北京:地质出版社, 1990.
    杨德明,李才,和钟铧,等.西藏尼玛宋我日火山岩岩石化学特征与构造环境,地质论评,1999,45(增刊):972~977.
    杨经绥,吴才来,史仁灯,等.青藏高原北部鲸鱼湖地区中新世和更新世两期橄榄玄粗质系列火山岩,岩石学报, 2002,18(2):161~176.
    杨日红,董建乐,李 才,等.藏北新生代火山岩主要造岩矿物特征及温压条件[J].现代地质,2002,16(2):153-158
    尹集祥.青藏高原及邻区冈瓦纳相地层地质学,北京:地质出版社,1997.
    张以弗,郑健康.青海可可西里及邻区地质概论[M].北京:地震出版社,1994
    张以弗,郑祥身,郑健康.青海可可西里地区地质演化[M].北京:科学出版社,1996
    赵振华,王强,熊小林.俯冲带复杂的壳幔相互作用,矿物岩石地球化学通报,2004,23(4):277~284.
    郑祥身,边千韬.青海可可西里地区新生代火山岩研究[J].岩石学报,1996,12(4):530-545
    周祥,曹佑功,朱明玉,等.西藏板块构造—建造图说明书,北京:地质出版社,1986.
    周志澄,方宗杰,郭震宇,等.云南保山金鸡剖面丁家寨组及其古水温问题的讨论,地层学杂志1999.
    朱伟元,党运鸿.波密寒武系发现及其意义,西藏地质, 1993,2:1~2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700